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Abstract 
This paper presents the design of a robust control system for a high-purity dis-
tillation column. It is concerned with the design of a two degree-of-freedom 
(2DOF) product-composition controller for a high-purity distillation column. 
The ∞  optimization problem is set up to ensure a guaranteed level of ro-
bust stability, robust disturbance attenuation and robust reference tracking 
performance. 
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1. Introduction 

Distillation is an important process in the separation and purification of chemi-
cals that exploits the difference in the boiling points of multi-component liquids. 
It has some unique characteristics, such as complex dynamics, coupling amoung 
loops, time delay and various disturbances [1]. However, many problems in 
modeling and control of distillation processes arise from their strong nonlinear 
behavior. [2] proposed designed of linear controllers based on a linearized mod-
el of the plant, with reduction of non linearities by using logarithmic compos-
tions. Linear robust controllers are widely seen as acceptable solutions when 
systems are controlled closed to known equilibrium points and a known trajec-
tory [3]-[8]. Wiener model identification and predictive control, with approx-
imated nonlinearities of the distillation column can be found in [9]. It is shown 
that an acceptable performance-robustness trade-off cannot be obtained by sim-
ple loop shaping [10] and a good understanding of the model uncertainty is es-
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sential for robust control system design in papers [11] [12] [13]. It has described 
several methods and techniques for controller design of high purity distillation 
column. The H-infinity technique is controlled of high purity two-degree of 
freedom controller. Physically motivated uncertainty description is translated 
into H-infinity loop shaping framework which is demonstrated to be a powerfull 
tools to analyze and understand complex phenomena. This paper presents a 
nonlinear version of robust H-infinity controller to satisfy the performance spe-
cifications based on 2-degree of freedom loop shaping-infinity controller for dis-
tillation. The aim of the design, is to find a controller that achieves robust stabil-
ity and robust performance of the closed-loop control system of a high-purity 
distillation column. 

2. Theory 

As a consequence, the control engineer never completely knows the precise dy-
namics of the system. These systems often possess dynamics that are difficult to 
measure accurately such as friction, viscous drag, unknown torques and other 
dynamics. Thus there are a certain amount of uncertainty in the practical control 
problem. This problem of differences between the model and the physical system 
is called the robustness problem. A robust controller is one that operates well on 
the physical system despite the differences between the design model and the 
physical system. The key to robust designs is characterizing the uncertainty and 
adding it to the model in the appropriate ways. More about robust control, can 
be found in books e.g. [14] [15] [16] [17]. 

A typical control problem involves devising a controller that maximizes the 
performance (minimum tracking error) while providing a stable feedback sys-
tem. The two main approaches are numerical and graphical. Numerical tech-
niques such as 2  and ∞  optimal control rely upon computers to find a 
controller to optimize a particular matrix norm of the system. 

The approach adopted by robust control theory is to describe a physical sys-
tem by means of an uncertain model. The latter is defined as a set of models and 
described in terms of a nominal plant together with bounded uncertainty. 

An uncertain model with multiplicative dynamic uncertainty is shown in 
Figure 1. it describes a physical system as a set G of mathematical models, as 
follows: 

 

 
Figure 1. Family of models with dynamic multiplicative uncertainty. 
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( ) ( ) ( ) ( ){ }0: 1 , , 1G g s g s g s W s= = + ∈ <   δ δ δ
         

(1) 

The set G is the family of models and is characterized by a nominal plant 
( )0g s , a fixed weighting function W(s), and a class of bounded uncertainty δ . 

The nominal model ( )0g s  corresponds to the case where there is no uncer-
tainty, that is, 0=δ . Without loss of generality, the bound on the uncertainty 
δ  can be taken to be one, because any other bound can be absorbed into the 
weight W(s). the weighting function W(s) represents the “dynamics” of the un-
certainty, or in other words its “frequency distribution”. An important restric-
tion in the problem of robust stabilization is that each member of the family of 
models is required to have the same number of unstable poles. 

A more general uncertainty description can be obtained by replacing ∈δ  
by a real rational transfer function ( )s∆ , such that 

( ) ( )sup 1
jw

s jw
∞

∆ ∆ <

                     
(2) 

Robust Performance 
Robust performance refers to the ability of the system to maintain good per-

formance, measured in terms of its tracking accuracy, given that modeling errors 
exist when designing the controller. 

The final goal of robust control is to achieve the performance requirement on 
all members of the family of models (i.e., robust performance). 

Definition 1. The feedback loop of Figure 2 achieves robust performance if 
and only if ( ) ( )

2
1yW s y s ≤ , for all possible disturbances in the set  

{ }2 2, 1d d∈ ≤ , for all inputs to the system equal to zero, and for all models in 
the set: 

( ) ( ) ( ) ( ){ }0: 1 , , 1G g s g s W s g sδ δ δ δ= = + ∈ <    .         (3) 

A necessary and sufficient condition for robust performance of the family of 
models in Figure 1 is 

( ) ( ) ( ) ( ) 1, 1dW jw S jw T jw W jw
∞

+ ≤ <δ δ
            

(4) 

It follows that robust performance can always be cast into robust stability of 
the set of models with structured uncertainty. 

 

 
Figure 2. Disturbance rejection at the output for a family of model with multiplicative 
uncertainty. 
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Robust Stability 
Robust stability refers to the ability of a closed loop stable system to remain 

stable in the presence of modeling errors, even though the model used for sys-
tem design is very different from the plant model which exists in practice. 

Consider the feedback loop of Figure 3, where G(s) represent the nominal 
model of the plant, K(s) a model of the controller, y(s) the output, r(s) a refer-
ence signal, ( )e s r y−  the racking error, d(s) a disturbance, and n(s) the 
measurement noise. 

The relations among them are the following: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11
r s n s I G s Ky s G s K s I G s K s s d s

−−
− + +      = +   (5) 

Define ( ) ( ) ( ) 1
S s I G s K s

−
= +    is sensitivity function and  

( ) ( ) ( ) ( ) ( ) 1
T s G s K s I G s K s

−
= +    is the complementary sensitivity function. 

It is easy to see that S(s) and T(s) satisfy the following equation: 

( ) ( )T s S s I+ =                         (6) 

where I is the identity matrix. 
This equation places a serious constraint when designing a controller that 

should guarantee stability and performance, as well as robustness to model un-
certainty. 

3. Dynamic Model of the Distillation Column 

A typical two-product distillation column is shown in Figure 4. The objective of 
the distillation column is to spilt the feed F, which is a mixture of a light and a 
heavy component with composition zf, into a distillate product D with composi-
tion yd, which contains most of the heavy component. For this aim, the column 
contains a series of trays that are located along its height. The liquid in the col-
umns flows through the trays from top to bottom, while the vapour in the col-
umn rises from bottom to top. The constant contact between the vapour and 
liquid leads to increasing concentration of the more-volatile component in the 
vapour, while simultaneously increasing concentration of the less volatile com-
ponent in the liquid. The operation of the column requires that some of the bot-
tom product is re-boiled at a rate V to ensure the continuity of the vapor flow 
and some of the distillate is refluxed to the top tray at a rate L to ensure the  

 

 
Figure 3. Multivariable Feedback loop control system. 
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Figure 4. The distillation column system. 

 
continuity of the liquid flow. The distillation column model used in this paper is 
a high –purity column, referred to as the “column at operating point A” by Sko-
gestad and Morari (1988b), [18]. 

The notations used in the derivation of the column model are summarized in 
Table 1. This is a good example for design of controllers for ill-conditioned, 
high purity distillation column which is used by several papers e.g. [2] [19]. The 
index i denotes the stages numbered from the bottom (i = 1) to the top (i = Ntot) 
of the column. Index B denotes the bottom product and D the distillate product. 
A particular high-purity distillation column with 40 stages (39 trays and a reboi-
ler) plus a total condenser is considered. 

The nonlinear model equations are: 
i-Total material balance on stage i 

1 1d di i i i iM t L L V V+ −= − + −                    (7) 

ii-Material balance for the ight component on each stage i 
( ) 1 1 1 1d di i i i i i i i i iM x t L x V y L x V y+ + − −= + − −               (8) 

This equation leads to the following expression for the derivative of the liquid 
mole fraction 

( ) ( )( )d d d d d di i i i i ix t M x t x M t M= −
              

(9) 

iii-Algebraic equations 
The vapor composition iy  is related to the liquid composition ix  on the 

same stage through the algebraic vapor-liquid equilibrium 

https://doi.org/10.4236/ojapps.2022.129106
https://doi.org/10.4236/***.2022.*****
https://doi.org/10.4236/***.2022.*****


R. M. S. K. Elsaied 
 

 

DOI: 10.4236/ojapps.2022.129106 1564 Open Journal of Applied Sciences 
 

Table 1. Column nomenclature. 

Description Symbols 

Feed rate [Kmole/min] F 

Feed composition [mole fraction] zf 

Fraction of liquid in feed qf 

Distillate (top) and bottom product flow rate [Kmol/min] D and B 

Distillate and bottom product composition (usually of light component)  
[mole fraction] 

yd and xb 

Reflux flow [Kmole/min] L 

Boilup flow [Kmole/min] V 

Number of stages (including reboiler) N 

Total number of stages (including condensor) Ntot = N 

Stage number (1-bottom, NF-feed stage, NT-total condensor) I 

Liquid and vapour flow from stagi [Kmole/min] Li and Vi 

Liquid and vapour composition of light component on i xi and yi 

Liquid holdup on stage i [Kmole] (MB-reboiler, MD-condenser holdup) Mi 

Relative volatility between light and heavy component Α 

Time constant for liquid flow dynamics on each stage [min] τL 
 

( )( )1 1i i iy x xα α= + −
                    

(10) 

From the assumption of constant molar flows and no vapour dynamics, one 
obtains the following expression for the vapour flows 

1i iV V −=                           (11) 

The liquid flows depend on the liquid holdup on the stage above and the va-
pour flow as follows 

( ) ( )1 1i i i i L i iL LO M MO V VOτ λ − −= + − + −             (12) 

where iLO  [Kmol/min] and iMO  [Kmol/min] are the nominal values for the 
liquid flow and holdup on stage i and iVO  is the nominal boilup flow. If the 
vapor flow into the stage effects the holdup then the parameter λ is different 
from zero. For the column under investigation 0=λ . 

The above equations apply at all stages except in the top(condenser), feed 
stage and bottom(reboiler). 

a) Feed stage, 

Fi N=  (we assume the feed is mixed directly into the liquid at the feed stage): 

1 1d di i i i iM t L L V V F+ −= − + − +                  (13) 

( ) 1 1 1 1d di i i i i i i i i i fM x t L x V y L x V y Fz+ + − −= + − −            (14) 

b) Total condenser, 

Ti N= ( ),NT D NT TM M L L= =  
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1d di i iM t V L D−= − −                      (15) 

( ) 1 1d di i i i i i iM x t V y L x Dx− −= − −                 (16) 

c) Reboiler, 
1i = , ( ),i B i BM M V V V− = =  

1d di i iM t L V B+= − −                      (17) 

( ) 1 1d di i i i i i iM x t L x V y Bx+ += − −                 (18) 

4. Design Specification 

The column operating point used for this design study is case 1 of operating 
point A in Morari and Zafiriou [20], page 440. The column data operating con-
ditions are summarized in Table 2. A hydraulic time constant of τ = 0.063 min 
was used and it was assumed that the feed was saturated liquid (qf = 1.0) 

The specifications for the control system design are as follows: 
1) Closed-loop stability. 
2) Disturbances of ±30% in the feed flow rate F, and changes of ±0.05 in the 

feed composition Zf should be rejected to within 10% of steady-state within 30 
minutes. In addition, the following frequency domain specification should be 
met: 

3) ( )( )2 316K S j <σ ω ∀ω  This specification is included mainly to avoid sa-
turation of the plant inputs. 

4) ( )( )2 316K S j <σ ω ∀ω . 
In the above, σ  denotes the largest singular value, K2 denotes the feedback 

part of the controller and ( ) 1
21S GK −= +  is the sensitivity function of G. 

5. The Control System Model 

All the simulation results were obtained using an 82-state nonlinear model 
which includes the liquid dynamics. There are two states per tray, one which 
represents the liquid composition and one which represents the liquid holdup. 
The nonlinear model was linearized about the operating point given in Table 2. 

The plant model can be split into two 2-input 2-output sections. The first part 
G represents the transfer function matrix mapping the manipulated inputs uc the 
output y, while the second partG2represents the transfer function matrix map-
ping the disturbances ud to the output y. This gives 

[ ] c
c d

d

u
x Ax B B

u
 

= +  
 



                    
(19) 

 
Table 2. Column data and nominal conditions. 

N Ntot NF F zf qf D 

40 41 21 1 0.5 1 0.5 

R L V yd xb Mi τL 

0.5 2.706 29 3.206 29 3.0.99 0.01 0.5 0.063 

https://doi.org/10.4236/ojapps.2022.129106
https://doi.org/10.4236/***.2022.*****
https://doi.org/10.4236/***.2022.*****


R. M. S. K. Elsaied 
 

 

DOI: 10.4236/ojapps.2022.129106 1566 Open Journal of Applied Sciences 
 

And [ ] c
c d

d

u
y Cx D D

u
 

= +  
                    

(20) 

in which c

L
u

V
 

=  
 

; d
f

F
u

z
 

=  
 

; d

b

y
y

y
 

=  
 

; 

A state-space realization is 

( ) cA B
G S

C D
 
 
 

                        (21) 

and 

( ) d
d

A B
G S

C D
 
 
 



                      
(22) 

5.131e 3 0 0 0 0
0 7.366e 2 0 0 0
0 0 1.829e 1 0 0
0 0 0 4.62e 1 9.895e 1
0 0 0 0 4.62e 1

A

− − 
 − 
 = − −
 

− − − 
 − − 

 
[ ]0.629  0.624; 0.055   0.172; 0.03   0.108; 0.186   0.139; 1.23  0.056B = − − − − − − −  

0.7223 0.517 0.3386 0.1633 1 0.1121
0.8913 0.4758 0.9876 0.8425 0.2186

e
C

− − 
=  −   

[ ]0 0; 0 0D =  
[ ]0.062   0.067; 0.131   0.04; 0.022   0.106; 0.188   0.027; 0.045   0.014dB = − − − − −  

6. Two-Degree-of-Freedom Controller Design 

Since this problem has demanding time-response specifications, we make use of 
a two-degree-of-freedom (TDF) controller structure that can be designed within 
the generalized regulatory framework. An alternative TDF design procedure in-
volves the separate optimization of the pre-filter and feedback controller, but 
requires the parameterization theory for all TDF controllers. If the controller in 
Figure 5 is partitioned to 

[ ]1 2K K K=                         (23) 

it can be seen that the controller command is given by 

[ ]1 2cu K K
y
α 

=  
 

                      (24) 

where K1 is the feedback part of the controller and K2 is the pre-filter part. 

7. The Optimization Problem 

The configuration we will study is give in Figure 5, in which 

[ ] [ ]1
c d nc c d dM N N G W G W− =                 (25) 

such that 1
cM N−  is a normalized left co-prime factorization. The model set we  

https://doi.org/10.4236/ojapps.2022.129106


R. M. S. K. Elsaied 
 

 

DOI: 10.4236/ojapps.2022.129106  1567 Open Journal of Applied Sciences 
 

 
Figure 5. The design problem configuration. 

 
consider is therefore 

( ){ } ( ) [ ]1
ˆ 1:

ˆ
N M

M c N
N M

H
M M Nγς ν

− ∞
−

 ∆ ∆ ∈ = − ∆ + ∆ ∆ ∆ <  
        (26) 

It is not difficult to modify the design to allow for perturbations to Nd, but we 
have not done this in the interests of simplifying the presentation. The weight 
Wc is used to shape the loop, while Wd contains spectral information about ex-
pected disturbances. The scaling factor ρ is used to weight the relative impor-
tance of robust stability as compared to robust model matching and robust dis-
turbance rejection 

It follows from Figure 5 that the closed-loop system of interest is described by 
the linear fractional transformation 

2 1
0

1

1

0
0 0 0

0 0 0
0

d d nc c

d nc c
d

c

c
d nc c

z M G W M G W
y G W M G W

u
u l

l
u

y G W M G W

ρ ρ ρ ρ
τ

ρ

φ
α ρ

−

−

−

 − 
   
   
    =
   
   
                

(27) 

[ ]1 2cu K K
y

 
=  

 

α

                      
(28) 

which we denote by R We are required to find an internally-stabilizing control-
ler such that ˆR

∞
≤ γ  This is a generalized regulator problem, which may be 

solved using the theory described in [6]. Solving the loop equations shows that 
the closed-loop transfer function matrix R is given by 

( )2 1
0

1
1

1
1 1 2

p d d

p d d d

c d d

SG M SG W SMz
y SG K SG W SM u

u SK K SG W K SM

ρ ρ ρ τ
ρ
ρ φ

−

−

−

 −       =              


         (29) 

In which ( ) 1
21 pS G K

−
= −  is the sensitivity operator and ( ) 1

21 pS K G
−

= − . 
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Therefore, once a controller such that ˆR
∞
≤ γ  has been found, we see that: 

1) The loop will remain stable for all ˆG∈ γς  This follows from the (2, 3) and 
(3, 3)-blocks of ˆR

∞
≤ γ . 

2) By considering the linear fractional transformation [ ]( ),l N MF R ∆ ∆ , we 
conclude from [3] that 2

1 0 ˆpSG K M −

∞
− ≤ γρ  for all ˆG∈ γς . This is a guaran-

teed robust performance property. 
3) In the same way ˆd dSG W

∞
≤ γ  for all ˆG∈ γς  This is the robust distur-

bance attenuation property. 
4) If ρ is set to zero, the TDF problem reduces to the normalized coprime fac-

tor robust stability problem. 

8. Controller Design 

Successful design of the Distillation Column control system may be obtained by 
using the ∞  loop shaping design procedure (LSDP). 

8.1. Loop Shaping Design Procedure 

1) Select a loop-shaping weight Wc for G(s). As with the earlier procedure, Wc 
is used to meet some of the closed-loop performance specifications. 

2) Find the minimal value optγ  in the pure robust stabilization problem; this 
may be calculated using the following equation [3] 

( )
1

2 21opt HM N
−

= −γ                     (30) 

3) A high value of optγ  indicates that the specified loop shapes are inconsis-
tent with robust stability requirements and that the feedback controller will sig-
nificantly alter the loop shapes. 

4) Select the weighting function Wd. This is used to shape the closed-loop dis-
turbance rejection transfer functions. 

5) Select a simple target model, M0, for the closed-loop system. This is usually a 
diagonal matrix of first- or second-order lags that represent desired closed loop, 
time-domain command response properties. As with any other weight selection, the 
target model must be realistic, or the resulting closed-loop system will have poor 
robust stability properties and the controller will produce excessive control action. 

6) Select a ρ value for the TDF configuration in Figure 5. In our experience, 
one obtains good results on process control problems when ρ is in the range
0.8 2≤ ≤ρ . 

7) Find the optimal value of γ̂ . In distillation applications we found that 
ˆ1.2 3opt opt× ≤ ≤ ×γ γ γ  gave a good compromise between the robust stability and 

robust performance objectives. 
8) Calculate the optimal controller. The final controller degree will be 

bounded above by ( ) ( ) ( ) ( )0deg deg deg 2 degd cG W M W+ + + × . 

8.2. Design Weight Selection 

Following the prescriptive design method, the loop-shaping weight was selected 
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to meet the robust stability and robust performance specification given in Sec-
tion 4 After several design iterations we decided on 

2
1.1 11.7

10c
sW I

s
+

=
                      

(31) 

The choice of the gain equal to 1.7 is done to ensure a sufficiently small 
steady-state error. Larger gain leads to smaller steady-state errors but worse 
transient response. The integral action ensures zero steady-state error. The zero 
at −1 is used to reduce the roll-off rate to approximately 20 dB/dec in the unity 
gain range of frequencies. This has a beneficial effect on the closed-loop com-
mand and disturbance rejection response. The loop shaping function (Equation 
(30)) gives 3.9224opt =γ  for the pure robustness problem associated with Gs(s). 

The disturbance weighting function Wd was chosen to be the identity matrix 
and the time-response model we selected was 

0 22

1
3 1

M I
Ts Ts

=
+ζ                      

(32) 

The coefficients of the transfer functions (T = 6; ζ = 0.8) in both channels of 
the model are chosen such that to ensure an over damped response with the set-
tling time of about 30 min. The off-diagonal elements of the transfer matrix are 
set as zeros in order to minimize the interaction between the channels. 

All that remains is for us to obtain an acceptable value of ρ. We discovered 
that ρ = 2.0 gave a good compromise between acceptable stability, disturbance 
attenuation and time-domain performance requirements. The loop shaping 
function in (30) gives 3.4669opt =γ  for the pure robustness problem associated 
with G. 

9. Simulation Results 

The design of the Two degree of freedom ∞  loop shaping design procedure is 
done by using the MATLAB M-file program1.m, that implement the functions 
hinsyn. The controller obtained is of order 14. 

The structured singular value played an important role in the robustness 
analysis, the response of the original system (G) shaped plant (Gs), and distur-
bance (Gd), given in Figure 6 and Figure 7. 

The frequency response of the sensitivity function obtained by using the 
M-file (program2.m) is shown in Figure 8 The maximum at largest singular 
value of this matrix does not exceed 1 for all values 1 the uncertain parameters. 

Figure 9 shows the singular value plots of the closed loop transfer function 
effect of disturbances. The closed loop disturbance attenuation properties are 
also very good, each disturbance is attenuated to within ±10% within the re-
quired. 

The singular value plots of K2S and GK2 are shown in Figure 10 and Figure 
11, respectively. The maximum of the largest singular value of K2S is less than 
316, and the maximum of the largest singular value of GK2 is less than 1 for  
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Figure 6. Frequency responses of the plant Gd. 
 

 
Figure 7. Frequency responses of the plant and shaped plant. 

 
150w ≥  thus the frequency domain specification being met. 

Figure 12 and Figure 13, give the response change in the distillate composi-
tion demand, each response shows a zero steady-state offset and indicates that 
the robust stability, robust disturbance attenuation and robust performance spe-
cifications are met. 
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Figure 8. Frequency responses of closed loop effect of disturbance. 
 

 
Figure 9. Frequency responses of the sensitivity (S). 

 
MATLAB M-file program3.m analysis of the closed loop system, the robust 

stability and performance (with respect to the weighting performance function) 
is analyzed. Where system has very good robustness margins (robust stability 
easily satisfied objective in section 3 (RS = 0.6605)) and excellent nominal per-
formance (NP = 0.9617), so the system is nominally stable we know from the 
simulation of Figure 13 that the robust performance is good (RP = 1.0052). 

10. Conclusions and Future Work 

The following conclusions can be drawn from this study: 
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Figure 10. Frequency responses of K2S. 

 

 
Figure 11. Frequency responses of GK2. 
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Figure 12. Response to a step change in the feed flow rate. 

 

 
Figure 13. Response to a step change in feed composition. 
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Figure 14. Robust performance, Nominal performance and Robuststability conditions for ∞  loop 
shaping controller. 

 
In this paper, the problems of optimal ∞  controller design and robust per-

formance for control systems are studied. A set of linear model of high purity 
distillation column is used for controller design. Controller design methods are 
studied, each with the aim of achieving sufficient robustness and performance by 
using the description of plant variations and uncertainties provided by the mod-
el set. The investigated methods comprise robust ∞  optimal control with loop 
shaping design, which satisfies all control objectives. A two-degree of freedom 
controller was needed to satisfy the specifications. The results, in terms of meet-
ing the specifications, satisfy the design specification and robustness required. 
The simulation results are reported and the different control methods are eva-
luated and analyzed using singular value decomposition (SVD). Design issues 
are briefly discussed. 

Following the findings of this study, the following can be recommended to be 
future work: 
• This research shows that robust control methodology can easily be applied to 

design real, industrial, robust control systems. Thus it is strongly recom-
mended that designers approach their control systems with this methodolo-
gy. 

• The two-degree of freedom control law implementation requires good theo-
retical background and strong mathematical tools. Thus prior knowledge and 
excellent mathematical background must be prepared in advance. 
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• Robust control designs involve the choice of weighting variables. These va-
riables are manipulated manually and thus require an engineering sense, ex-
perience, and sometimes trial and error technique to reach optimal values. 

• The ∞  loop-shaping method has been successfully used and tested in the 
design of high purity distillation column. The same scenario can be repeated 
for other similar real life industrial application systems such as Aircraft control. 
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