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Abstract 
Lithium-ion batteries are the most widely accepted type of battery in the elec-
tric vehicle industry because of some of their positive inherent characteristics. 
However, the safety problems associated with inaccurate estimation and pre-
diction of the state of health of these batteries have attracted wide attention 
due to the adverse negative effect on vehicle safety. In this paper, both ma-
chine and deep learning models were used to estimate the state of health of 
lithium-ion batteries. The paper introduces the definition of battery health 
status and its importance in the electric vehicle industry. Based on the data 
preprocessing and visualization analysis, three features related to actual bat-
tery capacity degradation are extracted from the data. Two learning models, 
SVR and LSTM were employed for the state of health estimation and their 
respective results are compared in this paper. The mean square error and 
coefficient of determination were the two metrics for the performance evalu-
ation of the models. The experimental results indicate that both models have 
high estimation results. However, the metrics indicated that the SVR was the 
overall best model. 
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1. Introduction 

The transportation industry is one of the leading causes of air pollution and 
ozone layer depletion. As a relatively convenient means of transportation in dai-
ly life, modern vehicles carry increasingly high requirements and expectations 

How to cite this paper: Obisakin, I. and 
Ekeanyanwu, C.V. (2022) State of Health 
Estimation of Lithium-Ion Batteries Using 
Support Vector Regression and Long Short- 
Term Memory. Open Journal of Applied 
Sciences, 12, 1366-1382. 
https://doi.org/10.4236/ojapps.2022.128094 
 
Received: May 31, 2022 
Accepted: August 16, 2022 
Published: August 19, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2022.128094
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2022.128094
http://creativecommons.org/licenses/by/4.0/


I. Obisakin, C. V. Ekeanyanwu 
 

 

DOI: 10.4236/ojapps.2022.128094 1367 Open Journal of Applied Sciences 
 

from society on energy efficiency, reduction in emission, and environmental 
protection. Due to these reasons, more and more countries are investing a lot of 
resources both human and financial into the research and development of Elec-
tric Vehicle (EV) technology to achieve clean energy goals and resolutions. Elec-
tric vehicles, as a new transportation tool, have been highly valued by various 
countries and regions due to their advantages of energy-saving, zero emissions, 
and low pollution, with increasing efforts in their technological research and 
development [1]. 

EVs employ the use of a clean energy storage system to power a vehicle. This 
usually means large numbers of battery cells ranging from hundreds to thousands 
are connected in series/parallel to enable powering the vehicle. Due to positive 
attributes such as high specific energy, long cycle life, very low self-discharge 
rate, ideal-temperature range, and resultant minimal pollution to the environ-
ment, lithium-ion power batteries are the most widely used type of batteries in 
this sector. However, continuous usage of an Electric Vehicle leads to an in-
crease in the lithium-ion batteries’ charging and discharge cycles, resulting in the 
electrode materials gradually becoming inactive and leading to the performance 
degradation of the battery. Therefore, it is necessary to manage the batteries to 
ensure proper operations by a battery management system (BMS). Prediction of 
a battery’s current state of health is one of the most critical issues of the battery 
management system [2]. 

According to statistics, the inaccurate State-of-health (SOH) estimation and 
life prediction of lithium-ion batteries are the leading causes of electric vehicle 
spontaneous combustion accidents [1]. Therefore, accurately estimating the li-
thium-ion battery state of health has become a research focus for many scholars. 
This has resulted in several research works where learning models such as Ar-
tificial Neural Networks, Recurrent Neural Network have been applied to pre-
dicting the health status of batteries. These works have focused on several bat-
tery components such as Internal Resistance measurements, Open Voltage ca-
pacity, and Voltage drop rate and how these components affect the SOH. How-
ever, this report focuses on accurately using machine and deep learning models 
to predict the state of health of batteries by using features extracted from dis-
charged battery data. 

2. Literature Review 

The SOH reflects the general condition of a battery and its ability to deliver the 
specified performance compared to an unused or fresh battery. It is defined as 
the ratio of the full charge capacity of a battery in the current state and the full 
charge capacity of a battery when it is initially bought (Nominal Capacity). 

( )
( )

Current actual capacity Ah
SOH 100%

Nominal Capacity Ah
≈ ∗                (1) 

Usually, the end of life is determined when the actual battery capacity is lower 
than the Acceptable Performance Threshold (APT) [2] [3]. APT is usually 70% 
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or 80% of rated capacity.  
SOH is a subjective measure in which researchers have derived different defi-

nitions using varieties of different measurable battery performance parameters 
such as current, voltage, resistance, temperature, self-discharge rate, stress, 
strain, etc. Though SOH is a function of such parameters (that is they all affect 
the capability of the battery), it is generally expressed in terms of capacity, con-
sidering other parameters constant or keeping them unchanged during the mo-
ment [4]. An accurate estimation of SOH is important to forecast batteries’ re-
liability, efficiency, and power delivering capacity and proper operation of the 
system [5]. 

It has been reported that capacity, internal resistance, power fade, and cycle 
life change with battery’s age and hence these parameters are useful in predicting 
the behavior of the cell or battery [6]. Aging processes of a battery are irreversi-
ble changes in the characteristics of the electrolyte, anode, and cathode and the 
alteration in the structure of the components used in the battery. Battery aging 
can be divided into cycle aging and calendar one [7]. Cycle aging associates with 
the impact of battery utilization periods, and the calendar aging associates with 
the consequences of battery storage. Aging is considered for the estimation of 
SOH as it is highly related to change in capacity, internal resistance, and power 
fade [8]. Changes of these parameters help the researchers to find out which 
could be the best parameter for SOH estimation in accordance with the situa-
tions. For example, changes in the performance of battery’s external behavior 
due to loss of rated capacity or due to an increase in temperature because of in-
ternal changes like corrosion. 

Formulation of battery modeling is necessary to relate the battery parameters 
such as charging and discharging voltage, cycle life, temperature, etc. Battery 
modeling is divided into electrochemical models, empirical models and equiva-
lent circuit models (ECMs). In the empirical model, the formulation of a model 
is based on the experimental data obtained from the batteries where we do not 
completely know the internal information of the battery activity. In order to 
predict the unknown information of the battery, some methods such as Kalman 
filtering (KF), fuzzy logic, neural networks (NNs), etc. are used to build the em-
pirical model. In the electrochemical model, the models are based on the chemi-
cal processes that take place inside the battery. The electrochemical models are 
more accurate; however, these models are complex to analyze [9]. In order to 
reduce the complexity of the model, some reduction models such as single par-
ticle model are used [9]. In the fusion model, the models are based on combina-
tion of empirical and electrochemical models. Data are obtained from the finite 
element simulation (electrochemical models) of the battery phenomenon. The 
quantification of data is then obtained by building empirical models using me-
thods like fuzzy logic, Kalman filtering, neural networks, etc. 

Some researchers explain the battery health monitoring models/methods in 
different ways [10]. For example, Berecibar et al. [11] divided the methods of 
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SOH estimation into two parts: experimental technique and adaptive method. In 
experimental technique, previous data were considered, whereas in adaptive 
technique, some parameters were introduced which had been sensitive to de-
gradation or aging of the battery. 

Generally, models work accurately when used offline. However, the models do 
not work well when used in real-time and online; in this way, it is challenging to 
model the SOH or SOC for the entire battery pack compared to a single battery 
or cell. Therefore, designing the best model considering all the necessary para-
meters is essential. In this project, two approaches to predicting the SOH of Li-
thium-ion batteries are considered. In the first approach, the deep learning 
LSTM model is used in a time series format while the second approach focuses 
on exploring the regressional ability of the machine learning SVR model. This is 
because the paper focuses on performances of both the machine and deep learn-
ing model with the eventual goal of observing the overall best model. 

3. Methodology 

The development of the overall learning model for SOH estimation consists of 2 
major sections. The block diagram depicting the two major sections of the predic-
tion process is shown in Figure 1. The first section contains the Data acquisition,  
 

 
Figure 1. Learning model process flow. 
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preprocessing of data, feature Extraction. The second section is divided into two 
separate halves depicting the prediction flow for both the LTSM and SVR model. 

3.1. Data Acquisition 

The experimental data that was used in this project is from the National Aero-
nautics and Space Administration (NASA) lithium-ion battery charge and dis-
charge experimental data set.  

The battery numbers in the dataset are, B7, B6, B5 and they all have a rated 
capacity of 2 Ah. The charge and discharge experiments were all carried out at 
room temperature of 24˚C. The charging experiment was initially charged until 
the voltage reached 4.2 V with a constant current of 1.5 A, and then in constant 
voltage mode until the current dropped to 20 mA. The discharge process was in-
itialized with a constant current of 2 A until the voltage dropped to 2.2 V 
(B0007), 2.7 V (B0005) and 2.5 V (B0006) respectively. The charging process and 
the discharging process in each charging and discharging cycle started from time 
0 second in which the voltage, current, temperature and actual capacity were 
recorded. The experiments stopped after the actual capacity was less than the 
Acceptable Performance Ratio capacity of 70%. The battery capacity was rec-
orded at the end of each discharge cycle. Therefore, this paper focuses on the 
discharge process and uses it to predict and estimate the SOH of the batteries. 

3.2. Data Processing 

Data preprocessing is a key stage in the machine learning process because ma-
chine learning algorithms can only function as best as the quality of data fed into 
them. Therefore, it is a very essential and crucial stage in the prediction process 

In the dataset selected for the learning process, the battery capacity was rec-
orded at the end of each discharge cycle due to the cyclic nature of the experi-
ments. Therefore, the dataset was filtered into discharged cycles. Each cycle 
starts at time 0 seconds until the voltage dropped to 2.2 V (B0007), 2.7 V 
(B0005), 2.5 V (B0006). From the data extracted, the actual capacity degradation 
curve per discharge cycle of the batteries is shown in Figure 2.  

At end of the data preprocessing exercise, the total number of cycles for each 
battery in the NASA dataset is shown in Table 1 below. 

Due to the heterogenous conditions under which the experiments for each 
battery took place. The processed data of each battery was fed into each of the 
models separately and the results were analyzed individually. 

3.3. Feature Selection 

Initial observation during the data preprocessing stage indicated a similar 
downward trend in the capacity of the batteries as discharge cycles increase for 
each battery dataset as shown in Figure 2. 

To further visualize the correlation between the data and the actual capacity 
degradation, the discharging voltage timing curve, and discharging temperature 
timing curve of each battery were plotted in Figure 3 and Figure 4 respectively. 
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Figure 2. NASA lithium-ion battery discharge degradation curve. 

 

 
Figure 3. Discharge voltage trend. 

 
It can be observed from Figure 3. That the time required for the voltage of 

different discharging cycles to reach 4.2V is different. It was also observed in 
Figure 4 that the time it takes for the temperature of different discharging cycles 
to reach its maximum value increases as the discharging cycle increase. 
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Figure 4. Discharge temperature trend. 

 
Table 1. Discharge cycles. 

Battery Cycles 

B5 168 

B6 168 

B7 168 

 
To further shed more light on which features to be chosen, a feature heat cor-

relation map of the dataset as shown in Figure 5 was prepared. The heat map 
showed a high correlation between the discharge time, temperature and dis-
charge cycles. 

Therefore, due to the trends observed above; the number of discharge cycles, 
the time required for the voltage of different discharging cycles to reach 4.2 V as 
well as the time required for the temperature of different discharging cycles to 
reach a maximum value were the features extracted to form the dataset used in 
the prediction process. 

3.4. Training and Prediction 

There are several machine learning and deep learning models such as Logistic 
Regression, Support Vector Machine, Decision Tree Classifier, and Random 
Forest Classifier, RNN, LSTM, ANN with each of these models having inherent 
advantages and disadvantages depending on the domain they are being applied 
on.  
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Figure 5. Feature correlation HeatMap. 

 
However, the SOH estimation is a non-linear regression problem and there-

fore a robust ML model such as SVR was chosen due to its nonlinear kernel fea-
ture. The deep learning LSTM model was also considered in this paper because 
LSTM units include a memory cell that can maintain information in memory for 
long periods of time. Therefore, due to their memory ability, LSTMs in time se-
ries perform well on datasets in which new data points are highly dependent on 
historical data as with the case of the battery dataset. These inherent features of 
the models chosen should help the model fit the outliers observed in data points 
and the general non-linearity of the dataset. In this research, training, and test-
ing of the model were performed using SVR and LSTM models. The optimal 
model was chosen based on the Mean Square Error (MSE) and Coefficient of 
determination (COD) performance metrics. 

1) LSTM: LSTM was first proposed by Sepp Hochreiter and Jürgen Schmid-
nuber, and its framework was built from the RNN model for time series processing. 
Time series hold long-term memory information. However, for functional ap-
plications of the RNN model, it is challenging to deal with long-term depen-
dence due to the gradient disappearance and gradient explosion in the algo-
rithm. Due to the loss of long-term information, the analysis performance of a 
time series is very limited. The difference between LSTM and traditional recur-
rent neural networks is that LSTM adds a processor in the algorithm, which can 
judge whether the information is useful or not. The structure of the processor is 
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named as a memory cell. There are three gates inside of a memory cell; input 
gate, forget gate, and output gate, as shown in Figure 5. Using learned rules, 
messages that enter the LSTM network are judged. Only information that com-
plies with the algorithm’s certification will be maintained, and information 
mismatched will be overlooked through the forget gate. In addition, each cell 
contains several neurons. The autoregressive connection weight will remain at 
1.0, ensuring that the state of the cell will remain constant as the time step 
changes without any external interference. Figure 6 describes how the memory 
cells of the LSTM are updated at each time t. 

In the training of neural networks, insufficient data leads to overfitting prob-
lems, which refer to the phenomenon for which a model has a fixed memory of 
the training data. This makes the output performance of the training data set 
excellent, while the performance of the validation dataset is extremely poor. To 
solve overfitting problems, the dropout method was proposed [12]. The core 
idea of dropout is optimizing the network to be thinner by integrating all the 
subnetworks via the removal of non-output units from the primary network and 
reducing the computation burden with the same training parameters [12]. In 
this research, due to the cyclic nature of the experiments resulting and the small 
dataset available for the training of the deep learning model. Dropout was ap-
plied to avoid overfitting the training dataset. 

Each battery dataset was divided into training and validation/testing data. The 
data designated for training the model were fed into the LSTM model using the 
time series look back approach. This approach was implemented because we 
wanted to observe how LSTM uses its memory capabilities in predicting the fu-
ture trend of the battery capacity as the discharge cycle increases. We also 
wanted to observe the model’s performance especially as regards predicting out-
lier data points caused by sudden upward spikes in the capacity as it descends 
per discharge cycle. This was studied to be caused by the internal chemical compo-
sition of the battery. Therefore, the LSTM implementation using the look-back 
mechanism was constructed and tuned to properly exploit the memory abilities 
of the LSTM model. The model was trained with previous data in specified steps  
 

 
Figure 6. Structure of a memory cell. 
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in form of a time series and used to predict a specified number of steps of the 
output. 

The LSTM model was fitted with multiple hidden layers using several neuron 
values as well as the dropout layers in order to get the best result possible and 
avoid overfitting (Figure 7). 

The optimal parameters as well as prediction curves of the battery dataset will 
be highlighted and discussed in the results section. 

2) SVR: Support vector machine was developed by Cortes and Vapnik, based 
on the structural risk minimization Statistical Learning Theory, and the Vap-
nik-Chervonenkis (VC) theory. In machine learning, Support Vector Machines 
is a type of supervised learning model with inherent learning algorithms that 
analyze data used for classification and regression analysis. Therefore, Support 
Vector Machine can also be used as a regression method while maintaining all 
the main features such as maximal margin that characterize the algorithm. In the 
regression method, because the output is a real number, it becomes very difficult 
to predict the information at hand due to its infinite possibilities. Therefore, a 
margin of tolerance (epsilon) is set in approximation to the SVM which would 
have already been requested from the problem. Given data points, the SVR tries 
to find the best curve that fits all data points. However, the regression algorithm 
uses the curve to find the match between the vector and position of the curve in-
stead of using the curve as a decision boundary as in the classification case.  

Support Vectors help in determining the closest match between the data 
points and the function which is used to represent them. SVR also contains the 
kernel feature that makes it possible to perform linear and non-linear analysis. 
During non-linear analysis, the Kernel converts the data into a higher dimen-
sional feature space to make it possible to perform the linear separation and im-
prove the generalization ability, and finally get the non-linear learning algorithm 
in the initial low-dimensional space. 

The grid search method shown in Figure 8 was applied during the training in 
order to obtain the optimal hyperparameters for the SVR model. 

 

 
Figure 7. LSTM model information. 
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Figure 8. GridSearch hyperparameter turning snippet. 

 
The optimal parameters and metrics obtained during the SVR training and 

testing process are discussed in the next section. 

4. Results and Discussion 

The implementation of the two models was programmed using the python lan-
guage and the Jupyter notebook IDE. The python files for each model were 
compiled on the LEAP cluster by submitting SLURM job files. The Mean square 
error and coefficient of determination were the performance metrics used as a 
guide in determining the optimal results during the training validation and test-
ing process. These metrics were also used as the basis of comparison to deter-
mine the best model. 

Table 2 compares the MSE of both models for all the batteries considered in 
this paper. 

The obtained coefficient of determination for each model is listed in Table 
3. 

To obtain optimal results during the SOH estimation process for the LSTM 
model, the first half of preprocessed data were used to train the LSTM network 
model. The remaining data were used to examine the accuracy of model predic-
tions. 

The optimal LSTM prediction regression curves displaying the actual and 
predicted data for the B5, B6 and B7 datasets are shown in Figures 9-11 respec-
tively. 

During the SOH estimation process for the SVR model, 80% of the dataset 
was used to train the model. The remaining data were selected to test the accu-
racy of model predictions. 

The grid search tool was utilized in obtaining the optimal parameters and this 
process returned the SVR-RBF as the appropriate kernel to get the least mean 
square error and highest coefficient of determination. The optimal prediction 
regression curves for the SVR model displaying the actual and predicted data for 
the B5, B6, and B7 battery datasets are shown in Figures 12-14 respectively. 

It can be observed from the results of both models in Table 2 and Table 3 that 
the SVR performed better in the SOH estimation of the batteries dataset used in 
this paper. The SVR had the least mean square error which could also be vali-
dated by how close the predicted data in Figures 11-13 conformed with the test  
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Figure 9. Optimal B5 LSTM model. 

 

 
Figure 10. Optimal B6 LSTM regression plot. 
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Figure 11. Optimal B7 LSTM model regression plot. 

 

 
Figure 12. Optimal B5 SVR model regression plot. 
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Figure 13. Optimal B6 SVR model regression plot. 

 

 
Figure 14. Optimal B7 SVR model. 
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Table 2. MSE of each battery. 

 B5 B6 B7 

LSTM 0.034 0.041 0.039 

SVR 0.003 0.013 0.016 

 
Table 3. Cod of each battery. 

 B5 B6 B7 

LSTM 0.84 0.83 0.67 

SVR 0.98 0.93 0.92 

 
Table 4. Optimal hyperparameters. 

 C Gamma Kernel Epsilon 

SVR 10 0.0001 RBF 168 

 
data. Therefore, based on the performance metrics SVM-RBF is the best classifi-
er for the SOH estimation of Lithium-ion batteries. The Grid search was per-
formed to obtain the optimal hyperparameters for the SVR. The optimal hyper-
parameters for the SVR are listed in Table 4. 

The SVR model was also able to successfully learn and to fit the several outlier 
data points in the dataset. Therefore, validating the theory that SVR’s inherent 
ability to model non-linear data by converting it to high dimensional hyper-
planes using the RBF kernel was suitable in the SOH estimation and could also 
excellently predict SOH despite several outliers recorded during the battery life-
time. 

The LSTM model using the time series look back strategy suffered from over-
fitting towards the end of each battery dataset considered. Despite the introduc-
tion of several dropout layers as well finely controlling the batch size during 
training. Another downside to the time series approach was observed through 
the course of the LSTM learning process. The model exhibited a noticeable delay 
especially at points when the model was trying to predict the sharp and sudden 
capacity upward trends that occurred at random intervals throughout the dis-
charge lifecycle of the batteries considered in this paper. 

5. Conclusions 

In this paper, the importance of lithium-ion batteries and their usage were in-
troduced. The industry definition of battery SOH and APT were further ex-
plained. The data acquisition and preprocessing sections introduced the experi-
mental conditions of the NASA lithium-ion battery under which the dataset was 
obtained as well as the data cleaning process. The various methods of feature ex-
tractions, the training, and validation and the results of the learning process 
were further discussed in the succeeding sections. 
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At the end of the learning process, the results of the LSTM and SVR models 
were compared using the mean square errors and the coefficient of determina-
tion as the performance metrics. It was observed that the SVR model performed 
better and is the optimal model of the two learning approaches considered in 
this paper. This indicates that the novel approach of tackling the prediction as a 
regressional issue yielded the overall best model of predicting the state of health 
of the batteries. 
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