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Abstract 
Empirical and deterministic models have not proven to be effective in path 
loss predictions because of the problems of computational complexities, low 
accuracies, and inability to generalize. To solve these problems relating to 
path loss predictions, this article presents an optimal path loss propagation 
model developed at 3.4 GHz with the use of fuzzy logic. We introduced Fuzzy 
logic to accurately represent all forms of uncertainties in the data spectrum as 
the signal propagates from the transceiver to the receiver, thereby producing 
accurate results. Experimental data were collected across Cyprus at 3.4 GHz 
and compared with three existing path loss models. The fuzzy-logic path loss 
prediction model was then developed and compared with the experimental 
data and with each of the theoretical empirical models, the newly developed 
model predicted signal loss with the greatest accuracy as it gives the lowest 
root-mean-square error. The newly developed model is very efficient for sig-
nal propagation and path loss prediction. 
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1. Introduction 

Wireless networks have brought a great uniqueness to the world of mobile 
communication because of the capacity to provide adequate coverage with the 
use of effective propagation models [1] [2] [3] [4]. The wireless mobile networks 
employ high-frequency radio waves to establish communication between a base 
transceiver station and a mobile receiver in a way without any wired connection 
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between them [5] [6]. There are many growing issues when it comes to wireless 
communication and the sustainability of such a system in which; some of them 
are channel capacity, noise, interference, losses in signals, frequency reuse and 
security of the wireless system. The major goal and objective in signal transmis-
sion are to have minimal attenuation as signals transmitted from the transmitter 
to the receiver.  

Signal Propagation models are essential parameters employed in wireless 
network planning and optimization. They are very effective in interference anal-
ysis and cell parameter evaluation. Planning for a network entails using the right 
signal propagation model so optimization can be achieved. These models are 
developed principally to ensure high accuracy in signal transmission. Signal loss 
is developed by network engineers and professionals to estimate the path loss of 
the received signal as they travel from the base station to the receiver. The prob-
lem with many of these models is that they only function effectively in the envi-
ronment where the field measurement was carried out and performed woefully 
when deployed to the other areas. For this reason, the signal propagation models 
face a huge difficulty when it comes to generalizing and extension for use in 
multiple environments. Signal Propagation measurements must therefore be 
carried out before any analytical model of high accuracy can be achieved. 

The experimental measurements are important so there can be proper chan-
nel characterization and to provide signal parameters that will generate efficient 
performance and optimization. The measured signal loss will be compared with 
existing analytical signal loss models to determine which of the models predicts 
signal loss with the greatest level of accuracy and lowest coefficient of error. The 
validation will be done with root-mean-square error (RMSE. The world of wire-
less telecommunication is growing at a fast rate and the need for an optimized 
model is coming more to the forefront because of an increased appetite for an 
advanced and improved service as in the case of bandwidth by mobile subscrib-
ers; as a result, there is a high need for proper network coverage prediction [2]. 
In wireless radio networks, obstacles in the signal path as it travels from the 
transmitter to the receiver cause attenuation in signal strength which is the sig-
nal loss that must be accurately characterized for effective transmission to take 
place. Signal loss is the attenuation of the radio signal. The models play a very 
prominent role in radio frequency coverage optimization, interference analysis 
and also for optimized usage of the available network resources [3]. The accura-
cy of the propagation model cannot be overemphasized because it plays a major 
role in the overall system design and implementation. For network service pro-
viders to accurately determine the exact value of a signal loss, there is a need for 
extensive field measurements, site survey analysis and a careful parameter evalu-
ation to represent what is best for the environment where the model is to be 
deployed. Many propagation models have been developed, and they fall into dif-
ferent categories such as empirical, stochastic and deterministic with each of 
them not performing optimally when deployed to other areas outside of the 
original place where the propagation measurement was taken. It is for this rea-
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son that this study will employ the concept of fuzzy logic because it can solve the 
problem of uncertainties that have existed in the other propagation models. The 
introduction of fuzzy logic to the subject of signal loss is to ensure greater accu-
racy in the network prediction model so that good quality of service will be en-
joyed by mobile subscribers. The probability of call blocking and call dropping 
will also reduce drastically when a fuzzy-logic designed signal loss model is de-
veloped as the case in this paper. A network planner who cannot accurately de-
termine the signal loss will ultimately produce a very much expensive network 
or a network of low quality [5].  

The contributions of this paper are given below: 
 Experimental studies were conducted in Cyprus at 3.4 GHz. Signal strength 

was measured in rural, suburban, and urban areas. The path loss was then 
computed. 

 The predicted path loss for SUI, ECC-33 and free space empirical models 
were computed. 

 The fuzzy-logic-based path loss model was then developed and compared 
with the experimental data collected and other empirical models. The fuzzy-logic 
path loss prediction model produced optimal results. 

The remaining aspect of this work is structured as follows; Section 2 presents 
the materials and methodology adopted, including the empirical models. Results 
and discussion are given in Section 3 and the conclusion is presented in Section 
4. 

2. Materials and Methodology 

The fuzzy-logic designed signal loss model articulated in this article will follow a 
systematic approach. Field measurements were collected across 6 base stations in 
Cyprus. The measured signal loss will be compared with existing analytical 
propagation models and validation will be done with the root-mean-square error 
(RMSE). The performance of the developed fuzzy-logic-based signal will also be 
compared with the performances of the existing signal loss propagation model 
and the results will be shown in section three of the paper. 

2.1. Experimental Study 

The signal losses measured were obtained from the experimental study carried 
out at 6 base stations in Cyprus with the aid of a driving test. The field mea-
surements were done in conjunction with Vodafone Telecommunication com-
pany in Cyprus, with measurements collected across rural, suburban and urban 
areas so as to ensure a wide class of representation. The areas in the cities are ca-
tegorized as urban (metropolitan), while some others less congested are classi-
fied as sub-urban and the areas closer to what is obtainable in free space where a 
dominant line of sight exists are classified as flat/ open (rural) areas because of 
the network congestion in the place, cell size and other technical factors. Field 
measurements were collected at a distance of 100 m - 2.0 km with intervals of 
100 m. 
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The field experiments were conducted with test mobile system (Tems) 16.3 
investigation tool coupled with other equipment, all housed in a vehicle during 
the driving test. In a portable Lenovo laptop computer, a fixed GPS was used to 
ascertain the exact location at a particular point as signals travel from the trans-
mitter to the receiver. A mobile phone of a height of 1.5 m serves as the mobile 
receiving station. Also, a USB connector to connect the device to the Laptop, 
serial cables, and a vehicle. All the drive test equipment and devices were con-
nected to the Lenovo Laptop inside the vehicle and signal strength was measured 
at 3400 mHz at an interval of 100 m starting from 1 km - 2.0 km.  

Signal strength was measured across 6 base stations in Cyprus at an operating 
frequency of 3.4 GHz. Two base stations in Kyrenia, two in Lefkosia and two in 
Magusa representing urban, suburban, and rural areas respectively. The signal 
strength measurement is subtracted from the effective isotropic radiated power 
(EIRP) to determine the exact signal loss at each measuring distance. Figure 1 
gives the interface test equipment mobile (Tems) system during drive test. 

2.2. Selected Signal Loss Models 

Some existing signal loss models were selected and compared with the measured 
data so as to check which of them agreed well with the field measurements with 
little or no error. There are so many of these models, but the few prominent ones 
will be examined and used in this article. 

2.2.1. Stanford University Interim Model 
The Stanford university interim model is applicable for signal propagation below 
11 GHz and used for both fixed and wireless mobile system. 
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Figure 1. Drive test at 3.4 GHz. 
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B in the equation is given as the free space signal loss while d represents the 
distance in km from the transmitter to the receiver a, b, c represents terrain pa-
rameters for urban, suburban and rural areas respectively. 

2.2.2. ECC-33 Model 
This signal loss propagation came into existence as an improvement of the 
Okumura model. All the inadequacies of the initial model were reviewed in the 
development of the ECC-33 model [6] [7] [8].  

( )dBL FS BM B RS A A G G= + − −                    (6) 

( ) ( )10 1092.4 20log 20logFSA d f= + +                (7) 

( ) ( ) ( )( )2
10 10 1020.41 9.83log 7.894log 9.56 logBMA d f f= + + +       (8) 

( )( )( )2
10 10log 13.958 5.8 log

200
b
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h

G d
  = +  

  
            (9) 

( ) ( )10 1042.57 13.7 log log 0.585R rG f h= + −                 (10) 

where AFS represents the free space attenuation, is the median signal loss, is the 
base station height gain factor, is the mobile station antenna gain factor, f is the 
frequency in GHz, d is the distance of separation between the transmitting sta-
tion and the mobile station in km. 

2.3. Fuzzy-Logic Path Loss Model 

Fuzzy-logic is all about precision and accuracy because some parts of the system 
cannot be analyzed critically if we go by the existing analytical signal loss mod-
els. Fuzzy logic is all about the need to reflect all parts of the system in a very 
accurate way. The fuzzy-logic designed signal loss model designed in this article 
employs fuzzy set theory in which two variables like frequency are members of a 
set with some degree of membership. It is very useful in the design of signal loss 
models because it can effectively represent non-linear systems which are what is 
obtained in a typical urban environment where it is very difficult to have a line 
of sight. The type 2 fuzzy logic will be adopted in developing our signal loss 
model because the IF-THEN rules will be very useful in achieving efficient sys-
tem design. All the details of the propagation environment that will step up the 
accuracy of the model are converted into the type-2 fuzzy set by the fuzzifur and 
later inference by the IF-THEN depending on the input and output of the signal 
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loss model [9] [10]. 
In [11]-[20], machine learning techniques were applied to path loss modeling 

to achieve greater accuracy in predictions. The machine learning algorithms 
yielded optimal results for empirical and deterministic models. 

The fuzzy interference system is such that the behavior of the system that 
controls the input and the output variable is controlled by a set of rules A, which 
provides a strong correlation to the development of an accurate signal loss mod-
el than the existing ones. The rule used in the development of our signal loss 
model is specified as follows: 

if y B= , then z C=  

100 3400 GHzf≤ ≤  

1.5 8 mrh≤ ≤  

100 2 kmd≤ ≤  

if y B= , then z C=  When a set of input variables are read, then each of the 
rules that has any degree of truth is added to the membership function as the 
fuzzy logic system (FLS) approximately represents both the input and the output 
variable. 

The input variables in the signal loss model have received signal strength and 
the distance while the output is the signal loss. We adopted a Gaussian mem-
bership function for the two input variables and a triangular membership func-
tion for the output variable. The deffuzification process is very important be-
cause the fuzzy quantity needs to be converted back to the crisp entity. The 
fuzzy-logic toolbox in MATLAB 2016RB was used for the simulation and a 16 - 
based rule system was adopted because of its simplicity. 

3. Results and Discussion 

The Path loss of the received signal at any point from the transmitter to the re-
ceiver is given as follows: 

Path loss = EIRP − signal strength               (11) 

The effective Isotropic Radiated Power (EIRP) is 57.6 dBm and the signal loss 
becomes.  

Path loss = 53.5 − Received power 

The two inputs to the fuzzy-logic are distance and the received signal strength. 
From the fuzzy-logic design, the rule view of the model is shown in Figure 2. 

The signal loss is largely dependent on the two parameters which are a func-
tion of distance and the received signal strength. To model an accurate and ef-
fective signal loss, the network providers must do it as a function of the two pa-
rameters. The input parameters of the design are given in Figure 3. 

The surface view of the model in each of the areas considered will be shown in 
the next section and it reflects the large signal loss in urban areas because of the 
non-existent dominant line of sight. 
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Figure 2. Rule view of fuzzy based signal loss model. 
 

 

Figure 3. Inputs and output parameter of the design. 
 

Figures 4-6 shown give the surface plots of the fuzzy-logic signal loss model 
and it is evident from the plots that the signal loss is largely dependent on the 
distance and the signal strength. The signal loss is smallest in the rural areas 
where there is a little obstruction in the signal path from the transmitter to the 
receiver and where a clear dominant line of sight exists. 

The performance of the fuzzy-logic signal loss model was compared with the 
experimental study and existing propagation models in rural, suburban and ur-
ban areas as shown in Figures 7-9. The newly developed fuzzy-logic signal loss 
model predicts signal loss in Cyprus very accurately as it gave signal loss very 
close to experimental data. The performance of the new model was far better 
than the existing models because of the ability of fuzzy-logic to accurately model 
any form of uncertainties. That is why the new model gave the signal loss accu-
rately like the field measured data. 
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Figure 4. Surface view of the signal loss in rural area. 
 

 

Figure 5. Surface view of the signal loss in urban area. 
 

 

Figure 6. Surface view of the signal loss in suburban area. 
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Figure 7. Signal loss of experimental data, the newly developed fuzzy-model and the ex-
isting models in urban areas. 
 

 

Figure 8. Signal loss of experimental data, the newly developed fuzzy-model and the ex-
isting models in suburban areas. 
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Figure 7 shows that the new fuzzy-logic model predicts signal loss accurately 
than the other existing models examined. The graph of the fuzzy-logic model is 
the closest to the experimental data. Signal loss is highest in urban areas be-
cause of the many obstructions in the signal path from the transmitter to the 
receiver. 

Figure 8 shows that the new fuzzy-logic model predicts signal loss accurately 
than the other existing models in suburban areas in the locations examined. The 
graph of the fuzzy-logic model is the closest to the experimental data. 

Figure 9 shows that the new fuzzy-logic model predicts signal loss accurately 
than the other existing models in rural areas in all locations examined. The 
graph of the fuzzy-logic model is the closest to the experimental data. Signal loss 
is highly reduced in all base stations in rural areas because there is a dominant 
line of sight. 

In Figures 7-9 and Table 1. The measured path loss was compared with the 
predictions made by SUI, ECC-33, and free space models. The measured path  
 

 

Figure 9. Signal loss of experimental data, the newly developed fuzzy-model and the ex-
isting models in rural areas. 
 
Table 1. The RMSE values for the different signal loss models. 

Signal loss Model Rural Suburban Urban 

ECC-33 8.59 9.44 8.02 

Free space 7.89 8.96 5.92 

Fuzzyy-logic model 2.96 3.84 4.78 

SUI 22.62 16.94 14.65 
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loss was also compared with the developed fuzzy-logic prediction model. In ru-
ral, suburban, and rural areas, the fuzzy-logic predicted path loss accurately and 
gave path loss closest to the measured data. The other theoretical models over-
predicted path loss. The fuzzy-logic path loss prediction model produced the 
lowest values of RMSE across all the investigated environments. 

4. Conclusion 

The study has examined path loss prediction models in wireless signal propaga-
tion. We developed a fuzzy-logic-based signal loss model at an operating fre-
quency of 3.4 GHz. The developed model was compared with the other existing 
models and it predicted signal loss with the lowest root-mean-square error. The 
new model has RMSE values of 2.96 dB, 3.84 dB and 4.78 dB in rural, suburban 
and urban areas respectively. The other existing models over the predicted signal 
loss. This has clearly shown the inadequacies of empirical and deterministic 
models in path loss predictions because they cannot be generalized. An empiri-
cal path loss model that worked for one location may poorly predict path loss 
when deployed in another environment. This is the motivation for the introduc-
tion of fuzzy logic to path loss prediction. The new model performs best when 
compared with the experimental signal loss in Cyprus and can therefore be used 
for signal loss prediction and data analysis. The concept of fuzzy-logic used in 
the development of the model made it more efficient and accurate than the other 
existing empirical models.  
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