A Family of the Inertial Manifolds for a Class of Generalized Kirchhoff-Type Coupled Equations

Guoguang Lin, Jiaying Zhou
Department of Mathematics, Yunnan University, Kunming, China
Email: 15925159599@163.com, 2478207080@qq.com

How to cite this paper: Lin, G.G. and Zhou, J.Y. (2022) A Family of the Inertial Manifolds for a Class of Generalized Kirchhoff-Type Coupled Equations. Open Journal of Applied Sciences, 12, 1116-1127.
https://doi.org/10.4236/ojapps.2022.127076
Received: June 12, 2022
Accepted: July 4, 2022
Published: July 7, 2022
Copyright © 2022 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The paper considers the long-time behavior for a class of generalized high-order Kirchhoff-type coupled equations, under the corresponding hypothetical conditions, according to the Hadamard graph transformation method, obtain the equivalent norm in space $E_{k}(k=1,2, \cdots, 2 m)$, and we obtain the existence of a family of the inertial manifolds while such equations satisfy the spectral interval condition.

Keywords

Kirchhoff-Type Coupled Equations, Spectral Interval Condition, A Family of the Inertial Manifolds

1. Introduction

This paper investigates the following primal value problems of a system of generalized Kirchhoff-type coupled equations:

$$
\left\{\begin{array}{l}
u_{t t}+M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)(-\Delta)^{2 m} u+\beta(-\Delta)^{2 m} u_{t}+g_{1}(u, v)=f_{1}(x) \tag{1}\\
v_{t t}+M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)(-\Delta)^{2 m} v+\beta(-\Delta)^{2 m} v_{t}+g_{2}(u, v)=f_{2}(x) \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), x \in \Omega \\
\frac{\partial^{i} u}{\partial n^{i}}=0, \frac{\partial^{i} v}{\partial n^{i}}=0(i=0,1,2, \cdots, 2 m)
\end{array}\right.
$$

where Ω is a bounded region with a smooth boundary in $R^{n}, \partial \Omega$ represents the boundary of $\Omega, u_{0}(x), u_{1}(x)$ and $v_{0}(x), v_{1}(x)$ are known functions, where $g_{j}(u, v), f_{j}(u, v)(j=1,2)$ are nonlinear terms and external interference terms, respectively, and are known functions on $\Omega \times(0, T), \beta$ is the normal
number, $M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)$ is a non-negative first-order continuous derivative function, and $m>1$ is the normal number, $\left\|D^{m} u\right\|_{p}^{p}=\int_{\Omega}\left|D^{m} u\right|^{p} \mathrm{~d} x$.

In order to overcome the research difficulties, G. Foias, G. R. Sell and R. Temam [1] proposed the concept of inertial manifolds, which greatly promoted the study of infinite-dimensional dynamical systems. Where the inertial manifold is a positive, finite-dimensional Lipschitz manifold, and the existence of an inertial manifold depends on the establishment of a spectral interval condition. Therefore, the research on a family of inertial manifolds is of great significance from both theoretical and practical aspects, and the relevant theoretical achievements can be referred to [2]-[9].

Guoguang Lin, Lingjuan Hu [10] studied a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms

$$
\left\{\begin{array}{l}
u_{t t}+M\left(\left\|\nabla^{m} u\right\|^{2}+\left\|\nabla^{m} v\right\|^{2}\right)(-\Delta)^{m} u+\beta(-\Delta)^{m} u_{t}+g_{1}(u, v)=f_{1}(x) \\
v_{t t}+M\left(\left\|\nabla^{m} u\right\|^{2}+\left\|\nabla^{m} v\right\|^{2}\right)(-\Delta)^{m} v+\beta(-\Delta)^{m} v_{t}+g_{2}(u, v)=f_{2}(x) \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \\
v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), x \in \Omega \\
\frac{\partial^{i} u}{\partial n^{i}}=0, \frac{\partial^{i} v}{\partial n^{i}}=0 \quad(i=0,1,2, \cdots, 2 m-1) \quad x \in \partial \Omega
\end{array}\right.
$$

where Ω is a bounded region with a smooth boundary in $R^{n}, \partial \Omega$ represents the boundary of $\Omega, g_{j}(u, v)(j=1,2)$ is a nonlinear source term, $f_{1}(x), f_{2}(x)$ is an external force interference term, and $\beta(-\Delta)^{m} u, \beta(-\Delta)^{m} v$ $(\beta \geq 0)$ is a strong dissipation terms. Using the Hadamard graph transformation method, the Lipschitz constant l_{F} of F is further estimated, and the inertial manifolds that satisfies the spectral interval condition is obtained.

Lin Guoguang, Liu Xiaomei [11] studied a family of inertial manifolds for a class of generalized higher-order Kirchhoff equations with strong dissipation terms

$$
\left\{\begin{array}{l}
u_{t t}+M\left(\left\|\nabla^{m} u\right\|_{p}^{p}\right)(-\Delta)^{2 m} u+\beta(-\Delta)^{2 m} u_{t}+|u|^{\rho}\left(u_{t}+u\right)=f(x), \\
u(x, t)=0, \frac{\partial^{i} u}{\partial v^{i}}=0, i=1,2, \cdots, 2 m-1, x \in \partial \Omega, t>0 \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \subset R^{n}
\end{array}\right.
$$

where $m \in N^{+}, \Omega \subset R^{n}(n \geq 1)$ is a bounded domain with a smooth boundary in $\partial \Omega, f(x)$ is an external force term, $M\left(\left\|\nabla^{m} u\right\|_{p}^{p}\right)$ is the stress term of Kirchhoff equation, $\beta(-\Delta)^{2 m} u_{t}$ is a strong dissipative term, $|u|^{\rho}\left(u_{t}+u\right)$ is a nonlinear source term. Based on appropriate assumptions and the Hadamard graph transformation method, the spectral interval condition is verified, and the existence of a family of the inertial manifolds of the equation is obtained.

On the basis of previous research, rigid term strengthening becomes
$M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)(-\Delta)^{2 m} u$ and $M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)(-\Delta)^{2 m} v$, and this paper seeks a family of inertial manifolds. When defining the equivalence norm in space E_{k}, by making reasonable assumptions, it is obtained that the equation satisfies the spectral interval condition so that there is a family of inertial manifolds.

2. Preliminaries

For narrative convenience, we introduce the following symbols and assumptions:

Set $\nabla=D$. Consider Hilbert space family $V_{\alpha}=D\left((-\Delta)^{\alpha / 2}\right), \alpha \in R$, whose inner product and norm are $(\bullet, \bullet)_{V_{\alpha}}=\left((-\Delta)^{\alpha / 2},(-\Delta)^{\alpha / 2}\right)$ and $\|\bullet\|_{V_{\alpha}}=\left\|(-\Delta)^{\alpha / 2}\right\|$, respectively. Apparently there are

$$
\begin{aligned}
& V_{0}=L^{2}(\Omega), V_{2 m}=H^{2 m}(\Omega) \cap H_{0}^{1}(\Omega), V_{2 m+k}=H^{2 m+k}(\Omega) \cap H_{0}^{1}(\Omega), \\
& V_{k}=H^{k}(\Omega) \cap H_{0}^{1}(\Omega), E_{0}=V_{2 m} \times V_{0} \times V_{2 m} \times V_{0}, \\
& E_{k}=V_{2 m+k} \times V_{k} \times V_{2 m+k} \times V_{k},(k=1,2, \cdots, 2 m) .
\end{aligned}
$$

The assumption is as follows:
Let $M(s)$ be a continuous function on interval $D_{1}\left(D_{1} \in \Omega\right)$, and $M(s) \in C^{1}\left(R^{+}\right):$

$$
1 \leq \mu_{0} \leq M(s) \leq \mu_{1}, \text { set } M(s)=M\left(\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}\right)
$$

3. A Family of Inertial Manifolds

Definition 1 [12] lets $S=\{S(t)\}_{t \geq 0}$ be the solution semigroup on Banach space $E_{k}=H_{0}^{2 m+k}(\Omega) \times H_{0}^{k}(\Omega)(k=1,2, \cdots, 2 m)$, and a subset $\mu_{k} \subset E_{k}$ satisfies:

1) μ_{k} is finite-dimensional Lipschitz popular;
2) μ_{k} is positively unchanging, $\{S(t)\}_{t \geq 0}: \forall u_{0} \in \mu_{k}, S(t) u_{0} \subset \mu_{k}, t \geq 0$;
3) μ_{k} attracts the solution orbit exponentially, i.e. for any $u \in E_{k}$, the existence constant $\eta>0, c>0$ makes $\operatorname{dist}(S(t) u, \mu) \leq c \mathrm{e}^{-\eta t}, t \geq 0$.

Then μ_{k} is called E_{k} is a family of inertial manifolds.
In order to describe the spectral interval condition, first consider that the nonlinear term $F: E_{k} \rightarrow E_{k}$ is integrally bounded and continuous, and has a positive Lipschitz constant l_{F}, and its operator A has several eigenvalues and eigenfunctions of the positive real part.

Definition 2 [12] Set operator $A: X \rightarrow X$ has several eigenvalues of positive real numbers, and $F \in C_{b}(\mathrm{X}, \mathrm{X})$ satisfies the Lipschitz condition:

$$
\|F(u)-F(v)\|_{\mathrm{X}} \leq l_{F}\|u-v\|_{\mathrm{X}}, \quad u, v \in \mathrm{X}
$$

The point spectrum of the operator A can be divided into two parts σ_{1} and σ_{2}, and σ_{1} is finite,

$$
\begin{aligned}
& \Lambda_{1}=\sup \left\{\operatorname{Re} \lambda \mid \lambda \in \sigma_{1}\right\} \\
& \Lambda_{2}=\sup \left\{\operatorname{Re} \lambda \mid \lambda \in \sigma_{2}\right\} \\
& \mathrm{X}_{i}=\operatorname{span}\left\{\omega_{j} \mid \lambda_{j} \in \sigma_{i}\right\}, i=1,2
\end{aligned}
$$

and conditions

$$
\begin{equation*}
\Lambda_{2}-\Lambda_{1}>4 l_{F} \tag{6}
\end{equation*}
$$

are satisfied.
Where the continuous projection $P_{1}: \mathrm{X} \rightarrow \mathrm{X}_{1}, P_{2}: \mathrm{X} \rightarrow \mathrm{X}_{2}$, there is orthogonal decomposition $\mathrm{X}=\mathrm{X}_{1} \oplus \mathrm{X}_{2}$, then the operator A satisfies the spectral interval condition.

Lemma $1 g_{i}: V_{2 m+k} \times V_{2 m+k} \rightarrow V_{2 m+k} \times V_{2 m+k}(i=1,2)$ is a uniform bounded and integral Lipschitz continuous function.

Proof: $\forall(\tilde{u}, \tilde{v}),(u, v) \in V_{2 m+k} \times V_{2 m+k}(k=1,2, \cdots, 2 m)$,

$$
\begin{aligned}
& \left\|g_{1}(\tilde{u}, \tilde{v})-g_{1}(u, v)\right\|_{V_{2 m+k} \times V_{2 m+k}} \\
& =\| g_{1 u}(u+\theta(\tilde{u}-u), v+\theta(\tilde{v}-v))(\tilde{u}-u) \\
& \quad+g_{1 v}(u+\theta(\tilde{u}-u), v+\theta(\tilde{v}-v))(\tilde{v}-v) \|_{V_{2 m+k} \times V_{2 m+k}} \\
& \leq\left\|g_{1 u}(u+\theta(\tilde{u}-u), v+\theta(\tilde{v}-v))(\tilde{u}-u)\right\|_{V_{2 m+k} \times V_{2 m+k}} \\
& \quad+\left\|g_{1 v}(u+\theta(\tilde{u}-u), v+\theta(\tilde{v}-v))(\tilde{v}-v)\right\|_{V_{2 m+k} \times V_{2 m+k}} \\
& \leq l\left(\|\tilde{u}-u\|_{V_{2 m+k}}+\|\tilde{v}-v\|_{V_{2 m+k}}\right) .
\end{aligned}
$$

Similarly, there are

$$
\left\|g_{2}(\tilde{u}, \tilde{v})-g_{2}(u, v)\right\|_{V_{2 m+k} \times V_{2 m+k}} \leq l\left(\|\tilde{u}-u\|_{V_{2 m+k}}+\|\tilde{v}-v\|_{V_{2 m+k}}\right)
$$

where l is the Lipschitz constant of $g_{i}, \quad \theta \in(0,1)$.
Lemma 2 [12] lets the sequence of eigenvalues $\left\{\mu_{j}^{-}\right\}_{j \geq 1}$ is a non-subtractive sequence, then $\exists N_{0} \in N_{+}$, for $\forall N \geq N_{0}, \mu_{N}^{-}$and μ_{N+1}^{-}are consecutive adjacent values.

In order to verify that the operator satisfies the spectral interval condition, so as to draw the conclusion that there is a family of inertial manifolds in questions (1)-(5), the following definitions and assumptions can be made first.

Based on the above relevant conditions, consider the first-order development equation equivalent to Equations (1)-(5), as follows:

$$
\begin{equation*}
U_{t}+A^{\prime} U=F(U) \tag{7}
\end{equation*}
$$

Of which $U=(u, z, v, q)$,

$$
A^{\prime}=\left(\begin{array}{cccc}
0 & -I & 0 & 0 \\
M(s)(-\Delta)^{2 m} & \beta(-\Delta)^{2 m} & 0 & 0 \\
0 & 0 & 0 & -I \\
0 & 0 & M(s)(-\Delta)^{2 m} & \beta(-\Delta)^{2 m}
\end{array}\right) \text {, }
$$

$$
\begin{gathered}
F(U)=\left(\begin{array}{c}
0 \\
f_{1}(x)-g_{1}(u, v) \\
0 \\
f_{2}(x)-g_{2}(u, v)
\end{array}\right), \\
D\left(A^{\prime}\right)=\left\{(u, v) \in V_{2 m+k} \times V_{2 m+k} \mid(u, v) \in V_{0} \times V_{0},\left(D^{2 m+k} u, D^{2 m+k} v\right) \in V_{0} \times V_{0}\right\} \\
\times V_{k} \times V_{k}, \\
s=\left\|D^{m} u\right\|_{p}^{p}+\left\|D^{m} v\right\|_{p}^{p}
\end{gathered}
$$

In order to determine the eigenvalue of matrix operator A^{\prime}, first consider graph module

$$
\left.(U, V)_{E_{k}}=\left(M(s) D^{2 m+k} u, D^{2 m+k} \overline{u^{\prime}}\right)+\left(D^{k} \overline{z^{\prime}}, D^{k} z\right)\right)
$$

$$
+\left(M(s) D^{2 m+k} v, D^{2 m+k} \overline{v^{\prime}}\right)+\left(D^{k} \overline{q^{\prime}}, D^{k} q\right) \text { generated by }
$$

inner product in E_{k}.
Where $U=(u, z, v, q), V=\left(u^{\prime}, z^{\prime}, v^{\prime}, q^{\prime}\right)$, and $\overline{u^{\prime}}, \overline{z^{\prime}}, \overline{v^{\prime}}, \overline{q^{\prime}}$ represent the conjugation of $u^{\prime}, z^{\prime}, v^{\prime}, q^{\prime}$ respectively. In addition, operator A^{\prime} is monotonic, and for $U \in D\left(A^{\prime}\right)$, there is

$$
\begin{aligned}
\left(A^{\prime} U, U\right)_{E_{k}}= & -\left(M(s) D^{2 m+k} z, D^{2 m+k} \bar{u}\right)+\left(D^{k} \bar{z}, M(s)(-\Delta)^{2 m} u+\beta(-\Delta)^{2 m} z\right) \\
& -\left(M(s) D^{2 m+k} q, D^{2 m+k} \bar{v}\right)+\left(\bar{q}, M(s)(-\Delta)^{2 m} v+\beta(-\Delta)^{2 m} q\right) \\
= & -\left(M(s) D^{2 m+k} z, D^{2 m+k} \bar{u}\right)+\left(D^{2 m+k} \bar{Z}, M(s) D^{2 m+k} u\right) \\
& +\left(D^{2 m+k} \bar{Z}, \beta D^{2 m+k} z\right)-\left(M(s) D^{2 m+k} q, D^{2 m+k} \bar{v}\right) \\
& +\left(D^{2 m+k} \bar{q}, M(s) D^{2 m+k} v\right)+\left(D^{2 m+k} \bar{q}, \beta D^{2 m+k} q\right) \\
= & \beta\left(\left\|D^{2 m+k} z\right\|^{2}+\left\|D^{2 m+k} q\right\|^{2}\right) \geq 0
\end{aligned}
$$

Therefore, $\left(A^{\prime} U, U\right)_{E_{k}}$ is a nonnegative real number.
In order to further determine the eigenvalue of the matrix operator A^{\prime}, the following characteristic equation can be considered,

$$
\begin{equation*}
A^{\prime} U=\lambda U, U=(u, z, v, q) \in E_{k}, \tag{8}
\end{equation*}
$$

That is

$$
\left\{\begin{array}{l}
-z=\lambda u, \\
M(s)(-\Delta)^{2 m} u+\beta(-\Delta)^{2 m} z=\lambda z, \\
-q=\lambda v, \\
M(s)(-\Delta)^{2 m} v+\beta(-\Delta)^{2 m} q=\lambda q .
\end{array}\right.
$$

Thus u, v meet the eigenvalue problem

$$
\left\{\begin{array}{l}
\lambda^{2} u-\lambda \beta(-\Delta)^{2 m} u+M(s)(-\Delta)^{2 m} u=0, \\
\lambda^{2} v-\lambda \beta(-\Delta)^{2 m} v+M(s)(-\Delta)^{2 m} v=0, \\
\left.\frac{\partial^{i} u}{\partial n^{i}}\right|_{\partial \Omega}=\left.\frac{\partial^{i} v}{\partial n^{i}}\right|_{\partial \Omega}=0, i=0,1,2, \cdots, 2 m-1,
\end{array}\right.
$$

Take the inner product of $(-\Delta)^{k} u,(-\Delta)^{k} v$ and Equations (1) and (2) above respectively, with

$$
\left\{\begin{array}{l}
\lambda^{2}\left\|D^{k} u\right\|^{2}-\lambda \beta\left\|D^{2 m+k} u\right\|^{2}+M(s)\left\|D^{2 m+k} u\right\|^{2}=0 \\
\lambda^{2}\left\|D^{k} v\right\|^{2}-\lambda \beta\left\|D^{2 m+k} v\right\|^{2}+M(s)\left\|D^{2 m+k} v\right\|^{2}=0
\end{array}\right.
$$

That is

$$
\begin{align*}
& \lambda^{2}\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)-\lambda \beta\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right) \tag{9}\\
& +M(s)\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)=0
\end{align*}
$$

Equation (9) is a univariate quadratic equation about λ. Replace u, v with u_{j}, v_{j}. For each positive integer j, Equation (8) has paired eigenvalues

$$
\lambda_{j}^{ \pm}=\frac{\beta \mu_{j} \pm \sqrt{\left(\beta \mu_{j}\right)^{2}-4 M(s) \mu_{j}}}{2}
$$

where μ_{j} is the characteristic root of $(-\Delta)^{2 m}$ in $V_{2 m} \times V_{2 m}$, then $\mu_{j}=\lambda_{1} j^{\frac{2 m}{n}}$.
If $\left(\beta \mu_{j}\right)^{2} \geq 4 M(s) \mu_{j}$, then $\mu_{j} \geq \frac{4 M(s)}{\beta^{2}}$, the eigenvalues of operator A^{\prime} are all real numbers, and the corresponding eigenfunction form is

$$
U_{j}^{ \pm}=\left(u_{j},-\lambda_{j}^{ \pm} u_{j}, v_{j},-\lambda_{j}^{ \pm} v_{j}\right)
$$

For convenience, mark for any $j \geq 1$, there are

$$
\begin{aligned}
& \left\|D^{2 m+k} u_{j}\right\|^{2}+\left\|D^{2 m+k} v_{j}\right\|^{2}=\mu_{j},\left\|D^{k} u_{j}\right\|^{2}+\left\|D^{k} v_{j}\right\|^{2}=1, \\
& \left\|D^{-2 m-k} u_{j}\right\|^{2}+\left\|D^{-2 m-k} v_{j}\right\|^{2}=\frac{1}{\mu_{j}}
\end{aligned}
$$

Theorem 1: Assumes that l is the Lipschitz constant of $g_{i}(u, v)(i=1,2)$. When $N_{0} \in N_{+}$is sufficiently large, for $\forall N \geq N_{0}$, the following inequality holds

$$
\begin{equation*}
\left(\mu_{N+1}-\mu_{N}\right)\left(\beta-\sqrt{\beta^{2} \mu_{1}-4 M(s)}\right) \geq \frac{32 l}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}}+1 \tag{10}
\end{equation*}
$$

Then all operators A^{\prime} satisfy the spectral interval condition (6).
Proof. Because $\mu_{j} \geq \frac{4 M(s)}{\beta^{2}}$ and the eigenvalues of A^{\prime} are positive real numbers, $\left\{\lambda_{j}^{-}\right\}_{j \geq 1}$ and $\left\{\lambda_{j}^{+}\right\}_{j \geq 1}$ are single increment sequences.

The following four steps are taken to prove theorem 1:
Step 1: Because $\left\{\lambda_{j}^{-}\right\}_{j \geq 1}$ and $\left\{\lambda_{j}^{+}\right\}_{j \geq 1}$ are non subtractive columns, according to lemma 2, there are $\exists N_{0} \in N_{+}$, for $\forall N \geq N_{0}, \lambda_{N}^{-}$and λ_{N+1}^{-}are continuous adjacent values.

Therefore, there is N, so that λ_{N}^{-}and λ_{N+1}^{-}are continuous adjacent values, and the eigenvalue of A^{\prime} can be decomposed into

$$
\sigma_{1}=\left\{\lambda_{r}^{-} \mid 1 \leq r \leq N\right\}, \sigma_{2}=\left\{\lambda_{r}^{+}, \lambda_{j}^{ \pm} \mid 1 \leq r \leq N \leq j\right\}
$$

Step 2: Consider the corresponding decomposition of E_{k} into

$$
\begin{aligned}
& E_{k_{1}}=\operatorname{span}\left\{U_{r}^{-} \mid \lambda_{r}^{-} \in \sigma_{1}\right\}, \\
& E_{k_{2}}=\operatorname{span}\left\{U_{r}^{+}, U_{j}^{ \pm} \mid \lambda_{r}^{+}, \lambda_{j}^{ \pm} \in \sigma_{2}\right\}
\end{aligned}
$$

The equivalent inner product $((U, V))_{E_{k}}$ given below makes $E_{k_{1}}, E_{k_{2}}$ orthogonal.

Further decompose $E_{k_{2}}=E_{H} \oplus E_{R}$, of which

$$
E_{H}=\operatorname{span}\left\{U_{r}^{+} \mid 1 \leq r \leq N\right\}, E_{R}=\operatorname{span}\left\{U_{j}^{ \pm} \mid j \geq N\right\}
$$

Because $E_{k_{1}}$ and E_{H} are finite dimensional subspaces, $U_{N}^{-} \in E_{k_{1}}, U_{N+1}^{-} \in E_{R}$, and $E_{k_{1}}$ and E_{R} are orthogonal, while $E_{k_{1}}$ and E_{H} are not orthogonal, $E_{k_{1}}$ and $E_{k_{2}}$ are not orthogonal. So we need to redefine the equivalent norm on E_{k}, so that $E_{k_{1}}$ and E_{H} are orthogonal. Order $E_{N}=E_{k_{1}} \oplus E_{H}$.

Construct two functions $\Phi: E_{N} \rightarrow R, \Psi: E_{R} \rightarrow R$ of which,

$$
\begin{aligned}
\Phi(U, V)= & 2 \beta(\beta-1)\left(D^{2 m+k} u, D^{-(2 m+k)} \overline{u^{\prime}}\right)+2 \beta\left(D^{-(2 m+k)} \overline{z^{\prime}}, D^{2 m+k} u\right) \\
& +2 \beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u^{\prime}\right)+4\left(D^{-(2 m+k)} \overline{z^{\prime}}, D^{-(2 m+k)} z\right) \\
& -4 M(s)\left(D^{k} u, D^{k} \overline{u^{\prime}}\right)+2 \beta\left(D^{2 m+k} \bar{u}, D^{2 m+k} u^{\prime}\right) \\
& +2 \beta(\beta-1)\left(D^{2 m+k} v, D^{2 m+k} \overline{v^{\prime}}\right)+2 \beta\left(D^{-(2 m+k)} \overline{q^{\prime}}, D^{2 m+k} v\right) \\
& +2 \beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v^{\prime}\right)+4\left(D^{-(2 m+k)} \overline{q^{\prime}}, D^{-(2 m+k)} q\right) \\
& -4 M(s)\left(D^{k} v, D^{k} \overline{v^{\prime}}\right)+2 \beta\left(D^{2 m+k} \bar{v}, D^{2 m+k} v^{\prime}\right), \\
\Psi(U, V)= & 2 \beta\left(D^{2 m+k} \bar{u}, D^{2 m+k} u^{\prime}\right)+\beta\left(D^{-(2 m+k)} \overline{z^{\prime}}, D^{2 m+k} u\right) \\
& +\beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u^{\prime}\right)+4\left(D^{-(2 m+k)} \overline{z^{\prime}}, D^{-(2 m+k)} z\right) \\
& -2 M(s)\left(D^{k} u, D^{k} \overline{u^{\prime}}\right)+2 \beta(\beta-1)\left(D^{2 m+k} u, D^{-(2 m+k)} \overline{u^{\prime}}\right) \\
& +2 \beta\left(D^{2 m+k} \bar{v}, D^{2 m+k} v^{\prime}\right)+\beta\left(D^{-(2 m+k)} \overline{q^{\prime}}, D^{2 m+k} v\right) \\
& +\beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v^{\prime}\right)+4\left(D^{-(2 m+k)} \overline{q^{\prime}}, D^{-(2 m+k)} q\right) \\
& -2 M(s)\left(D^{k} v, D^{k} \overline{v^{\prime}}\right)+2 \beta(\beta-1)\left(D^{2 m+k} v, D^{2 m+k} \overline{v^{\prime}}\right) .
\end{aligned}
$$

Among them $U=(u, z, v, q), V=\left(u^{\prime}, z^{\prime}, v^{\prime}, q^{\prime}\right) \in E_{N}$ or E_{R}.
For $U=(u, z, v, q) \in E_{N}$, then

$$
\begin{aligned}
\Phi(U, U)= & 2 \beta(\beta-1)\left(D^{2 m+k} u, D^{-(2 m+k)} \bar{u}\right)+2 \beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u\right) \\
& +2 \beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u\right)+4\left(D^{-(2 m+k)} \bar{z}, D^{-(2 m+k)} z\right) \\
& -4 M(s)\left(D^{k} u, D^{k} \bar{u}\right)+2 \beta\left(D^{2 m+k} \bar{u}, D^{2 m+k} u\right) \\
& +2 \beta(\beta-1)\left(D^{2 m+k} v, D^{2 m+k} \bar{v}\right)+2 \beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v\right) \\
& +2 \beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v\right)+4\left(D^{-(2 m+k)} \bar{q}, D^{-(2 m+k)} q\right)
\end{aligned}
$$

$$
\begin{aligned}
& -4 M(s)\left(D^{k} v, D^{k} \bar{v}\right)+2 \beta\left(D^{2 m+k} \bar{v}, D^{2 m+k} v\right) \\
\geq & 2 \beta(\beta-1)\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-4 \beta\left(\left\|D^{-(2 m+k)} z\right\|\left\|D^{2 m+k} u\right\|\right. \\
& \left.+\left\|D^{-(2 m+k)} q\right\|\left\|D^{-(2 m+k)} v\right\|\right)+4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -4 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)+2 \beta\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right) \\
\geq & 2 \beta(\beta-1)\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -\beta^{2}\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)+4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -4 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)+2 \beta\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right) \\
= & \beta^{2}\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-4 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right) \\
\geq & \left(\beta^{2} \mu_{1}-4 M(s)\right)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right) .
\end{aligned}
$$

For any k, there is $\beta^{2} \mu_{k} \geq 4 M\left(\mu_{k}\right)$. According to hypothesis $1 \leq \mu_{0} \leq M(s) \leq \mu_{1} \leq \frac{\beta^{2} \mu_{k}}{4}$, then $\Phi(U, U) \geq 0$, that is, Φ is positive definite.

Similarly, for any $U=(u, z, v, q) \in E_{R}$, there is

$$
\begin{aligned}
\Psi(U, U)= & 2 \beta\left(D^{2 m+k} \bar{u}, D^{2 m+k} u\right)+\beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u\right) \\
+ & \beta\left(D^{-(2 m+k)} \bar{z}, D^{2 m+k} u\right)+4\left(D^{-(2 m+k)} \bar{z}, D^{-(2 m+k)} z\right) \\
- & 2 M(s)\left(D^{k} u, D^{k} \bar{u}\right)+2 \beta(\beta-1)\left(D^{2 m+k} u, D^{-(2 m+k)} \bar{u}\right) \\
+ & 2 \beta\left(D^{2 m+k} \bar{v}, D^{2 m+k} v\right)+\beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v\right) \\
+ & \beta\left(D^{-(2 m+k)} \bar{q}, D^{2 m+k} v\right)+4\left(D^{-(2 m+k)} \bar{q}, D^{-(2 m+k)} q\right) \\
& -2 M(s)\left(D^{k} v, D^{k} \bar{v}\right)+2 \beta(\beta-1)\left(D^{2 m+k} v, D^{2 m+k} \bar{v}\right) . \\
\geq & 2 \beta\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-2 \beta\left(\left\|D^{-(2 m+k)} z\right\|\left\|D^{2 m+k} u\right\|\right. \\
& \left.+\left\|D^{-(2 m+k)} q\right\|\left\|D^{2 m+k} v\right\|\right)+4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -2 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)+2 \beta(\beta-1)\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right) \\
\geq & 2 \beta\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -\beta^{2}\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)+4\left(\left\|D^{-(2 m+k)} z\right\|^{2}+\left\|D^{-(2 m+k)} q\right\|^{2}\right) \\
& -2 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)+2 \beta(\beta-1)\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right) \\
= & \beta^{2}\left(\left\|D^{2 m+k} u\right\|^{2}+\left\|D^{2 m+k} v\right\|^{2}\right)-2 M(s)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right) \\
\geq & \left(\beta^{2} \mu_{1}-2 M(s)\right)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right) .
\end{aligned}
$$

So there are $\forall U=(u, z, v, q) \in E_{R}, \Psi(U, U) \geq 0$, then Ψ is also positive definite.

Redefine the inner product of E_{k} :

$$
\begin{equation*}
((U, V))_{E_{k}}=\Phi\left(P_{N} U, P_{N} V\right)+\Psi\left(P_{R} U, P_{R} V\right) \tag{11}
\end{equation*}
$$

where P_{N} and P_{R} are projections of $E_{k} \rightarrow E_{N}$ and $E_{k} \rightarrow E_{R}$, respectively Here, Equation (11) is written as

$$
((U, V))_{E_{k}}=\Phi(U, V)+\Psi(U, V)
$$

Under the redefined inner product of E_{k}, to prove that $E_{k_{1}}$ and $E_{k_{2}}$ are orthogonal, we only need to prove that $E_{k_{1}}$ and E_{H} are orthogonal, that is,

$$
\left(\left(U_{j}^{-}, U_{j}^{+}\right)\right)_{E_{k}}=\Phi\left(U_{j}^{-}, U_{j}^{+}\right)=0
$$

Because there are $U_{j}^{-} \in E_{k_{1}}, U_{j}^{+} \in E_{H}$, that is

$$
\begin{align*}
\Phi\left(U_{j}^{-}, U_{j}^{+}\right)= & 2 \beta(\beta-1)\left(D^{2 m+k} u_{j}, D^{2 m+k} \bar{u}_{j}\right)-2 \beta \lambda_{j}^{+}\left(D^{-(2 m+k)} \bar{u}_{j}, D^{2 m+k} u_{j}\right) \\
- & 2 \beta \lambda_{j}^{-}\left(D^{-(2 m+k)} \bar{u}_{j}, D^{2 m+k} u_{j}\right)+4 \lambda_{j}^{-} \lambda_{j}^{+}\left(D^{-(2 m+k)} \bar{u}_{j}, D^{-(2 m+k)} u_{j}\right) \\
- & 4 M(s)\left(D^{k} u_{j}, D^{k} \bar{u}_{j}\right)+2 \beta\left(D^{2 m+k} \bar{u}_{j}, D^{2 m+k} u_{j}\right) \\
+ & 2 \beta(\beta-1)\left(D^{2 m+k} v_{j}, D^{2 m+k} \bar{v}_{j}\right)-2 \beta \lambda_{j}^{+}\left(D^{-(2 m+k)} \bar{v}_{j}, D^{2 m+k} v_{j}\right) \\
- & 2 \beta \lambda_{j}^{-}\left(D^{-(2 m+k)} \bar{v}_{j}, D^{2 m+k} v_{j}\right)+4 \lambda_{j}^{-} \lambda_{j}^{+}\left(D^{-(2 m+k)} \bar{v}_{j}, D^{2 m+k} v_{j}\right) \\
& -4 M(s)\left(D^{k} v_{j}, D^{k} \bar{v}_{j}\right)+2 \beta\left(D^{2 m+k} \bar{v}_{j}, D^{2 m+k} v_{j}\right) \\
= & 2 \beta(\beta-1)\left(\left\|D^{2 m+k} u_{j}\right\|^{2}+\left\|D^{2 m+k} v_{j}\right\|^{2}\right)-2 \beta\left(\lambda_{j}^{-}+\lambda_{j}^{+}\right)\left(\left\|u_{j}\right\|^{2}\right. \\
& \left.+\left\|v_{j}\right\|^{2}\right)+4 \lambda_{j}^{-} \lambda_{j}^{+}\left(\left\|D^{-(2 m+k)} u_{j}\right\|^{2}+\left\|D^{-(2 m+k)} v_{j}\right\|^{2}\right) \tag{12}\\
& -4 M(s)\left(\left\|D^{k} u_{j}\right\|^{2}+\left\|D^{k} v_{j}\right\|^{2}\right)+2 \beta\left(\left\|D^{2 m+k} u_{j}\right\|^{2}+\left\|D^{2 m+k} v_{j}\right\|^{2}\right) \\
= & -4 M\left(\mu_{j}\right)+2 \beta^{2} \mu_{j}-2 \beta\left(\lambda_{j}^{-}+\lambda_{j}^{+}\right)+4 \lambda_{j}^{-} \lambda_{j}^{+} \cdot \frac{1}{\mu_{j}} .
\end{align*}
$$

Because of Equation (9), there are

$$
\lambda_{j}^{+}+\lambda_{j}^{-}=\beta \mu_{j}, \lambda_{j}^{+} \cdot \lambda_{j}^{-}=M\left(\mu_{j}\right) \mu_{j}
$$

So $\Phi\left(U_{j}^{-}, U_{j}^{+}\right)=-4 M\left(\mu_{j}\right)+2 \beta^{2} \mu_{j}-2 \beta\left(\lambda_{j}^{+}+\lambda_{j}^{-}\right)+4 \lambda_{j}^{+} \lambda_{j}^{-} \cdot \frac{1}{\mu_{j}}=0$.
Step 3: according to the orthogonal decomposition established above, let's prove that A^{\prime} satisfies the spectral interval condition. First estimate the Lipschitz constant l_{F} of F, where

$$
F(U)=\left(0, f_{1}(x)-g_{1}(u, v), 0, f_{2}(x)-g_{2}(u, v)\right)^{\mathrm{T}}
$$

According to lemma 1, $g_{i}(u, v): V_{2 m+k} \times V_{2 m+k} \rightarrow V_{2 m+k} \times V_{2 m+k}$ are uniformly bounded and Lipschitz continuous, if $U=(u, z, v, q) \in E_{k}$,

$$
U_{i}=\left(u_{i}, z_{i}, v_{i}, q_{i}\right) \in P_{i} U(i=1,2),
$$

Then

$$
\begin{aligned}
& P_{1} u=u_{1}, P_{1} v=v_{1}, P_{2} u=u_{2}, P_{2} v=v_{2} . \\
\|U\|_{E_{k}}^{2}= & \Phi\left(P_{1} U, P_{2} U\right)+\Psi\left(P_{1} U, P_{2} U\right) \\
\geq & \left(\beta^{2} \mu_{1}-4 M(s)\right)\left(\left\|D^{k} P_{1} u\right\|^{2}+\left\|D^{k} P_{1} v\right\|^{2}\right) \\
& +\left(\beta^{2} \mu_{1}-2 M(s)\right)\left(\left\|D^{k} P_{2} u\right\|^{2}+\left\|D^{k} P_{2} v\right\|^{2}\right) \\
\geq & \left(\beta^{2} \mu_{1}-4 M(s)\right)\left(\left\|D^{k} u\right\|^{2}+\left\|D^{k} v\right\|^{2}\right)
\end{aligned}
$$

Given $U=(u, z, v, q), V=(\tilde{u}, \tilde{z}, \tilde{v}, \tilde{q}) \in E_{k}$, we can get

$$
\begin{aligned}
& \|F(U)-F(V)\|_{E_{k}} \\
& =\left\|g_{1}(u, v)-g_{1}(\tilde{u}, \tilde{v})\right\|_{V_{2 m+k} \times V_{2 m+k}}+\left\|g_{2}(u, v)-g_{2}(\tilde{u}, \tilde{v})\right\|_{V_{2 m+k} \times V_{2 m+k}} \\
& \leq 2 l\left(\|u-\tilde{u}\|_{V_{2 m+k}}+\|v-\tilde{v}\|_{V_{2 m+k}}\right) \\
& \leq \frac{4 l}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}}\|U-V\|_{E_{k}} .
\end{aligned}
$$

So

$$
\begin{equation*}
l_{F} \leq \frac{4 l}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}} \tag{13}
\end{equation*}
$$

From (13), if

$$
\begin{equation*}
\Lambda_{2}-\Lambda_{1}=\lambda_{N+1}^{-}-\lambda_{N}^{-}>\frac{16 l}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}} \tag{14}
\end{equation*}
$$

Then the spectral interval condition (6) holds.
Step 4: according to the above paired eigenvalues, there are

$$
\begin{equation*}
\Lambda_{2}-\Lambda_{1}=\lambda_{N+1}^{-}-\lambda_{N}^{-}=\frac{\beta}{2}\left(\mu_{N+1}-\mu_{N}\right)+\frac{\sqrt{R(N)}-\sqrt{R(N+1)}}{2} \tag{15}
\end{equation*}
$$

Of which, $R(N)=\beta^{2} \mu_{N}^{2}-4 M(s) \mu_{N}$.
There are $N_{0} \in N_{+}$, for $\forall N \geq N_{0}$, let $R_{0}(N)=\sqrt{\frac{R(N)}{\beta^{2} \mu_{1}-4 M(s)}}$, there are

$$
\begin{aligned}
& \sqrt{R(N)}-\sqrt{R(N+1)}+\sqrt{\beta^{2} \mu_{1}-4 M(s)}\left(\mu_{N+1}-\mu_{N}\right) \\
& =\sqrt{\beta^{2} \mu_{1}-4 M(s)}\left(\left(\mu_{N+1}-\frac{\sqrt{R(N+1)}}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}}\right)-\left(\mu_{N}-\frac{\sqrt{R(N)}}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}}\right)\right) \\
& =\sqrt{\beta^{2} \mu_{1}-4 M(s)}\left(\left(\mu_{N+1}-R_{0}(N+1)\right)-\left(\mu_{N}-R_{0}(N)\right)\right)
\end{aligned}
$$

And because of $\lim _{N \rightarrow+\infty}\left(\mu_{N}-R_{0}(N)\right)=\lim _{N \rightarrow+\infty}\left(\mu_{N}-\sqrt{\frac{R(N)}{\beta^{2} \mu_{1}-4 M(s)}}\right)=0$, there are

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \sqrt{R(N)}-\sqrt{R(N+1)}+\sqrt{\beta^{2} \mu_{1}-4 M(s)}\left(\mu_{N+1}-\mu_{N}\right)=0 \tag{17}
\end{equation*}
$$

According to the hypothesis (10) of Theorem 1 and Equations (13)-(17), there are

$$
\begin{align*}
\Lambda_{2}-\Lambda_{1} & \geq \frac{1}{2}\left(\left(\mu_{N+1}-\mu_{N}\right)\left(\beta-\sqrt{\beta^{2} \mu_{1}-4 M(s)}\right)-1\right) \\
& \geq \frac{16 l}{\sqrt{\beta^{2} \mu_{1}-4 M(s)}} \geq 4 l_{F} \tag{18}
\end{align*}
$$

Theorem 1 is proved.
Theorem 2 [12] Through theorem1, operator A^{\prime} satisfies the spectral interval condition, and problems (1)-(5) have a family of inertial manifolds μ_{k}, and $\mu_{k} \in E_{k}$. The form is as follows,

$$
\mu_{k}=\operatorname{graph}(\Gamma) \in E_{k}:=\left\{\varsigma+\Gamma(\varsigma): \varsigma \in E_{k_{1}}\right\}
$$

where $\Gamma: E_{k_{1}} \rightarrow E_{k_{2}}$ is Lipschitz continuous and has Lipschitz constant l_{F}, and $\operatorname{graph}(\Gamma)$ represents the graph of Γ.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Foias, C., Sell, G.R. and Temam, R. (1985) Varietes inertielles des equations differentielles disspatives. Comptes Rendus de I Academie des Science-Series I- Mathematics, 301, 139-142.
[2] Lin, G.G. and Xia, X.S. (2018) The Inertial Manifold for Class Kirchhoff-Type Equations with Strongly Damped Terms and Source Terms. Applied Mathematics, 9, 730-737. https://doi.org/10.4236/am.2018.96050
[3] Lou, R.J., Lv, P.H. and Lin, G.G. (2016) Exponential Attractors and Inertial Manifolds for a Class of Generalized Nonlinear Kirchhoff-Sine-Gordon Equation. Journal of Advances in Mathematics, 12, 6361-6375.
[4] Lin, G.G. and Yang, S.M. (2018) The Inertial Manifolds for a Class of Higher-Order Coupled Kirchhoff-Type Equations. Journal of Applied Mathematics and Physics, 6, 1055-1064. https://doi.org/10.4236/jamp.2018.65091
[5] Lin, G.G., Lv, P.H. and Lou, R.J. (2017) Exponential Attractors and Inertial Manifolds for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model. Far East Journal of Mathematical Sciences, 101, 1913-1945. https://doi.org/10.17654/MS101091913
[6] Lin, G.G. (2019) Dynamic Properties of Several Kinds of the Kirchhoff Equations. Chongqing University Press, Chongqing.
[7] Lin, G.G. and Wang, Y.G. (2022) A Family of Exponential Attractors and Inertial Manifolds for a Class of Higher Order Kirchhoff Equations. Journal of Applied Mathematics and Physics, 10, 900-914. https://doi.org/10.4236/jamp.2022.103062
[8] Lin, G.G. and Yang, L.J. (2021) A Family of the Exponential Attractors and the Inertial Manifolds for a Class of Generalized Kirchhoff Equations. Journal of Applied Mathematics and Physics, 9, 2399-2413. https://doi.org/10.4236/jamp.2021.910152
[9] Lin, G.G. and Li, S.Y. (2020) Inertial Manifolds for Generalized Higher-Order Kir-
chhoff Type Equations. Journal of Mathematics Research, 12, 67-72. https://doi.org/10.5539/jmr.v12n5p67
[10] Lin, G.G. and Hu, L.J. (2018) The Inertial Manifold for a Class of Nonlinear High-er-Order Coupled Kirchhoff Equations with Strong Linear Damping. International Journal of Modern Nonlinear Theory and Application, 7, 35-47. https://doi.org/10.4236/ijmnta.2018.72003
[11] Lin, G.G. and Liu, X.M. (2022) The Family of Exponential Attractors and Inertial Manifolds for a Generalized Nonlinear Kirchhoff Equations. Journal of Applied Mathematics and Physics, 10, 172-189. https://doi.org/10.4236/jamp.2022.101013
[12] Lin, G.G. (2011) Nonlinear Evolution Equation. Yunnan University Press, Yunnan.

