
Open Journal of Applied Sciences, 2022, 12, 1011-1025
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2022.126069 Jun. 29, 2022 1011 Open Journal of Applied Sciences

Generic Simulated Annealing

Chadi Kallab1, Samir Haddad1*, Jinane Sayah2, Mohamad Chakroun3

1Department of Computer Science and Mathematics, Faculty of Arts and Sciences, University of Balamand, Koura, Lebanon
2Department of Telecom and Networks, Issam Fares Faculty of Technology, University of Balamand, Koura, Lebanon
3Faculty of Computer Science and Electrical Engineering, Universität Rostock, Rostock, Germany

Abstract
One of the many problems that are considered to be NP-Hard is the Multiple
Sequence Alignment one that initially requires, as for any other of its siblings,
a specific encoding schema and design of the main functionalities of the heu-
ristics algorithm being implemented and executed. This paper intends to dis-
cuss our proposed generic implementation of the Simulated Annealing, in-
spired for the procedure of cooling and shaping methods of metals. In our
algorithm, we attempted to add some executions tracing functionalities in
order to help later analysis for initial parameters tuning. On another hand, we
also tried to get closer in our attempt to mimic the cooling of metals, but giv-
ing it an option to run under different cooling schedules. We proposed a few
schedules that seemed to be studied and/or used in many algorithm imple-
mentations.

Keywords
Generic, Heuristics, Phylogenies, Bio-Informatics, NP-Hard, Simulated
Annealing

1. Introduction

One of the many problems that are considered to be NP-Hard is the Multiple
Sequence Alignment one that initially requires, as for any other of its siblings, a
specific encoding schema and design of the main functionalities of the heuristics
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] and [4].

The main issue with that problem, as discussed in our ICeND2013 conference,
was to come up with an encoding that would be suitable for the different Heuris-
tics algorithms inspired by papers [5] [6] [7] [8] and [9]. Once the encoding is

How to cite this paper: Kallab, C., Had-
dad, S., Sayah, J. and Chakroun, M. (2022)
Generic Simulated Annealing. Open Jour-
nal of Applied Sciences, 12, 1011-1025.
https://doi.org/10.4236/ojapps.2022.126069

Received: May 28, 2022
Accepted: June 26, 2022
Published: June 29, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2022.126069
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2022.126069
http://creativecommons.org/licenses/by/4.0/

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1012 Open Journal of Applied Sciences

agreed on, the remaining part of designing and building the algorithm that will
get a solution as close to the optimum as possible would be nonetheless as im-
portant. We have selected for our research to focus on the Simulated Annealing
heuristic. However, we discovered that to be able to adjust some of the flaws of the
standard algorithm, we improved it by adding functionalities like tracing the ex-
ecutions, so that later analysis could help better tune the initial parameters.

Papers [10] [11] [12] [13] come to prove the need for a generic and flexible
implementation of Simulated Annealing with different tunable parameters.

In this paper, we’ll be discussing the implementation of the Simulated An-
nealing, with some modifications added to try to shorten the gap between the
algorithm and the source that inspired it, which is the structure and behavior of
metal cooling and shaping.

2. Initial Algorithm
Standard Simulated Annealing

Simulated Annealing (SA) was initially designed to simulate the cooling of met-
als into crystalline structure (annealing process). Since the natural annealing
process aims to minimize energy in resulting crystals, SA tackles problems from
the point of view of minimizing cost/energy.

SA was intended in 1983 to be used with non-linear problems. “SA approach-
es the global maximization problem similarly to using a bouncing ball that can
bounce over mountains from valley to valley.” [14] Initially, the temperature is
set high enough so that this ball is given enough time to bounce, between and
within valleys. The generic annealing algorithm/process suggests that, as time
passes, the ball tends to get closer to its optimal location. Therefore, as the tem-
perature cools down, the frequency of the large bounces (between valleys) tends
to lower, while that of local bounces (within valleys) increases. However, to
avoid falling in a local optimum valley, a probabilistic formula is applied, related
to the current temperature gain and cost of bounce from the current location to
a new one. In SA, the bounce (change in location) implies to perturb the current
solution S into a new one S'. In the SA algorithm, the temperature parameter is
denoted as T, and the number of moves (perturbations/bounces) is denoted by
M. “It has been proved that by carefully controlling the rate of cooling of the
temperature, SA can find the global optimum” [12]. This idea was also further
supported by references [6] [7] and [15].

3. Proposed Algorithm

The main idea behind Simulated Annealing was to simulate the annealing of
metals, where the metal is mapped into an initial solution, and the atom moves
mapped into moves to neighbor solutions, each of which is accepted, with a cer-
tain probability, if the cost of the neighbor solution is better than the current and
best one found so far. The probability of accepting a solution is ≤a threshold
value, directly proportional to the current temperature, and inversely to the dif-

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1013 Open Journal of Applied Sciences

ference in cost between the neighbor and current solutions. As the temperature
cools down according to a given schedule, the algorithm is getting us closer to
the optimal solution. Therefore, it allows the current solution to perturb more
often. This process is repeatedly done for a given maximum number of moves,
by applying the cooling rate α to the temperature, and motion rate β.

The steps of the below discussed algorithm are almost very similar to those of
the basic standard algorithm, with the difference that some of them, highlighted
in blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/
fragments highlighted in green are more of structure and/or behavior enhance-
ments that try to bridge the gap between the initial annealing process and our
simulated annealing algorithm.

3.1. Main Procedure

The steps of the algorithm implemented are as follows:
Inputs: Initial Solution S0, Initial Temperature T0,
 Cooling Rate α Motion Rate β
 Initial number of moves M0,
 Maximum Annealing time
Precondition: α < 1 and β > 1
Outputs: Optimal Solution BestS,
Algorithm:
 Assign initial solution “S0” to current solution “CurS”
 Assign initial temperature “T0” to current “T”
 Assign initial number of moves “M0” to the current “M”
 Assign “CurS” to optimal solution “BestS”
 Compute cost of “CurS”, and save it in “CurCost”
 Compute cost of “BestS”, and save it in “BestCost”
 Initialize to zero the Annealing time “Time”
 Repeat
 Record, in global history, parameters: {CurS, BestS, T, M, Time}
 Update parameters by calling: Metropolis procedure
 on CurS, CurCost, BestS, BestCost, T, M.
 Record in global history that of Metropolis execution
 Include in Time number of moves done
 Cool down temperature “T” according to rate “α”
 Increment number of moves M according to rate “β”
 Until “Time” ≥ “MaxTime”
 Return “BestS”

3.2. Metropolis Procedure

The steps and parts of the proposed algorithm are as follows, and visualized in
Figure 1:

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1014 Open Journal of Applied Sciences

Figure 1. Suggest algorithm flowchart diagram.

Inputs: Current Solution “CurS” Cost “CurCost”
 Best Solution “BestS” Cost “BestCost”
 Current Temperature “T” Current # Moves “M”
Outputs: ---
Algorithm:
 Assign number of moves “M” to the current variable “Moves”
 Repeat
 Generate a solution neighbor “NewS” for “CurS”
 Compute cost of “NewS”, and save it in “NewCost”
 Record, in local history, parameters: {CurS, NewS, BestS}
 Compute “DeltaCost” = “NewCost” – “CurCost”
 If “DeltaCost” < 0 then
 {{“NewS” has lower cost than “CurS”}}
 Assign New solution and cost to current
 If NewCost < BestCost then
 {{NewS has lower cost than BestS}}
 Assign the New solution and cost to best
 Else
 {{“NewS” is higher than that of “CurS”}}
 If random() < 1 / e(DeltaCost/T) then
 Assign new solution and cost to current structure and value
 Decrement the value of “Moves” by 1
 Until “Moves” = 0
Per simulation iteration, the Metropolis procedure computes M neighbor so-

lutions. Like the “Cost” method, the “Neighbor” function is problem specific.
Every problem that needs to run Simulated Annealing needs to implement both
“Cost” and “Neighbor”.

Below is an algorithm that helps tune the initial temperature parameter of

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1015 Open Journal of Applied Sciences

the Simulated Annealing, according to the standard and simple cooling sche-
dule.

3.3. Tuning Initial Temperature Procedure

Inputs: Current Solution “CurS” Cost “CurCost”
 Starting Temperature “T” # Moves Attempt “M”
 Result Tolerance “Threshold”
Outputs: Initial Temperature “T0”,
Algorithm:
 Assign starting temperature “T” to initial “T0”
 Assign value of 1 – “Threshold” to variable “TD”
 Do
 Assign number of moves “M” to # trials “Attempted”
 Initialize to zero # accepted moves “Accepted”
 Assign number of moves “M” to current “Moves”
 Repeat
 Generate a solution neighbor “NewS” for “CurS”
 Compute cost of “NewS”, and save it in “NewCost”
 Compute “DeltaCost” = “NewCost” – “CurCost”
 If “DeltaCost” < 0 then
 Assign new solution and cost to current structure and value
 Increment “Accepted” by 1 move
 Else-If random() < e(DeltaCost/T) then
 Assign new solution and cost to current structure and value
 Increment “Accepted” by 1 move
 Decrement the value of “Moves” by 1 move
 Until “Moves” = 0
 Compute ratio “Ratio” = “Accepted” / “Attempted”
 While “Ratio” ≥ “TD”
 Return “T0”

3.4. Mathematical Design

Customized Simulated Annealing
Various cooling schedules, mentioned later, can be used with a Simulated

Annealing optimization. Let Ti be the temperature for iteration i, where i in-
creases from 1 to N. The number of iterations is indirectly determined by the
user through: MaxTime.

This customized SA algorithm computes the number of cooling down itera-
tions, beforehand, and tries to make each one as independent of the others as
possible. Thus, the temperature, number of moves and time should be as unre-
lated as possible to the respective values computed in previous iterations.

Let it be the time elapsed up to iteration i, and iM the number of moves
for this iteration.

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1016 Open Journal of Applied Sciences

1 1

0

if 1
if 1

i i
i

t M i N
t

M i
− −+ < ≤

=  =

where: 1

0

if 1
*

if 1
i

i

M i N
M

M i
β − < ≤

=  =

0 for 1,2, ,i
iM M i Nβ= = �

1 0t M=
()2 1 1 2 0 1 2 01 *t t M t M M t Mβ= + ⇒ = + ⇒ = +

() ()2
3 2 2 3 0 2 3 01 * 1 *t t M t M M t Mβ β β= + ⇒ = + + ⇒ = + +

() ()2 2 3
4 3 3 4 0 3 4 01 * 1 *t t M t M M t Mβ β β β β= + ⇒ = + + + ⇒ = + + +

Similarly:
1

0
0

0

*

1 * for 1,2, ,
1

k
j

k
j

k

k

t M

t M k N

β

β
β

−

=

=

 −
⇒ = = − 

∑

�

At the end of the simulation– Nt MaxTime=

() ()

0

0

1 *
1

1 *
1

N

N

MaxTime M

MaxTime
M

β
β

β
β

 −
=  − 

−
⇒ − =

Then:

() ()
0 0

1 * 1 *
1 log 1N MaxTime MaxTime

N Integer
M Mβ

β β
β

 − −  = + ⇒ = +      

Therefore:

()
()

0

* 11 *ln 1
ln

MaxTime
N Integer

M
β

β
 − 

= +     

The different schedules, implemented in the following cooling schedule, are
illustrated in Table 1. These schedules are used in the customized algorithm by
referring to the corresponding code, which is an integer value between 1 and 9.
For flexibility reasons, code 10 is left to allow the algorithm to handle any exter-
nally defined schedule.

3.5. Main Procedure

Inputs: Initial Solution “S0” Cooling Schedule “code”
 Initial Temperature “T0” Total cooling Rate “R”
 Motion Rate “β” Initial # moves “M0”
 Maximum Annealing time “MaxTime”
Precondition: “R” < 1 “β” > 1
 “code” corresponds to one of the schedules of Table 1
Outputs: Optimal Solution “BestS”
Algorithm:

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1017 Open Journal of Applied Sciences

 Assign initial solution “S0” to current “CurS”
 Assign initial temperature “T0” to current “T”
 Assign initial number of moves “M0” to current “M”
 Assign current solution “CurS” to optimal “BestS”
 Compute cost of “CurS”, and save it in “CurCost”
 Compute cost of “BestS”, and save it in “BestCost”
 Apply the above mentioned formula for “N”
 For i from 1 to “N” do
 Record, in global history, parameters {CurS, BestS, T, M, Time}
 Update parameters by calling Metropolis
 on {CurS, CurCost, BestS, BestCost, T, M}
 Record in global history that of Metropolis execution
 Assign to “T” result of calling CoolingSchedule on (code, i, N, R, T0)
 Set value of “M” as “M0 * Power (β, i)”
 Return “BestS”
In comparison with the standard S.A algorithm, this algorithm allows the si-

mulation to occur with a non-scalar cooling schedule, by specifying the code of
the cooling schedule. One difference is the absence of the time variable replaced
by a loop-iteration index. Another difference is the fact that the temperature and
the number of moves are computed independently of previous iterations, but
according to the iteration index and some other parameters. Since the global

Table 1. Some suggested cooling schedules.

Code Name Graph

1 Linear

2 Scalar

3 Hyperbolic

4 Exp.

5 Sigmoid

6 Cos

7 Tanh

8 Cosh

9 Squared Scalar

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1018 Open Journal of Applied Sciences

initialization phase was replaced by an iteration initialization, we have instead of
i. This algorithm uses the Metropolis procedure defined above by the Standard
Simulated Annealing procedure.

3.6. Cooling-Schedule Procedure

Inputs: Cooling Schedule “code” Current Iteration Index “i”
 Number of Cooling Steps “N” Initial Temperature “T0”
Precondition:
 “code” corresponds to one of the schedules of Table 1
Outputs:
 Current Temperature “T”
Algorithm:
 Case “code” is

 1: Return
()

0

* 1i R
T

N
− 

−  
 

 2: Return 0 *
i
NT R

 3: Return
()()

()
()

0

1 1 1 1
*

1
R N R N

T
N i N

 − + + −
+ 

+  

 4:
()()
()

0ln * 1
ln

T R
A

N
−

=

 Return 0
AT i−

 5: 0.3*
2
NA i = − 

 

 Return
()

0

1
*

1 A

R
T R

e
− 

+ + 

 6: Return ()0 ** 1 1 *
2
T iR R Cos

N
π     + + −          

 7: Return ()0 10* 1 1 * 5
2
T iR R Tanh

N
     + − − −          

 8: Return ()0
10* 1 * iT R Sech
N

  −     

 9:
2iA

N
 =  
 

 Return 0 * AT R
 10: ()0, , ,T CustomizedCoolingSchedule i N R T=
 If T < T0 then
 Return T
 Return ()02, , , ,coolingSchedule i N R T

3.7. Customized-Cooling-Schedule Procedure

Inputs: Current Iteration Index “i” Number of Cooling Steps “N”

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1019 Open Journal of Applied Sciences

 Total cooling Rate “R” Initial Temperature “T0”
Precondition:
 “code” corresponds to one of the schedules of Table 1
Outputs:
 Current Temperature “T”
Algorithm:
The implementation of this algorithm is left for the algorithm or context inhe-

riting from this generic implementation.

3.8. Object-Oriented Procedure

The class diagram of our generic algorithm seems simple, as shown in Figure 2,
because the genericity itself lies in the implementation of the different methods
of the main component used in the algorithm.

The base “SAProblem” component represents the environment offering the
possible values and functionalities that the main algorithm’s steps will be relying
on to execute generic global and specific tasks.

The second class (in the middle), is the class representation that will be hold-
ing the values of the encoded solution.

The third component is the main algorithm offering both flexibility and ex-
ecution tracing, by saving into current instance variables and some inherited
properties a specific set of values per iteration while running.

Figure 2. Suggested SA components class diagram.

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1020 Open Journal of Applied Sciences

Since we are talking about a generic implementation of the algorithm and its
components, we implemented a few problems, as shown in Figure 3 and Figure
4, which follow the guidelines set by the components diagrams of Figure 2; but
also by the suggested encoding in reference paper 1, trying to cover different
complexities. This set is divided into 3 groups relating all to a base class holding
the math formulas: the first group is working with {2, 8, 10 and 16} radix applied
to the default “Formula01” functionality; while the second group is a collection
of problems handling different math formulas. The last group is the implemen-
tation of the encoding suggested in reference paper 1 about phylogenies.

In order to illustrate the generic implementations applied on these problems,
we have developed a quick straight forward windows application, in which we
dynamically modified the parameters of a default algorithm based on the sug-
gested generic implementation, instead of writing many versions inheriting for
our main implementation.

The first step, Figure 5, is to specify which problem the algorithm will work
on. This list of problems is dynamically built from the set of problems included
in the package, not only the one discussed above.

Figure 3. Some supporting problem implementations.

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1021 Open Journal of Applied Sciences

Figure 4. Utility class & parsimony problem implementation.

Figure 5. Win App, SA execution—problem selection.

The second step, Figure 6, would be to specify some of the properties required

by the algorithm. The problem itself has no parameters, since the real action lies
in the algorithm’s method. Even though default values were given to those pa-
rameters, we advise to modify them to be able to view effective results, and/or
test different cooling schedules.

The third and final step, as shown in Figure 7, is to simply run the algorithm.
In the above screenshot, we are showing the generated result of an execution on

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1022 Open Journal of Applied Sciences

Figure 6. Win App, SA execution—parameterization.

Figure 7. Win App, SA execution—sample run.

problem Pb001, along with the actual value corresponding to the last current
solution compared to the cost evaluated during the last iteration of the algorithm.
The next section of the screen shows the optimal solution it was able to detect
with a cost of 0, which is mathematically the actual best cost. For more complex
problems, running the algorithm for more time will most probably change the
best cost value converging towards a more suitable optimum.

Tracing back the execution of the execution mentioned we can see in Figure 8
that the algorithm reached 80377 as the best solution at the end of the initial
step.

As illustrated in Figure 9, while looking in more depth at the changes and
switching between current and best solutions over iterations of the main and of
the metropolis procedures, we have to highlight the fact that different cooling
schedule will yield arrival to the optimum at various steps. Thus allowing us to
tune and select a more suitable cooling schedule for later runs.

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1023 Open Journal of Applied Sciences

Figure 8. SA tracing functionality—initial iteration.

Figure 9. SA tracing functionality—internal iteration.

4. Conclusions

This research can be developed by trying to design and implement solutions to
the below issues raised during our research, and supported by references [16]
[17] [18] [19] [20] but also [21] [22] [23]:
 Fixed Input Parameters:
→ Even with a parameters tuning {initial temperature T0, motion and cooling

rates and initial number of jumps M0, among others}, we still end up with
fixed values for the algorithm’s inputs.

 Randomness doesn’t handle potentially repetitions:
→ In Neighbor method
 Initial solution may be far from the optimal one, thus the algorithm will take

more time.

https://doi.org/10.4236/ojapps.2022.126069

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1024 Open Journal of Applied Sciences

 Different cooling schedules might give better results than others at times and
less good at other times; thus we will need to have a comprehensive and flex-
ible schedule, or a functionality allowing us to run different schedules at dif-
ferent iterations.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kallab, C. (2013) Generic Encoding and Phylogenies. Proceedings of the ICeND

2013 Conference, Kuala Lumpur, 4-6 March 2013, 142.

[2] Kim, J. and Warnow, T. (1999) Tutorial on Phylogenetic Tree Estimation.
https://www.semanticscholar.org/paper/Tutorial-on-Phylogenetic-Tree-Estimation-
Kim/aa81aac8c1e762196e36ae8169fe20980f294fd1

[3] Moret, B., Bader, D. and Warnow, T. (2002) High-Performance Algorithm Engi-
neering for Computational Phylogenetics. Journal of Supercomputing, 22, 99-111.
https://www.mendeley.com/catalogue/f94b325a-d512-34d1-8335-b735011b1cf0

[4] Opper, D. Parsimony Phylogenetic Trees.
http://www.icp.ucl.ac.be/~opperd/private/parsimony.html

[5] Stamatakis, A., Ott, M. and Ludwig, T. (2005) RAxML-OMP: An Efficient Program
for Phylogenetic Inference on SMPs. International Conference on Parallel Compu-
ting Technologies, Krasnoyarsk, 5-9 September 2005, 288-302.
https://www.researchgate.net/publication/221185791_RAxML-OMP_an_efficient_p
rogram_for_phylogenetic_inference_on_SMPs
https://doi.org/10.1007/11535294_25

[6] Thinkquest 2001: International Internet Challenge. Genetic Engineering, the Crea-
tion Website. https://link.springer.com/article/10.1023/A:1013193211174

[7] Felsenstein, J. (1982) Numerical Methods for Inferring Evolutionary Trees. The
Quarterly Review of Biology, 57, 379-404. https://doi.org/10.1086/412935

[8] Fitch, W. (1971) Toward Defining the Course of Evolution: Minimum Change for a
Specified Tree Topology. Systematic Zoology, 20, 406-416.
https://doi.org/10.2307/2412116

[9] Hendy, M.D. and Penny, D. (1982) Branch and Bound Algorithms to Determine
Minimal Evolutionary Trees. Mathematical Biosciences, 59, 277-290.
https://www.sciencedirect.com/science/article/abs/pii/002555648290027X
https://doi.org/10.1016/0025-5564(82)90027-X

[10] Aarts, E.H.L. (1989) Simulated Annealing: An Introduction. Statistica Neerlandica,
43, 31-52. https://doi.org/10.1111/j.1467-9574.1989.tb01245.x

[11] Davis, L. (1987) Genetic Algorithms and Simulated Annealing.

[12] Ingber, L. (1993) Simulated Annealing: Practice versus Theory. Mathematical and
Computer Modelling, 18, 29-57. https://doi.org/10.1016/0895-7177(93)90204-C

[13] Locatelli, M. (2000) Simulated Annealing Algorithms for Continuous Global Opti-
mization: Convergence Conditions. Journal of Optimization Theory and Applica-
tions, 104, 121-133. https://doi.org/10.1023/A:1004680806815

[14] Pandey, A., Banerjee, S. and Sahoo, G. (2014) Applications of Meta Heuristic Search

https://doi.org/10.4236/ojapps.2022.126069
https://www.semanticscholar.org/paper/Tutorial-on-Phylogenetic-Tree-Estimation-Kim/aa81aac8c1e762196e36ae8169fe20980f294fd1
https://www.semanticscholar.org/paper/Tutorial-on-Phylogenetic-Tree-Estimation-Kim/aa81aac8c1e762196e36ae8169fe20980f294fd1
https://www.mendeley.com/catalogue/f94b325a-d512-34d1-8335-b735011b1cf0
http://www.icp.ucl.ac.be/%7Eopperd/private/parsimony.html
https://www.researchgate.net/publication/221185791_RAxML-OMP_an_efficient_program_for_phylogenetic_inference_on_SMPs
https://www.researchgate.net/publication/221185791_RAxML-OMP_an_efficient_program_for_phylogenetic_inference_on_SMPs
https://doi.org/10.1007/11535294_25
https://link.springer.com/article/10.1023/A:1013193211174
https://doi.org/10.1086/412935
https://doi.org/10.2307/2412116
https://www.sciencedirect.com/science/article/abs/pii/002555648290027X
https://doi.org/10.1016/0025-5564(82)90027-X
https://doi.org/10.1111/j.1467-9574.1989.tb01245.x
https://doi.org/10.1016/0895-7177(93)90204-C
https://doi.org/10.1023/A:1004680806815

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126069 1025 Open Journal of Applied Sciences

Algorithms in Software Testing: An Investigation into Recent Trends. Advances in
Computer Science and Information Technology, 1, 61-64.

[15] Affenzeller, M. and Mayrhofer, R. (2004) Generic Heuristics for Combinatorial Op-
timization Problems.
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combi
natorial_Optimization_Problems

[16] Sharman, K.C. (1988) Maximum Likelihood Parameter Estimation by Simulated
Annealing. ICASSP-88, International Conference on Acoustics, Speech, and Signal
Processing, Volume 1, 2741-2744.

[17] Fleischer, M. (1995) Simulated Annealing: Past, Present, and Future. Winter Simu-
lation Conference Proceedings, Arlington, 3-6 December 1995.

[18] Yao, X. and Li, G. (1991) General Simulated Annealing. Journal of Computer
Science and Technology, 6, 329-338. https://doi.org/10.1007/BF02948392

[19] Suppapitnarm, A., Seffen, K.A., Parks, G.T. and Clarkson, P.J. (2007) A Simulated
Annealing Algorithm for Multiobjective Optimization. Engineering Optimization,
33, 59-85. https://doi.org/10.1080/03052150008940911

[20] Kim, J., Pramanik, S. and Chung, M.J. (1994) Multiple Sequence Alignment Using
Simulated Annealing. Bioinformatics, 10, 419-426.
https://doi.org/10.1093/bioinformatics/10.4.419

[21] Yang, W.B. and Wang, Y.D. (2012) Improved Simulated Annealing Algorithm for
GTSP. International Conference on Automatic Control and Artificial Intelligence
(ACAI), Xiamen, 3-5 March 2012, 1202-1205.

[22] Khairuddin, R. and Zainuddin, Z.M. (2019) A Comparison of Simulated Annealing
Cooling Strategies for Redesigning a Warehouse Network Problem. Journal of
Physics Conference Series, 1366, Article ID: 012078.
https://doi.org/10.1088/1742-6596/1366/1/012078

[23] Peprah, A.K., Appiah, S.K. and Amponsah, S.K. (2017) An Optimal Cooling Sche-
dule Using a Simulated Annealing Based Approach. Applied Mathematics, 8,
1195-1210. https://doi.org/10.4236/am.2017.88090

https://doi.org/10.4236/ojapps.2022.126069
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combinatorial_Optimization_Problems
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combinatorial_Optimization_Problems
https://doi.org/10.1007/BF02948392
https://doi.org/10.1080/03052150008940911
https://doi.org/10.1093/bioinformatics/10.4.419
https://doi.org/10.1088/1742-6596/1366/1/012078
https://doi.org/10.4236/am.2017.88090

	Generic Simulated Annealing
	Abstract
	Keywords
	1. Introduction
	2. Initial Algorithm
	Standard Simulated Annealing

	3. Proposed Algorithm
	3.1. Main Procedure
	3.2. Metropolis Procedure
	3.3. Tuning Initial Temperature Procedure
	3.4. Mathematical Design
	3.5. Main Procedure
	3.6. Cooling-Schedule Procedure
	3.7. Customized-Cooling-Schedule Procedure
	3.8. Object-Oriented Procedure

	4. Conclusions
	Conflicts of Interest
	References

