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Abstract 
One of the many problems that are considered to be NP-Hard is the Multiple 
Sequence Alignment one that initially requires, as for any other of its siblings, 
a specific encoding schema and design of the main functionalities of the heu-
ristics algorithm being implemented and executed. This paper intends to dis-
cuss our proposed generic implementation of the Simulated Annealing, in-
spired for the procedure of cooling and shaping methods of metals. In our 
algorithm, we attempted to add some executions tracing functionalities in 
order to help later analysis for initial parameters tuning. On another hand, we 
also tried to get closer in our attempt to mimic the cooling of metals, but giv-
ing it an option to run under different cooling schedules. We proposed a few 
schedules that seemed to be studied and/or used in many algorithm imple-
mentations. 
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1. Introduction 

One of the many problems that are considered to be NP-Hard is the Multiple 
Sequence Alignment one that initially requires, as for any other of its siblings, a 
specific encoding schema and design of the main functionalities of the heuristics 
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] and [4]. 

The main issue with that problem, as discussed in our ICeND2013 conference, 
was to come up with an encoding that would be suitable for the different Heuris-
tics algorithms inspired by papers [5] [6] [7] [8] and [9]. Once the encoding is 
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agreed on, the remaining part of designing and building the algorithm that will 
get a solution as close to the optimum as possible would be nonetheless as im-
portant. We have selected for our research to focus on the Simulated Annealing 
heuristic. However, we discovered that to be able to adjust some of the flaws of the 
standard algorithm, we improved it by adding functionalities like tracing the ex-
ecutions, so that later analysis could help better tune the initial parameters. 

Papers [10] [11] [12] [13] come to prove the need for a generic and flexible 
implementation of Simulated Annealing with different tunable parameters. 

In this paper, we’ll be discussing the implementation of the Simulated An-
nealing, with some modifications added to try to shorten the gap between the 
algorithm and the source that inspired it, which is the structure and behavior of 
metal cooling and shaping. 

2. Initial Algorithm 
Standard Simulated Annealing 

Simulated Annealing (SA) was initially designed to simulate the cooling of met-
als into crystalline structure (annealing process). Since the natural annealing 
process aims to minimize energy in resulting crystals, SA tackles problems from 
the point of view of minimizing cost/energy. 

SA was intended in 1983 to be used with non-linear problems. “SA approach-
es the global maximization problem similarly to using a bouncing ball that can 
bounce over mountains from valley to valley.” [14] Initially, the temperature is 
set high enough so that this ball is given enough time to bounce, between and 
within valleys. The generic annealing algorithm/process suggests that, as time 
passes, the ball tends to get closer to its optimal location. Therefore, as the tem-
perature cools down, the frequency of the large bounces (between valleys) tends 
to lower, while that of local bounces (within valleys) increases. However, to 
avoid falling in a local optimum valley, a probabilistic formula is applied, related 
to the current temperature gain and cost of bounce from the current location to 
a new one. In SA, the bounce (change in location) implies to perturb the current 
solution S into a new one S'. In the SA algorithm, the temperature parameter is 
denoted as T, and the number of moves (perturbations/bounces) is denoted by 
M. “It has been proved that by carefully controlling the rate of cooling of the 
temperature, SA can find the global optimum” [12]. This idea was also further 
supported by references [6] [7] and [15].  

3. Proposed Algorithm 

The main idea behind Simulated Annealing was to simulate the annealing of 
metals, where the metal is mapped into an initial solution, and the atom moves 
mapped into moves to neighbor solutions, each of which is accepted, with a cer-
tain probability, if the cost of the neighbor solution is better than the current and 
best one found so far. The probability of accepting a solution is ≤a threshold 
value, directly proportional to the current temperature, and inversely to the dif-
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ference in cost between the neighbor and current solutions. As the temperature 
cools down according to a given schedule, the algorithm is getting us closer to 
the optimal solution. Therefore, it allows the current solution to perturb more 
often. This process is repeatedly done for a given maximum number of moves, 
by applying the cooling rate α to the temperature, and motion rate β. 

The steps of the below discussed algorithm are almost very similar to those of 
the basic standard algorithm, with the difference that some of them, highlighted 
in blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/ 
fragments highlighted in green are more of structure and/or behavior enhance-
ments that try to bridge the gap between the initial annealing process and our 
simulated annealing algorithm. 

3.1. Main Procedure 

The steps of the algorithm implemented are as follows: 
Inputs:  Initial Solution S0, Initial Temperature T0, 
    Cooling Rate α  Motion Rate β 
    Initial number of moves M0,  
    Maximum Annealing time  
Precondition: α < 1 and β > 1 
Outputs:  Optimal Solution BestS, 
Algorithm: 
 Assign initial solution “S0” to current solution “CurS” 
 Assign initial temperature “T0” to current “T” 
 Assign initial number of moves “M0” to the current “M” 
 Assign “CurS” to optimal solution “BestS” 
 Compute cost of “CurS”, and save it in “CurCost” 
 Compute cost of “BestS”, and save it in “BestCost” 
 Initialize to zero the Annealing time “Time” 
 Repeat 
  Record, in global history, parameters: {CurS, BestS, T, M, Time} 
  Update parameters by calling: Metropolis procedure 
    on CurS, CurCost, BestS, BestCost, T, M. 
  Record in global history that of Metropolis execution 
  Include in Time number of moves done 
  Cool down temperature “T” according to rate “α” 
  Increment number of moves M according to rate “β” 
 Until “Time” ≥ “MaxTime” 
 Return “BestS” 

3.2. Metropolis Procedure 

The steps and parts of the proposed algorithm are as follows, and visualized in 
Figure 1: 
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Figure 1. Suggest algorithm flowchart diagram. 
 

Inputs: Current Solution “CurS”  Cost “CurCost” 
   Best Solution “BestS”  Cost “BestCost” 
   Current Temperature “T” Current # Moves “M” 
Outputs: --- 
Algorithm: 
 Assign number of moves “M” to the current variable “Moves” 
 Repeat 
  Generate a solution neighbor “NewS” for “CurS” 
  Compute cost of “NewS”, and save it in “NewCost” 
  Record, in local history, parameters: {CurS, NewS, BestS} 
  Compute “DeltaCost” = “NewCost” – “CurCost” 
  If “DeltaCost” < 0 then 
   {{“NewS” has lower cost than “CurS”}} 
   Assign New solution and cost to current 
   If NewCost < BestCost then 
    {{NewS has lower cost than BestS}} 
    Assign the New solution and cost to best 
  Else 
   {{“NewS” is higher than that of “CurS”}} 
   If random() < 1 / e(DeltaCost/T) then 
    Assign new solution and cost to current structure and value 
  Decrement the value of “Moves” by 1 
 Until “Moves” = 0 
Per simulation iteration, the Metropolis procedure computes M neighbor so-

lutions. Like the “Cost” method, the “Neighbor” function is problem specific. 
Every problem that needs to run Simulated Annealing needs to implement both 
“Cost” and “Neighbor”. 

Below is an algorithm that helps tune the initial temperature parameter of 
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the Simulated Annealing, according to the standard and simple cooling sche-
dule. 

3.3. Tuning Initial Temperature Procedure 

Inputs: Current Solution “CurS”  Cost “CurCost” 
   Starting Temperature “T” # Moves Attempt “M” 
   Result Tolerance “Threshold” 
Outputs: Initial Temperature “T0”, 
Algorithm: 
 Assign starting temperature “T” to initial “T0” 
 Assign value of 1 – “Threshold” to variable “TD” 
 Do 
  Assign number of moves “M” to # trials “Attempted” 
  Initialize to zero # accepted moves “Accepted” 
  Assign number of moves “M” to current “Moves” 
  Repeat 
   Generate a solution neighbor “NewS” for “CurS” 
   Compute cost of “NewS”, and save it in “NewCost” 
   Compute “DeltaCost” = “NewCost” – “CurCost” 
   If “DeltaCost” < 0 then 
    Assign new solution and cost to current structure and value 
    Increment “Accepted” by 1 move 
   Else-If random() < e(DeltaCost/T) then 
    Assign new solution and cost to current structure and value 
    Increment “Accepted” by 1 move 
   Decrement the value of “Moves” by 1 move 
  Until “Moves” = 0 
  Compute ratio “Ratio” = “Accepted” / “Attempted” 
 While “Ratio” ≥ “TD” 
 Return “T0” 

3.4. Mathematical Design 

Customized Simulated Annealing 
Various cooling schedules, mentioned later, can be used with a Simulated 

Annealing optimization. Let Ti be the temperature for iteration i, where i in-
creases from 1 to N. The number of iterations is indirectly determined by the 
user through: MaxTime. 

This customized SA algorithm computes the number of cooling down itera-
tions, beforehand, and tries to make each one as independent of the others as 
possible. Thus, the temperature, number of moves and time should be as unre-
lated as possible to the respective values computed in previous iterations. 

Let it  be the time elapsed up to iteration i, and iM  the number of moves 
for this iteration. 
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The different schedules, implemented in the following cooling schedule, are 
illustrated in Table 1. These schedules are used in the customized algorithm by 
referring to the corresponding code, which is an integer value between 1 and 9. 
For flexibility reasons, code 10 is left to allow the algorithm to handle any exter-
nally defined schedule. 

3.5. Main Procedure 

Inputs: Initial Solution “S0”  Cooling Schedule “code” 
   Initial Temperature “T0” Total cooling Rate “R” 
   Motion Rate “β”  Initial # moves “M0” 
   Maximum Annealing time “MaxTime” 
Precondition: “R” < 1  “β” > 1 
    “code” corresponds to one of the schedules of Table 1 
Outputs: Optimal Solution “BestS” 
Algorithm: 
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 Assign initial solution “S0” to current “CurS” 
 Assign initial temperature “T0” to current “T” 
 Assign initial number of moves “M0” to current “M” 
 Assign current solution “CurS” to optimal “BestS” 
 Compute cost of “CurS”, and save it in “CurCost” 
 Compute cost of “BestS”, and save it in “BestCost” 
 Apply the above mentioned formula for “N” 
 For i from 1 to “N” do 
  Record, in global history, parameters {CurS, BestS, T, M, Time} 
  Update parameters by calling Metropolis 
   on {CurS, CurCost, BestS, BestCost, T, M} 
  Record in global history that of Metropolis execution 
  Assign to “T” result of calling CoolingSchedule on (code, i, N, R, T0) 
  Set value of “M” as “M0 * Power (β, i)” 
 Return “BestS” 
In comparison with the standard S.A algorithm, this algorithm allows the si-

mulation to occur with a non-scalar cooling schedule, by specifying the code of 
the cooling schedule. One difference is the absence of the time variable replaced 
by a loop-iteration index. Another difference is the fact that the temperature and 
the number of moves are computed independently of previous iterations, but 
according to the iteration index and some other parameters. Since the global  
 
Table 1. Some suggested cooling schedules. 

Code Name Graph    

1 Linear 

 

2 Scalar 

 

3 Hyperbolic 

 

4 Exp. 

 

5 Sigmoid 

 

6 Cos 

 

7 Tanh 

 

8 Cosh 

 

9 Squared Scalar 
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initialization phase was replaced by an iteration initialization, we have instead of 
i. This algorithm uses the Metropolis procedure defined above by the Standard 
Simulated Annealing procedure. 

3.6. Cooling-Schedule Procedure 

Inputs: Cooling Schedule “code”  Current Iteration Index “i” 
   Number of Cooling Steps “N” Initial Temperature “T0” 
Precondition: 
 “code” corresponds to one of the schedules of Table 1 
Outputs: 
 Current Temperature “T” 
Algorithm: 
 Case “code” is 
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  Return 0 * AT R  
 10: ( )0, , ,T CustomizedCoolingSchedule i N R T=  
  If T < T0 then 
   Return T 
  Return ( )02, , , ,coolingSchedule i N R T  

3.7. Customized-Cooling-Schedule Procedure 

Inputs: Current Iteration Index “i” Number of Cooling Steps “N” 
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   Total cooling Rate “R”  Initial Temperature “T0” 
Precondition: 
 “code” corresponds to one of the schedules of Table 1 
Outputs: 
 Current Temperature “T” 
Algorithm: 
The implementation of this algorithm is left for the algorithm or context inhe-

riting from this generic implementation. 

3.8. Object-Oriented Procedure 

The class diagram of our generic algorithm seems simple, as shown in Figure 2, 
because the genericity itself lies in the implementation of the different methods 
of the main component used in the algorithm. 

The base “SAProblem” component represents the environment offering the 
possible values and functionalities that the main algorithm’s steps will be relying 
on to execute generic global and specific tasks. 

The second class (in the middle), is the class representation that will be hold-
ing the values of the encoded solution. 

The third component is the main algorithm offering both flexibility and ex-
ecution tracing, by saving into current instance variables and some inherited 
properties a specific set of values per iteration while running. 

 

 
Figure 2. Suggested SA components class diagram. 
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Since we are talking about a generic implementation of the algorithm and its 
components, we implemented a few problems, as shown in Figure 3 and Figure 
4, which follow the guidelines set by the components diagrams of Figure 2; but 
also by the suggested encoding in reference paper 1, trying to cover different 
complexities. This set is divided into 3 groups relating all to a base class holding 
the math formulas: the first group is working with {2, 8, 10 and 16} radix applied 
to the default “Formula01” functionality; while the second group is a collection 
of problems handling different math formulas. The last group is the implemen-
tation of the encoding suggested in reference paper 1 about phylogenies. 

In order to illustrate the generic implementations applied on these problems, 
we have developed a quick straight forward windows application, in which we 
dynamically modified the parameters of a default algorithm based on the sug-
gested generic implementation, instead of writing many versions inheriting for 
our main implementation. 

The first step, Figure 5, is to specify which problem the algorithm will work 
on. This list of problems is dynamically built from the set of problems included 
in the package, not only the one discussed above. 

 

 
Figure 3. Some supporting problem implementations. 
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Figure 4. Utility class & parsimony problem implementation. 

 

 
Figure 5. Win App, SA execution—problem selection. 

 
The second step, Figure 6, would be to specify some of the properties required 

by the algorithm. The problem itself has no parameters, since the real action lies 
in the algorithm’s method. Even though default values were given to those pa-
rameters, we advise to modify them to be able to view effective results, and/or 
test different cooling schedules. 

The third and final step, as shown in Figure 7, is to simply run the algorithm. 
In the above screenshot, we are showing the generated result of an execution on  
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Figure 6. Win App, SA execution—parameterization. 
 

 
Figure 7. Win App, SA execution—sample run. 
 
problem Pb001, along with the actual value corresponding to the last current 
solution compared to the cost evaluated during the last iteration of the algorithm. 
The next section of the screen shows the optimal solution it was able to detect 
with a cost of 0, which is mathematically the actual best cost. For more complex 
problems, running the algorithm for more time will most probably change the 
best cost value converging towards a more suitable optimum. 

Tracing back the execution of the execution mentioned we can see in Figure 8 
that the algorithm reached 80377 as the best solution at the end of the initial 
step. 

As illustrated in Figure 9, while looking in more depth at the changes and 
switching between current and best solutions over iterations of the main and of 
the metropolis procedures, we have to highlight the fact that different cooling 
schedule will yield arrival to the optimum at various steps. Thus allowing us to 
tune and select a more suitable cooling schedule for later runs. 
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Figure 8. SA tracing functionality—initial iteration. 

 

 
Figure 9. SA tracing functionality—internal iteration. 

4. Conclusions 

This research can be developed by trying to design and implement solutions to 
the below issues raised during our research, and supported by references [16] 
[17] [18] [19] [20] but also [21] [22] [23]: 
 Fixed Input Parameters: 
→ Even with a parameters tuning {initial temperature T0, motion and cooling 

rates and initial number of jumps M0, among others}, we still end up with 
fixed values for the algorithm’s inputs. 

 Randomness doesn’t handle potentially repetitions: 
→ In Neighbor method 
 Initial solution may be far from the optimal one, thus the algorithm will take 

more time. 
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 Different cooling schedules might give better results than others at times and 
less good at other times; thus we will need to have a comprehensive and flex-
ible schedule, or a functionality allowing us to run different schedules at dif-
ferent iterations. 
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