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Abstract 
Path loss prediction models are vital for accurate signal propagation in wire-
less channels. Empirical and deterministic models used in path loss predic-
tions have not produced optimal results. In this paper, we introduced ma-
chine learning algorithms to path loss predictions because it offers a flexible 
network architecture and extensive data can be used. We introduced support 
vector regression (SVR) and radial basis function (RBF) models to path loss 
predictions in the investigated environments. The SVR model was able to 
process several input parameters without introducing complexity to the net-
work architecture. The RBF on its part provides a good function approxima-
tion. Hyperparameter tuning of the machine learning models was carried out 
in order to achieve optimal results. The performances of the SVR and RBF 
models were compared and result validated using the root-mean squared er-
ror (RMSE). The two machine learning algorithms were also compared with 
the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical 
models overpredicted path loss. Overall, the machine learning models pre-
dicted path loss with greater accuracy than the empirical models. The SVR 
model performed best across all the indices with RMSE values of 1.378 dB, 
1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and 
should therefore be adopted for signal propagation in the investigated envi-
ronments and beyond. 
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1. Introduction 

In a post-pandemic world, high speed internet access is not a luxury but a neces-
sity because many human activities have gone virtual. High quality of service 
among wireless subscribers is therefore the lifeline for digital inclusion in a 
world ravaged by the overall negative effect of the pandemic. To ensure an ade-
quate and quality signal level for users in wireless networks, signal propagation 
models are useful and essential. The rapid expansion in wireless communication 
services because of the increase in subscribers’ demand has brought path loss 
predictions to the front burner [1] [2]. Network planning and optimization have 
occupied a central place in wireless communication because of their pivotal role 
in signal characterizations. Path loss is the attenuation in signal strength as sig-
nals propagate from the transmitter to the receiver in wireless channels. This 
gradual reduction in the strength of the signal as it propagates in air is the path 
loss. Path loss on its own is inevitable because the mechanism for electromag-
netic propagation like refraction, scattering and diffraction are diverse but can 
be accurately represented and characterized [3] [4]. 

Signal propagation models are important for interference analysis, frequency 
assignment estimation and network planning. The accurate characterization of 
signal path loss in a wireless channel will help network providers make in-depth 
estimation before deployment. The essentiality of propagation models for accu-
rate path loss representation is vital for its sustainability and adaptivity [5]. Sev-
eral propagation models have been developed and used for signal propagation in 
different frequency bands across different countries and territories. A model de-
veloped for a particular propagation environment performed optimally in that en-
vironment but failed when deployed to another environment.  

This has been a major setback for propagation models that were developed 
based on empirical measurements. The reliability of the propagation models 
fades when the deployment outside the initial region of development is carried 
out [6] [7] [8]. This is because the model parameters are a function of the specif-
ic environment. Antenna height, width of buildings, building to building dis-
tance and heights of the transmitter and receiver antenna are a function of the 
environment and therefore become the dominant factors in wireless signal pre-
dictions. When a developed model is put to use in other locations, correction 
factors are always being added to each of the model parameters so as to make 
them give an optimal solution [9] [10]. This practice of adding certain factors to 
the model parameters has not provided an accurate solution as the ultimate 
model after modification ends up overpredicting or underpredicting the network. 
Propagation models are broadly classified into empirical and deterministic mod-
els. Empirical models are based on experimental measurements within a partic-
ular environment. These models are developed based on measurements of base 
station heights, frequency, distance between transmitter and receiver, building to 
building distance and a host of others [11] [12] [13]. These models are simple 
and easy to develop but do not guarantee high level accuracy because in a bid to 
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get them simplified many components are left out. The need to reduce complex-
ity in empirical models in many instances has necessitated the need to use just 
few environmental parameters in modeling. Empirical models are thus a 
trade-off between accuracy and simplicity. 

Deterministic models are built based on the law governing electromagnetic 
induction. They are based on several radio wave propagation characteristics in a 
particular propagation environment [14] [15] [16] [17]. They produced a high 
level accuracy than the empirical models but introduce so many complexities 
into the developed model. Such complexities introduced in deterministic models 
and the lack of accuracy as in the case of empirical models made them not suita-
ble for signal propagation in complex multipath propagation environments. 
There is need for a model that will give a high level of accuracy and also provides 
easy representation. The shortcomings of empirical and deterministic models 
have necessitated the need for path loss models with greater functionality and 
adaptability [18] [19] [20]. This is the introduction of machine learning algo-
rithms for path loss predictions in wireless channels.  

The introduction of machine learning algorithms to signal propagation mod-
eling provides a robust network architecture, robust adaptibility and extensive 
data usability. With machine learning adoption to signal propagation, many 
components from the transmitter to the receiver can be modelled effectively. 
Machine learning algorithms will capture all the environmental parameters 
without necessarily introducing any complexities into the model. Thousands of 
data sets can be introduced in order to ensure accurate representation and adap-
tability. The path loss prediction problem is a supervised regression problem in 
which the main objective is to effectively train the data sets, such that the cross 
validation can produce a set of optimal weights that can guarantee an accurate 
model [21] [22]. 

Extensive dataset is needed for this, because the data will be split into training 
and test sets in such a way that the model can be cross validated with the test 
dataset after training in order to ensure the accuracy. Any path loss prediction 
model developed with machine learning can be effectively adopted for use in any 
other environment outside of the initial place of development. This is because 
the model is generic and can be adopted on completely different set of data with 
an higher accuracy. Function approximation is therefore very easy with ML al-
gorithms by all standards and their accuracies are fore more superior than the 
empirical and deterministic models using any of the key performance indices. 
Several ML path loss prediction models have been adopted in signal propagation 
modeling in wireless environments. 

In [23] a neural network model for path loss prediction model was developed 
in the ultra-wide-band frequency band. The model was trained and the optimal 
value of the weight was found using backpropagation. The model compared with 
other empirical models gave the lowest value of RMSE. Also in [24], a mul-
ti-layer perceptron neural network path loss prediction model was introduced. 
The key contribution is that it examined the performances of using several hid-
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den layers on the overall network performance. It was discovered that increasing 
the number of hidden layers in the network increases the predictive accuracy but 
also introduced some complexities. 

Differential evolution was used with artificial neural network in [25]. The 
model was trained with experimental data in urban environments. The model 
also employed gradient descent algorithm in conjunction with the backpropaga-
tion neural network. The model compared with other experimental studies in 
the same location gave an more accurate path loss characterization than the oth-
er models. A radial basis function path loss model was introduced in [26]. The 
model was compared with the performance of the multi-layer perceptron neural 
network and other five existing propagation models. The radial basis function 
predicted path loss with the highest accuracy and gave the lowest value of error 
in the considered environments. In [27], an artificial neural network for several 
frequency bands was developed with experimental data. The performance of the 
ANN network was examined among the different frequency bands. The ANN 
network gave the most accurate prediction. The other empirical models over 
predicted path loss and did not give an accurate signal characterization. Some 
other applications of machine learning algorithms and methods are given in Ta-
ble 1. 

Several other ML algorithms have been implemented in the literature. They 
ranged from both supervised and unsupervised learning algorithms with the sole  
 

Table 1. Some related works. 

Reference Year Algorithms and methods Contributions 

[28] 2021 Radial basis function and Multilayer perceptron 
Provides accurate path loss prediction using radial 
basis function and multilayer perceptron algorithms 

[29] 2022 Ensemble Machine Learning 
Combined several machine learning algorithms to 
achieve accurate prediction 

[30] 2018 Multiplicative calculus 
Multiplicative calculus gave predictions with the 
lowest value of RMSE as compared to the other  
empirical models 

[31] 2022 
Atmospheric propagation modeling at microwave 
frequency 

Modelling of path loss with greater accuracy even at 
microwave frequency 

[32] 2022 Prognostic modeling of specific radio attenuation 
Thorough prognosis of and modeling of signal  
attenuation 

[33] 2021 
Systems dynamic approach with some machine 
learning methods 

Machine learning methods enhanced with  
blockchain methods 

[34] 2021 Automation with machine learning algorithms 
Machine learning algorithms for automation of 
processes 

[35] 2022 Machine learning algorithms for EEG signals 
MLP algorithms, decision trees and random forest 
used in signal modeling 

[36] 2022 
Multilayer perceptron neural network for path loss 
prediction 

Accurate signal prediction and characterization 
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objective of giving accuracy to path loss modeling. Some Machine learning algo-
rithms have not been explored and even when they are explored, there is need to 
compare the performances of the different machine learning algorithms for the 
purpose of generalization. 

The contributions of this paper are specified as follows. 
● In other to achieve accurate path loss prediction in wireless networks, Sup-

port vector regression (SVR) and Radial basis function model were developed 
with extensive data sets. These machine learning based models were com-
pared to the predictions given by empirical models. 

● Several hyperparameters of the RBF model were tuned in order to achieve 
optimization for accurate system design of the SVR and RBF machine learn-
ing algorithms. 

● The performances of the SVR and RBF machine learning were compared 
with five other empirical models for accurate results validation using RMSE. 

The remaining part of this work is organized as follows; Section 2 presents the 
measurement campaign scenario and data pre-processing, the methodology and 
model developments are given in Section 3. The results are presented in Section 
4 and conclusion is contained in Section 5.  

2. Measurement Campaign Scenario and Data Preprocessing 

Extensive field measurements were collected across base stations in Lefkosia and 
Kyrenia both located in the Northern part of Cyprus with the aid of drive test. 
The five environmental features used as input to the machine learning models 
are elevation, clutter heights, distance between the transmitter and receiving an-
tenna, altitude, building to building distance and the street orientation angle. 
The received signal strength indicator (RSSI), reference signal received power 
(RSRP) and the reference signal received quality (RSRQ) were all measured 
during the drive test which was carried out at 40 km/hr to minimize the effect of 
Doppler effect. For the drive test, the measurement equipment which are TEMs 
mobile system dongle software, GPS, 3G mobile phone are connected to a laptop 
and housed inside a moving vehicle. The height of the base transceiver station 
for the urban centers where field measurements were collected is 25 m while that 
of suburban centers is 35 m. The mobile antenna height used is 1.5 m. The ref-
erence distance is 100 m and data was measured spanning a transmitter-receiver 
distance of 3 km. As the mobile station moves away from the transmitting sta-
tion, the RSRP was measured at each distance. At each distance, 10 readings 
were recorded and the average was taken in order to ensure data accuracy. The 
RSRP was then subtracted from the EIRP at each distance to determine the path 
loss at that point. Figure 1 provides the field measurement interface during the 
drive test. 

The cross validation was done by dividing the dataset into two as follows. 75% 
of the dataset was used for training and 25% was used as the test dataset. This 
was done so that the model can be tested with the data outside of the training 
sample. 
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Figure 1. Field measurements during drive test. 

 
The data preprocessing was done and some data normalization was carried 

out on the measured data. The MinMax scaling normalization was carried out 
on the data as given in Equation (1) 

min

max min
sc

X XX
X X

−
=

−
                         (1) 

Path loss is computed as given in Equation (2).  

 ( )Path loss dB Effective Isotropic Radiated Power Received power= −      (2) 

  1 2 3 1 2 3EIRP n n nρ ρ ρ= + + − − −                    (3) 

where, 1ρ  is the power of the transmitter in dBm, 2ρ  is the gain of the trans-
mitting antenna, 3ρ  is the gain of the receiving antenna, 1 2 3,,n n n  represents 
the feeder cable loss, antenna loss, and antenna filter loss, respectively.  

The figurative descriptive statistics of the input parameters to the machine 
models are presented in Figure 2. It also represents correlation of each of the 
input parameters to the output path loss. 

3. Methodology and Model Developments 

The methodology and model developments are introduced in this section. Two 
machine learning based models namely; support vector regression and radial ba-
sis functions were introduced. The development of this model will be adapted to 
path loss prediction as in a supervised learning regression problem. Training of 
both models will be carried out with the same datasets so as to accurately make a 
justifiable comparison between the performances of both models. 

3.1. Support Vector Regression Path Loss Prediction Model 

One of the most significant solutions of engineering problems is to be able to 
approximate a function with another function. Support vector regression is a 
generalization of the support vector machines which can be essentially used in 
providing accurate characterization and solution for path loss prediction prob-
lems which are typically non-linear regression problems. SVR has the ability to  
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Figure 2. Relationship between each of the input parameters and the output path loss. 

 
transform data which are non-linear separable into a linearly separable form by 
taking the sets of data initially in the single-dimensional space into an higher 
dimensional space. After this transformation to the multidimensional space, 
they become linearly separable. In the high-dimensional place, the functions 
search for a hyperplane that enables all the datapoints to fall accurately on the 
hyperplane, with the samples falling on the hyperplane explicitly. The predictive 
accuracy of the proposed SVR model is due to its capacity to optimize the mar-
gin, absence of local minima and the sparseness of the given solution. Thus it is 
very suitable for function approximation problems. 

For the model development, we employed a supervised learning ML algorithm 
with M training data set. The supervised machine learning method has an input 
data set mapped correspondingly with the output (target values).  

The training data set ( ){ }, , 1, 2, ,n
i iM x y R R i K= ∈ ∗ = �  with K pairs  

( ) ( ) ( )1 1 2 2, , , , , ,k kx y x y x y� , where the inputs into the SVR model are n dimen-
sional features in vector form n

ix R∈ , the output path loss iy R∈  are conti-
nuous with K taking as the number of samples in the dataset. The specific 
hyperplane is expressed in Equation (4) as 

 ( ) ( )Tf x w x b= ∅ +                         (4) 

where x is the input vector and represents all the five input parameters namely, 
elevation, clutter heights, distance between the transmitter and the receiving an-
tenna, altitude and building to building distance. 

( )x∅  represents the non-linear mapping function.  
b stands for the bias and w is the normal vector that controls and specifies the 

direction of the hyperplane in the multi-dimensional space. 
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The predicted path loss from the SVR model is given in Equation (5) as  

( ) ( )*
1 ,i i ii

Ky c c P x x b
=

= − +∑                  (5) 

where, y represents the output predicted path loss from the SVR model, b stands 
for the bias, 

ic  and *
ic  represents the Lagrange multipliers,  

ix  represents the input vector which in this case are the five input parame-
ters,  

( )..P  is represents the kernel function employed in the model development 
which performs the transformation of the non-linear function from the 
low-dimensional space to the multi-dimensional space.  

K represents the number of sample data for the training without including the 
test datasets.  

The overall performance of the SVR model depends on the type of kernel 
function used in the development. There are basically three types of kernel func-
tion namely; polynomial, Gaussian and Laplacian kernel functions. For this 
work, we employed the Gaussian kernel function (radial basis) because of the 
superior performance it gives when compared to the other kernel functions. The 
radial basis kernel function is given in (6) as 

 ( )
2

2exp
2
rr
σ

 
∅ = − 

 
 width parameter 0σ >              (6) 

For the SVR path loss regression problem, we measure the difference between 
the actual and the predicted value by calculating the error of approximation be-
cause we are dealing with a regression and not classification problem. 

We adopt the Vapnik-Chervonenkis principle to estimate the loss function 
with the E sensitivity zone expressed in (7) as 

( )
0, if

, otherwise
i

i i
i

e
E e e

eε

ε

ε

 ≤= = 
−

                   (7) 

The error function ie  is the difference between the measured path loss and 
the predicted path loss from the SVR model and given in (8) as  

( ),i i ie y h x w= −                           (8) 

where iy  is the measured path loss and ( ),ih x w  is the predicted path loss 
from SVR model. 

The last stage of the SVR model development is to accurately find a linear 
function that correctly maps the input to the output function. The function will 
approximate the training pairs ( ),i ix y  with the greatest accuracy. 

The optimization function w that minimizes the error function is expressed in 
Equation (9) as 

2
,

1Min
2w b w                          (9) 

3.2. The Radial Basis Function Model Design 

The radial basis function is essentially good for function approximation and 
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highly suitable for solving path loss regression problems. It is a three layer feed-
forward network consisting of input layer, hidden layer and the output layer. 
The hidden layer performs a non-linear transformation of the input parameters 
while the output is a linear combiner of the outputs of the hidden layer. The 
radial basis function is efficient because the training is faster as it has one single 
hidden layer and so reduces all forms of complexities. The function of each node 
can also be easily interpreted in the RBF network. 

For the RBF network, there are five input parameters into the network are 
elevation, clutter heights, distance between the transmitter and the receiving an-
tenna, altitude, and building to building distance. 

The objective of the radial basis function is to obtain a function that will give 
the path loss close to the measured path loss.  

For data training and learning with the Gaussian kernel function. The output 
weighted path loss training points { }pt . The radial basis function neural net-
work ( )f x  developed using the Gaussian kernel function as the weighted sum 
of Gaussian is given in (10). 

( ) ( ) 21 1 exp
2

n

p pn
K

p n
K x vf x W x w

σ= =

 −
= ∅ = −  

 
∑ ∑           (10) 

σ  is the width of the Gaussians, w represents the weight of the function, ∅  is 
the interpolation matrix, The distances nx v−  give the Euclidean distance 
between input vector x and the center of the nth neuron in the hidden layer.  

Minimization in the RBF achieved as given in (11) 

2T
1

1 N
p PiE y w

N =
= − ∅∑                      (11) 

where [ ]1 2 , ,, .Ny y y y= �   

Hyperparameter Tuning of the RBF Model 
The parameters of the radial basis function were tuned in order obtain optimal 
parameters for modelling. The Gaussian, multiquadric, inverse multiquadric 
functions were examined to determine which one is best for the model. The 
number of centroids for the particular kernel function is varied to determine the 
level of convergence. The number of centroids is plotted against the mean square 
error. The MSE value decreases as the number of centroids increases for all the 
kernel function that was explored. The Gaussian kernel function also gave the best 
performance. The hyperparameter tuning is presented in Figure 3. 

Figure 3 strongly reflects that the value of error decreases as the number of 
centroids increases for a Gaussian kernel function. 

The performances of five existing propagation models were compared with 
the introduced machine learning models using the experimental data. The mod-
els are Stanford University Interim (SUI) model, free space model, Cost-231 
Walfisch Ikegami model, Cost-231 Hata model and Egli model. The model for-
mulations are presented in Equations (12)-(16). 
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Figure 3. Plot of the MSE for the training and validation datasets for Gaussian Kernel 
function, Cluster range 10:2:50 and 10 runs. 

 

Free space ( ) ( ) ( )10 10dB 32.5 20log 20logLP d f= + +            (12) 

COST-231 Hata 
( ) ( ) ( )

( )
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h d C
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 + − + 
 (13) 

( ) ( )10 101.1log 0.7 1.56log 0.8m rah f h f= − − −            (14) 

( ) ( ) ( )10 10 10Egli 40log 20log 20log b md f h L= + − +          (15) 

10
0

loSUI g forf h f
dA K K S d d
d

 
= + + + + 

 
�           (16) 

where d is the distance in km, f is the frequency in MHz, bh  represents the 
height of the base station antenna, rh  stands for the mobile antenna height, 

mah  is the receiver antenna correction factor and parameter.        
The developed machine learning models were validated using key perfor-

mance metrics of root mean squared error (RMSE) and squared R. This is done 
to make a proper validation of the ML models and the existing analytical models. 

RMSE ( )2

1
M E

i
N PL PL

N=

 −
 
 
 

∑                  (17)         

Squared R 
( )

( )

2
1

2

1

1
N

M Ei

M M
N
i

PL PL

PL PL
=

=

−
−

−

∑
∑

                 (18)   

MPL  represents measured path loss, EPL  represents the predicted path loss 
from the, MPL  is the mean of the measured path loss and N is the number of 
sampled data. 
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4. Results and Discussion 

The performances of the two machine learning models, SVR and RBF were 
compared with the experimental data. The performances of SUI, Cost-231 Hata, 
Egli, freespace, Cost-231 Walfisch Ikegami models were also examined in com-
parison with the measured data. The results were examined in rural, suburban 
and urban areas. 

Figure 4 gives the comparison of the measured path loss with the predicted 
path loss for the proposed SVR model in rural settings. It is clearly evident from 
the plots that the SVR model aligned well with the measured path loss. The SVR 
model fits the datasets accurately. 

Figure 5 gives the plots of the comparison of the experimental data, SVR model  
 

 
Figure 4. Plots of measured data and SVR model in rural settings. 

 

 
Figure 5. Plots of measured data, SVR and RBF models in rural settings. 
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and the RBF models. The plot also shows that the SVR model performed well 
than the RBF model. The SVR model aligned more accurately with the measured 
data than the RBF model. 

Figure 6 presents the plots of the SVR and RBF models with the other five ex-
isting empirical models. The introduced machine learning path loss models pre-
dicted path loss more accurately than the empirical models. The five other mod-
els overpredicted path loss. The support vector regression model gave path loss 
closest to the experimental data. It was closely followed by the RBF model. 

The performances of the seven models are presented in Table 2 using RMSE 
and Squared R as an error metrics. A model with the lowest value of RMSE is the 
one with the greatest accuracy. The SVR gives the lowest value of RMSE with a 
value of 1.3678 dB in the rural areas. The value of squared R closest to 1 represents 
high accuracy. The SVR model gave a value of squared R = 0.9786 dB better than  
 

 
Figure 6. Plots of measured data, SVR, RBF and five empirical models in rural settings. 

 
Table 2. Error metrics for different models in rural settings. 
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the other models and followed closely by the RBF model. From the RMSE and 
the squared R values, it shows that the empirical models predicted path loss out-
side of the given range and not suitable for signal propagation in the investigated 
environments. 

4.1. Results for Areas Classified as Suburban 

The results for the areas classified as suburban are presented in this section. The 
results obtained are similar to the results in the rural settings. 

Figure 7 gives the comparison of the measured path loss with the predicted 
path loss for the proposed SVR model in suburban areas. It is clearly evident 
from the plots that the SVR model aligned well with the measured path loss. The 
SVR model fits the datasets accurately. 

Figure 8 gives the plots of the comparison of the experimental data, SVR 
model and the RBF models in suburban areas. The plot also shows that the SVR 
model performed well than the RBF model. The SVR model aligned more accu-
rately with the measured data than the RBF model. The results are also consis-
tent with the one obtained in the rural areas. 

Figure 9 presents the plots of the SVR and RBF models with other five exist-
ing empirical models in suburban areas. The introduced machine learning path 
loss models predicted path loss more accurately than the empirical models. The 
five other models overpredicted path loss. The support vector regression model 
gave path loss closest to the experimental data. It was closely followed by the 
RBF model. 

The performances of the seven models are presented in Table 3 using RMSE 
and squared R as the error metrics. A model with the lowest value of RMSE is 
the one with the greatest accuracy. The SVR gives the lowest value of RMSE with  
 

 
Figure 7. Plots of measured data and SVR model in suburban settings. 
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Figure 8. Plots of measured data, SVR and RBF models in suburban settings. 

 

 
Figure 9. Plots of measured data, SVR, RBF and five empirical models in suburban settings. 

 
Table 3. Error metrics values for different models in suburban settings. 

Models RMSE value in (dB) Squared R in (dB) 

SVR 1.4523 0.9286 

RBF 1.6965 0.89653 

Cost-231 W-I 19.4652 0.4471 

Egli 9.3492 0.6457 

SUI 21.3892 0.3324 

COST-231 Hata 15.6374 0.2743 

Free Space 22.2341 0.1273 
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a value of 1.4523 dB in the suburban areas. The value of squared R closest to one 
represents high accuracy. The SVR model gave a value of squared R = 0.9286 dB 
which is better than the other models and followed closely by the RBF model. 
From the RMSE and the squared R values of the plots, it showed that they pre-
dicted path loss outside of the given range. The results obtained for suburban 
areas were consistent with the ones obtained for rural areas. The results for rural 
areas were slightly better than the suburban areas because of the several NLOS 
situation obtained in these areas. There are so many LoS possibilities in the rural 
areas and so the path loss is well lower. 

4.2. Results for Areas Classified as Urban 

The results for the areas classified as urban are presented in this section. The re-
sults obtained are similar to the results in the rural and suburban areas. 

Figure 10 gives the comparison of the measured path loss with the predicted 
path loss for the proposed SVR model in urban settings. It is clearly evident from 
the plots SVR model aligned well with the measured path loss. The SVR model 
fits the datasets accurately for this area. 

Figure 11 gives the plots of the comparison of the experimental data, SVR 
model and the RBF models in urban areas. The plot also showed that the SVR 
model performed well than the RBF model. The SVR model aligned more accu-
rately with the measured data than the RBF model. The results are also consis-
tent with the one obtained in the rural and suburban areas. 

Figure 12 presents the plots of the SVR and RBF models with other five ex-
isting empirical models in urban areas. The introduced machine learning path 
loss models predicted path loss more accurately than the empirical models. The 
five other models overpredicted path loss. The support vector regression  
 

 
Figure 10. Plots of measured data and SVR model in urban settings. 
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Figure 11. Plots of measured data, SVR and RBF models in urban settings. 

 

 
Figure 12. Plots of measured data, SVR, RBF and five empirical models in urban settings. 
 
model gave path loss closest to the experimental data. It is closely followed by 
the RBF model. The path loss is slightly higher in the urban areas as shown be-
cause of the several multipath components. Signal is basically propagating under 
NLoS conditions in urban areas. 

The performances of the seven models are presented in Table 4 using RMSE 
and squared R as error metrics. A model with the lowest value of RMSE is the  
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Table 4. Error metrics values for different models in urban settings. 

Models RMSE value in (dB) Squared R in (dB) 

SVR 2.1568 0.8528 

RBF 2.4967 0.89653 

Cost-231 W-I 22.4452 0.5671 

Egli 8.3492 0.7457 

SUI 21.3892 0.4324 

COST-231 Hata 17.5384 0.5643 

Free Space 22.2642 0.4753 

 
one with the greatest accuracy. The SVR gives the lowest value of RMSE with a 
value of 2.1568 dB in the urban areas. The value of squared R closest to one 
represents high accuracy. The SVR model gave a value of squared R to be 0.8528 
dB, which is better than the other models and followed closely by the RBF model. 
From the RMSE and the squared R, it showed that the other analytical models 
predicted path loss outside of the given range. The results obtained for urban 
areas were consistent with the ones obtained for rural and suburban areas. The 
results for rural areas were slightly better than the urban areas because of the 
several NLOS situation obtained in these areas. There are so many LoS possibili-
ties in the rural areas and so the path loss is well lower. 

5. Conclusion 

The study introduced machine learning algorithms to path loss predictions with 
experimental data collected in Cyprus. Support vector regression (SVR) and 
radial basis function (RBF) are the two models that were trained with extensive 
field measurements. The predictive accuracies of five other empirical/analytical 
models were then analysed and compared with the performances of the machine 
learning models. The hyperparameters of the SVR and the RBF models were 
tuned before modeling and the Gaussian kernel function gave the best perform-
ing results; it was subsequently adopted and used in the ML models. The valida-
tion was then carried out with the use of root-mean square error (RMSE) and 
squared R (R2). The SVR and the RBF models gave the lower values of RMSE 
than the other five empirical models. The SVR model performed best and has 
values of 1.3678 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings 
respectively. The other empirical models namely SUI, Egli, Cost-231, Cost-231 
W-I, Freespace overpredicted path loss and are therefore not suitable for signal 
propagation in these environments. The introduced ML algorithms (SVR and 
RBF) aligned accurately with the measured data. They gave a high predictive ac-
curacy. This is the power of machine learning algorithms over analytical models. 
The SVR gave the highest predictive accuracy because it trains the model using a 
symmetrical loss function and its computational complexity does not depend on 
the dimensions of input parameters. Conclusively, we have been able to demon-
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strate that machine learning models are more efficient for path loss prediction 
than the analytical models. Consequently, signal propagation, interference anal-
ysis, network planning and cell parameters evaluation should be carried out with 
these Machine learning models (SVR and RBF) because they produced higher 
predictive accuracies as demonstrated in this study.  
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Lıst of Abbrevıatıons 

SVR  Support vector regression 
RBF   Radial basis function 
ML   Machine learning 
BTS   Base transceiver station 
LoS   Line of sight 
Nlos  Non-line of sight 
TEMs  Test mobile system 
RMSE  Root mean squared error 
MSE  Mean square error 
 
 
 

 

https://doi.org/10.4236/ojapps.2022.126068
https://doi.org/10.1155/2022/8928021
https://doi.org/10.3390/app12115713

	Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models
	Abstract
	Keywords
	1. Introduction
	2. Measurement Campaign Scenario and Data Preprocessing
	3. Methodology and Model Developments
	3.1. Support Vector Regression Path Loss Prediction Model
	3.2. The Radial Basis Function Model Design
	Hyperparameter Tuning of the RBF Model


	4. Results and Discussion
	4.1. Results for Areas Classified as Suburban
	4.2. Results for Areas Classified as Urban

	5. Conclusion
	Data Availability Statement
	Conflicts of Interest
	References
	Lıst of Abbrevıatıons

