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Abstract 
In this paper, we establish the second-order differential equation system with 
the feedback controls for solving the problem of convex programming. Using 
Lagrange function and projection operator, the equivalent operator equations 
for the convex programming problems under the certain conditions are ob-
tained. Then a second-order differential equation system with the feedback 
controls is constructed on the basis of operator equation. We prove that any 
accumulation point of the trajectory of the second-order differential equation 
system with the feedback controls is a solution to the convex programming 
problem. In the end, two examples using this differential equation system are 
solved. The numerical results are reported to verify the effectiveness of the 
second-order differential equation system with the feedback controls for 
solving the convex programming problem. 
 

Keywords 
Convex Programming, Lagrange Function, Projection Operator, 
Second-Order Differential Equation 

 

1. Introduction 

We consider the problem of convex programming, which is to find a vector 
x∗ ∈Ω  such that  

 ( ) ( ){ }: 0, ,arg minx f x g x x Q∗ ∈ ≤ ∈                 (1.1) 

where : nf ℜ →ℜ  and : n mg ℜ →ℜ  are two mappings, Q is a convex closed 
set, “argmin” represents the set of minimum points. 

The Lagrange function of the problem (1.1) is ( ) ( ) ( ), ,x p f x p g x= + , 
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where nx Q∈ ⊆ ℜ , mp P∈ ⊆ ℜ  and P is a convex closed set. Then we know 
that ( ),x p  is a function convex in x and concave in p. In the general case, if 

( ),x p∗ ∗  is the solution to the problem (1.1), it satisfies the following inequali-
ties  

 ( ) ( ) ( ), , , .x p x p x p∗ ∗ ∗ ∗≤ ≤                    (1.2) 

More generally, the function ( ),x p  can be a saddle function. 
Convex optimization problems have important applications in many fields. 

Recently, Wang, Hong and Kai [1] are devoted to a novel smoothing function 
method for convex quadratic programming problem with mixed constraints, 
which has important application in mechanics and engineering science. The 
problem is reformulated as a system of non-smooth equations, and then a 
smoothing function for the system of non-smooth equations is proposed. The 
condition of convergences of this iteration algorithm is given. Asadi, Mansouri 
and Zangiabadi [2] present a neighborhood following primal-dual interior-point 
algorithm for solving symmetric cone convex quadratic programming problems, 
where the objective function is a convex quadratic function and the feasible set is 
the intersection of an affine subspace and a symmetric cone attached to a Eucli-
dean Jordan algebra. Yuan, Zhang and Huang [3] propose an arc-search inte-
rior-point algorithm for convex quadratic programming with a wide neighbor-
hood of the central path, which searches the optimizers along the ellipses that 
approximate the entire central path. 

Antipin [4] considered the synthesis of control laws for nonlinear objects 
whose set of equilibrium states is defined by the problems of convex program-
ming or degenerate saddle functions. Based on the projection operator, a 
first-order differential equation system with composite controls was established. 
Moreover, the trajectory of process of this system could be converged monoton-
ically in norm to one of the equilibrium points. It is worth mentioning that the 
differential equation methods for solving the minimization problems and the 
variational inequalities which were studied by Antipin [5]-[11] are different 
from the traditional differential equation method and neural network. Without 
using the Lyapunov function but only applying the properties of the projection 
operator and the related function, the stationary of the equilibrium point of the 
differential equation can be proved. Thus the convergence of the solutions of the 
primal problems can be obtained. However, Antipin’s work on solving different 
types of optimization problems and variational inequality problems by using 
differential equation methods is theoretical results, and no numerical results are 
given. Based on the research of the above scholars, this paper will continue to 
use the differential equation method to solve a class of convex optimization 
problems. In addition to giving the convergence theoretical results of the solu-
tions of variational inequalities, numerical examples will also be given to illu-
strate the effectiveness of the differential equation method. 

Recently, inspired by the ideas of the above research results, Wang et al. 
[12]-[16] constructed the different differential equation systems for solving the 
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differential variational inequalities. For example, Wang, Li and Zhang [12] con-
sidered the differential equation method for solving the box constrained varia-
tional inequality problems and proved that the equilibrium solution to the diffe-
rential equation system is locally asymptotically stable by verifying the locally 
asymptotical stability of the equilibrium positions of the differential inclusion 
problems. Wang, Chen and Sun [15] established the system of differential equa-
tions based on the projection operator for the variational inequality problem 
with the cyclically monotone mapping. Using an important inequality for the 
cyclically monotone mapping, any accumulation point of the trajectory of the 
differential equation system was proved to be a solution to the variational in-
equality problem. Wang, Chen and Sun [16] constructed the second-order diffe-
rential equation system with the controlled process for solving the variational 
inequality with constraints and proved that any accumulation point of the tra-
jectory of the second-order differential equation system is a solution to the vari-
ational inequality with constraints. Nazemi and Sabeghi [17] [18] applied neural 
network model to solve convex second-order cone constrained variational in-
equality problems. Kwelegano et al. [19] studied an approximate solution to the 
problem of splitting equality variational inequality. 

In next section, based on the saddle function (1.2) and the projection operator, 
the second-order differential equation system with the feedback controls will be 
established for solving the convex programming problem (1.1). We will prove 
that any accumulation point of the trajectory of the second-order differential 
equation system with the feedback controls is a solution to the convex pro-
gramming problem in Section 3. At last, two examples are solved by using this 
differential equation system. The numerical results are reported to verify the ef-
fectiveness of the second-order differential equation system with the feedback 
controls for solving the problem of convex programming (1.1). 

2. Preliminaries 

The projection operator to a convex set is quite useful for establishing the 
second-order differential equation system. Now we recall the following defini-
tions. 

Let C be a convex closed set, for every nx∈ℜ , there is a unique x̂  in C 
such that  

 { }ˆ min | .x x x y y C− = − ∈                  (2.1) 

The point x̂  is the projection of x onto C, denoted by ( )C xΠ . The projection 
operator : n

C CΠ ℜ →  is well defined over nℜ  and it is a nonexpensive map-
ping.  

Lemma 2.1. [20] Let H be a real Hilbert space and C H⊂  be a closed con-
vex set. For a given z H∈ , u C∈  satisfies the inequality  

 , 0, ,u z v u v C− − ≥ ∀ ∈                   (2.2) 

if and only if ( ) 0Cu z−Π = .  
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Assuming that the function ( ),x p  is differentiable, it is easy to show that 

( )* *,x p  is the saddle point of the inequalities (1.2) if and only if ( )* *,x p  sa-
tisfies the following system by using Lemma 2.1.  

 ( )( ) ( )( ), , , ,Q x P px x x p p p x pα α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= Π − ∇ = Π + ∇     (2.3) 

where ( ).QΠ  and ( ).PΠ  are the projections of the vectors on the set Q and P, 
and ( ),x x p∇  and ( ),p x p∇  are the vector gradients of the function 
( ),x p  in the variables x and p, respectively. Then in view of linearity of the 

function in the variable p, we have ( ) ( ),p x p g x∇ = , and because the set p 
coincides with the positive orthant, i.e. mP += ℜ , we rewrite the system (2.3) as 
follows.  

 ( )( ) ( )( ), , ,Q xx x x p p p g xα α∗ ∗ ∗ ∗ ∗ ∗
+= Π − ∇ = Π +         (2.4) 

where 0α > , and ( ).+Π  is the operator of projection on mP += ℜ . 
Similar to Antipin [4], we establish a system of second-order differential equ-

ation system with the feedback controls for solving the problem of convex pro-
gramming (1.1).  

 ( )( ) ( ) ( )
2

1 1 0 0 0 02

d d , , , ,
dd Q x

x x x x x u x t x x t x
tt

µ β α+ + = Π − ∇ = =� �   (2.5) 

( )( ) ( ) ( )
2

2 2 1 1 0 0 0 02

d d , , ,
dd

p p p p g x x x p t p p t p
tt

µ β α µ β++ + = Π + + + = =�� � � �  (2.6) 

( )( ) ,u p g xα+= Π +                       (2.7) 

where 1 1 2 20, 0, 0, 0µ β µ β> > > >  and 0α >  are parameters. It is easy to see 
that the system (2.5)-(2.7) can be changed to the system (23)-(25) in Antipin [4] 
when 1 1 2 20, 1, 0, 1µ β µ β= = = = . 

For simplicity, we denote 
2

2

d
d

xx
t

=�� , 
d
d
xx
t

=� , 
2

2

d
d

pp
t

=��  and 
d
d
pp
t

=� . 

Using Lemma 2.1, the above Equations (2.5)-(2.7) are transformed into the 
following variational inequalities (2.8)-(2.10), respectively.  

( )1 1 1 1, , 0, ,xx x x u z x x x z Qµ β α µ β+ + ∇ − − − ≥ ∀ ∈�� � �� �          (2.8) 

( )2 2 1 1 2 2, 0, ,mp p g x x x y p p p yµ β α µ β µ β ++ − + + − − − ≥ ∀ ∈ℜ�� � �� � �� �   (2.9) 

( ) , 0, .mu p g x u u uα +− − − ≥ ∀ ∈ℜ                (2.10) 

In order to prove the convergence of the solution to problem (1.1) by using the 
second-order differential equation system with the feedback controls (2.5)-(2.7), it 
is necessary that the gradient satisfy the Lipschitz condition. 

Thus, suppose that  

( ) ( ) ( ) 2
1

1, , , ,
2xx h p x p x p h L h+ − − ∇ ≤             (2.11) 

for all x and x h+  from Q and p from P, where 1L  is a constant and  

( ) ( ) ( ) 2
2

1, , , ,
2px p h x p x p h L h+ − − ∇ ≥            (2.12) 
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for all p and p h+  from P and x from Q, where 2L  is a constant. 

3. The Second-Order Differential Equation System 

The following theorem shows that the equilibrium points of the second-order 
differential equations with the feedback controls (2.5)-(2.7) are asymptotically 
stable.  

Theorem 3.1. Assume that the set of solutions to problem (1.1) is not empty, 
the gradients ( )f x∇  of the objective function and ( )g x∇  of the functional 
constraints on the convex closed set Q satisfy the Lipschitz condition with the 
constant 0L  and the vector constant L, the map ( )g x  satisfies the Lipschitz 
condition with the constant g , the trajectory ( )( )u p g xα+= Π +  for all 0t t≥  
is bounded by the vector constant C, i.e., u C≤ , and the parameter α  is chosen  

from the condition 
22

2

16
0

4

M g M

g
α

+ −
< < , 2

1 1 1
1

2
K

K
β µ β< < <  and  

2
2 2 2

2 3
3 4

β µ β< < <  where 0 ,M L L C= + , 221
2

K M gα α= − −  then the  

trajectory of the second-order differential equations with the feedback controls 
(2.5)-(2.7) converges monotonically in norm to one of the equilibrium points, 
i.e., ( )x t x X∗ ∗→ ∈  and ( )p t p P∗ ∗→ ∈  for all 0x  and 0p .  

Proof. Let z x∗=  in (2.8), which yields that  

 ( )1 1 1 1, , 0.xx x x u x x x xµ β α µ β∗+ + ∇ − − − ≥�� � �� �             (3.1) 

Using the convexity of the function ( ),x y  in x in the form of the inequality 

( ) ( ) ( ), , , , ,x x u x x x u x u∗ ∗∇ − ≤ −                (3.2) 

and we add ( ) ( )1 1 1 1, ,x x x u x x x uα µ β α µ β+ + − + +�� � �� �   in (3.1), then we have  

( ) ( )
( ) ( ) ( )

2
1 1 1 1

1 1 1 1 1 1

, , ,

, , , , 0.x

x x x x x x x u x u

x x x u x x x u x u x x

µ β µ β α α

α µ β α µ β α µ β

∗ ∗+ + + − + −

+ + + − + + + ∇ + ≤

�� � �� �

�� � �� � �� �

 

  
(3.3) 

Since the gradients ( )f x∇  of the objective function and ( )g x∇  of the func-
tional constraints on the convex closed set Q satisfy the Lipschitz condition with the 
constant 0L  and the vector constant L, and the trajectory ( )( )u p g xα+= Π +  
for all 0t t≥  is bounded by the vector constant C, i.e., u C≤ , we can compute 
that 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )

1 1 1 1

1 1 1

T
1 1 1 1

2
0 1 1

, , , ,

, ,

, ,

1 , .
2

xx x x u x u x u x x

f x x x u g x x x f x u g x

f x x x g x u x x

L L C x x

µ β µ β

µ β β

µ β µ β

µ β

+ + − − ∇ +

= + + + + + − −

− ∇ + − ∇ +

≤ + +

�� � �� �

�� � �� �

�� � �� �

�� �

  

     (3.4) 

It follows from the inequalities (1.2), we know that ( ) ( )* *, ,x u x p− ≥ −  . 
Thus we have  
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( ) ( )
( ) ( )

( ) ( )

1 1

*
1 1 1 1

*
1 1 1 1

, ,

, ,

, , .

x x x u x u

x x x u x x x p

u g x x x p g x x x

µ β

µ β µ β

µ β µ β

∗+ + −

≥ + + − + +

= + + − + +

�� �

�� � �� �

�� � �� �

 

            (3.5) 

By using the above two inequalities, we can get the following inequality from the 
inequality (3.3).  

 
( ) ( )( )

2
0 1 1 1 1

1 1 1 1

1 ( , ,
2

, , 0,

L L C x x x x x x

x x x u x x x p

α µ β µ β

α µ β µ β

∗

∗

 − + + + + − 
 

+ + + − + + ≤

�� � �� �

�� � �� � 
        (3.6) 

which can be changed into that  

 
( )

( )

2
0 1 1 1 1

1 1

1 , ,
2

, 0.

L L C x x x x x x

u p g x x x

α µ β µ β

α µ β

∗

∗

 − + + + + − 
 

+ − + + ≤

�� � �� �

�� �
        (3.7) 

Let y p∗=  in (2.9), we can get that  

 ( )2 2 1 1 2 2, 0,p p g x x x p p p xµ β α µ β µ β∗+ − + + − − − ≥�� � �� � �� �        (3.8) 

and let 2 2u p p pµ β= + +�� �  in (2.10), we yield that  

 ( ) 2 2, 0.u p g x p p p uα µ β− − + + − ≥�� �               (3.9) 

It is easy to show that from (3.9)  

( ) ( )
( )

2 2 1 1 2 2

1 1 2 2

, ,

, 0.

u p p p p u g x x x g x p p p u

g x x x p p p u

µ β α µ β µ β

α µ β µ β

− + + − + + + − + + −

− + + + + − ≥

�� � �� � �� �

�� � �� �
(3.10) 

Now, we consider the following relation  

( )( ) ( )( )
( ) ( )

2 2 1 1

1 1

1 1 .

p p p u p g x x x p g x

g x x x g x

g x x

µ β α µ β α

α µ β

α µ β

+ ++ + − = Π + + + −Π +

≤ + + −

≤ +

�� � �� �

�� �

�� �

 (3.11) 

Using the above relation, we rewrote the inequality (3.9) as follows.  

( )

2 22
2 2 1 1

1 1 2 2

,

, 0.

u p p p p u g x

g x x x p p p u

µ β α µ β

α µ β µ β

− + + − + +

− + + + + − ≥

�� � ��

�� � �� �
            (3.12) 

Adding (3.8) and (3.12), we have  

( )2 2 2 2 1 1

2 22
2 2 1 1

, ,

, 0.

p p p p p p g x x x p u

u p p p p u g x x

µ β µ β α µ β

µ β α µ β

∗ ∗+ − − − − + + −

+ − + + − + + ≥

�� � �� � �� �

�� � �� �
    (3.13) 

Using the relations  
2 22

1 2 1 3 1 3 3 2 3 22 ,p p p p p p p p p p− = − + − − + −        (3.14) 

and  

 2 22
1 2 1 3 3 2

1 1 1 ,
4 2 2

p p p p p p− ≤ − + −              (3.15) 

the above inequality (3.13) can be transformed into the following  
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( )

2 2 22
2 2 2 2 1 1

1 1

3 ,
4

, 0.

p p p p p p g x x

g x x x p u

µ β µ β α µ β

α µ β

∗

∗

+ + + − − +

+ + + − ≤

�� � �� � �� �

�� �
      (3.16) 

Summing (3.7) and (3.16), we get that  

 
( )( )

2
2 2 2 2

2 22
0 1 1 1 1

3 ,
4

1 2 , , 0.

p p p p p p

L L C g x x x x x x

µ β µ β

α α µ β µ β

∗

∗

+ + + −

+ − + − + + + − ≤

�� � �� �

�� � �� �
 (3.17) 

The inequality (3.17) can be calculated by using the relations (3.14) and (3.15) in 
the following.  

2 2 2 22 2 2 2
2 2 2 2 1 1 1 1

2 2 1 1

3 3 3 , 2 ,
4 4 2

, , , , 0,

p p p p K x K x K x x

p p p p p p x x x x x x

µ β µ β µ β µ β

µ β µ β∗ ∗ ∗ ∗

+ + + + +

+ − + − + − + − ≤

�� � �� � �� � �� �

�� � �� �
(3.18) 

where 221
2

K M gα α= − −  and 0 ,M L L C= + . We have 0K >  since α  

is chosen from 
22

2

16
0

4

M g M

g
α

+ −
< < . 

According to the following relations  

 

2 2 22
2

2

1 d 1 d, , , ,
2 2 dd
1 d , ,
2 d

x x x x x x x x x
tt

x x x x x
t

∗ ∗

∗ ∗

− = + − =

− = −

� �� � � ��� �

�
       (3.19) 

the inequality (3.18) can be transformed into the following  

 

( )2 2 2 22 2 2 2
2 2 2 1 1 1

2 22 2 2
2 2 1 1 2

22 2 22 1 1
2

3 3
4 4

3 d d d
4 d d 2 d

d d d 0.
2 d 2 2 dd

p p K x K x

p K x p p
t t t

p p x x x x
t tt

µ β µ µ β µ

µ
µ β µ β

β µ β

∗

∗ ∗ ∗

 + − + + − 
 

+ + + −

+ − + − + − ≤

�� � �� �

� �      (3.20) 

Let ( )
21

2
x x xϕ ∗= −  and ( )

21
2

p p pφ ∗= − , the inequality (3.20) means 

that  

 

( ) ( ) ( ) ( )

( )

2 2
22

2 2 1 1 22 2

2 2 2 22 2 2
2 2 1 1 1 2 2

2
1 1

d d d d 3
d d 4d d

3 3 d
4 4 d

d 0.
d

p p x x p
t tt t

p K x K x p
t

K x
t

µ φ β φ µ ϕ β ϕ µ

β µ µ β µ µ β

µ β

+ + + +

 + − + + − + 
 

+ ≤

��

� �� � �

�

 (3.21) 

The inequality (3.21) can be integrated from t0 to t as follows.  

( ) ( ) ( )

( ) ( )

0 0

0 0

2 2 22 2
1 1 1 1 1 1 1

2 2 22 2
2 2 2 2 2 2 2 0

d
d

d 3 3 3 ,
d 4 4 4

t t

t t

t t

t t

x x K x K x K x
t

p p p p p C
t

µ ϕ β ϕ µ β µ µ β

µ φ β φ µ β µ µ β

+ + + − +

 + + + + − + ≤ 
 

∫ ∫

∫ ∫

�� � �

�� � �
(3.22) 
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where 

( ) ( ) ( ) ( ) 2 2
0 2 0 2 0 1 0 1 0 2 2 0 1 1 0

d d 3 1 .
d d 4 2

C p p x x p K x
t t

µ φ β φ µ ϕ β ϕ µ β µ β= + + + + +� � . 

It follows from 2
1 1 1

1
2

K
K

β µ β< < <  and 2
2 2 2

2 3
3 4

β µ β< < <  that  

2
1 1 0Kβ µ− >  and 2

2 2
3 0
4
β µ− > . Thus there exists a constant 1C  such that  

 ( ) ( )1 1 1
d ,
d

x x C
t

µ ϕ β ϕ+ ≤                    (3.23) 

which can be equivalent to change into 

( )1 1
1 1

1 1

dexp exp .
d

t x C
t

β β
µ ϕ

µ µ
    

− ≤         
            (3.24) 

That is,  

 ( )1 1
1

1 1 1

d 1exp exp .
d

t x C t
t

β β
ϕ

µ µ µ
    

≤         
           (3.25) 

By integrating (3.25), we have  

 ( )1 1 1
2

1 1 1

exp exp ,
Ct x t Cβ β

ϕ
µ β µ

   
≤ +   

   
             (3.26) 

where 2C  is a constant. We conclude that  

 ( ) 1 1
2

1 1

exp ,
Cx C tβ

ϕ
β µ

 
≤ + − 

 
                 (3.27) 

which means that ( )xϕ  is bounded for all t →∞ . Similarly, we get ( )pφ  is 
bounded for all t →∞ . 

The function ( )xϕ  and ( )pφ  is strongly convex, and it is well known that 
each of its Lebesgue sets is bounded. Thus the trajectory ( )x t  and ( )p t  is 
bounded. That is, there exists a constant 3C  and 4C  such that 

( ) ( )
2 2

3 4, .x t x C p t p C∗ ∗− ≤ − ≤             (3.28) 

Now we claim that 
0

2 d
t

t
x τ < ∞∫ �� , 

0

2 d
t

t
x τ < ∞∫ � , 

0

2 d
t

t
p τ < ∞∫ ��  and  

0

2 d
t

t
p τ < ∞∫ � . We firstly show that x�  and p�  is bounded. It follows from 

the inequality (3.22) that  

 ( ) ( ) 21
1 5

1

d ,
d

x x K x C
t

β
ϕ ϕ β

µ
+ + ≤�             (3.29) 

where 5C  is a constant. The above inequality means that  

( ) 21
1 5

1

, .x x x x K x Cβ
ϕ β

µ
∗− + + ≤� �            (3.30) 

Due to 
2 21 1 1,

2 2 2
x x x x x x x x x∗ ∗ ∗− = − − − + + −� � � , the above inequality in-

fers that  
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22 1

1 6
1

1 1 1 ,
2 2

K x x x Cβ
β

µ
∗  − + − − ≤  

   
�             (3.31) 

It follows from 2
1 1 1

1
2

K
K

β µ β< < <  that 1
1 0
2

Kβ − >  and 1

1

1 0
β
µ

− < . We 

conclude that 2x�  is bounded in the following.  

 
22 21 1

1 6 3 6
1 1

1 1 11 1 ,
2 2 2

K x x x C C Cβ β
β

µ µ
∗    − ≤ − − + ≤ − +    

     
�   (3.32) 

that is, 2x�  is bounded. It follows from  

 ( )d ,
d

x x x x x x x
t
φ ∗ ∗= − ≤ −� �               (3.33) 

that ( )d
d

x
t
φ  also has lower bound. In the same way, 2p�  and ( )d

d
p

t
φ  is 

also bounded. Thus there exists a constant 7C  such that  

 ( )
0 0 0 0

2 2 2 22 2 2 2
1 1 1 2 2 2 7

3 3 ,
4 4

t t t t

t t t t
K x K x p p Cµ β µ µ β µ + − + + − ≤ 

 ∫ ∫ ∫ ∫�� � �� �  (3.34) 

which yields that the integrals 
0

2 d
t

t
x τ < ∞∫ �� , 

0

2 d
t

t
x τ < ∞∫ � , 

0

2 d
t

t
p τ < ∞∫ ��  

and 
0

2 d
t

t
p τ < ∞∫ � , converge as t →∞ . 

Assuming that there exists an 0ε >  such that ( )x t ε≥�� , ( )p t ε≥�� ,  
( )x t ε≥� , and ( )p t ε≥�  for all 0t t≥ , we obtain a contradiction to the con-

vergence of integrals. Hence, there exists a subsequence of time moments it →∞  
such that ( ) 0ix t →�� , ( ) 0ip t →�� , ( ) 0ix t →�  and ( ) 0ip t →� . Since ( )x t  
and ( )p t  are bounded, we know that ( )ix t  and ( )ip t  are bounded. We 
choose the subsequences ( )jix t  and ( )jip t  of ( )ix t  and ( )ip t , then there 
exist x′  and p′  such that ( )jix t x′→ , ( )jip t p′→ , ( ) 0

jix t →�� ,  

( ) 0
jip t →�� , ( ) 0

jix t →�  and ( ) 0
jip t →� . as j →∞ . 

Let us consider the second-order differential equation system with the feed-
back controls (2.5)-(2.7) or the variational inequalities (2.8)-(2.10) for all 

jit , 
and take the limit as j →∞ , we have  

 ( )( ) ( )( ), , ,Q xx x L x p p p g xα α+′ ′ ′ ′ ′ ′ ′= Π − ∇ = Π +        (3.35) 

which means that ( ),x p′ ′  is a solution of problem (1.1) from (1.2) and (2.4). 
This completes the proof.                                             

4. Numerical Results 

In this section, we test two examples by the system (2.5)-(2.7). The transient be-
haviors of the proposed second-order differential equation system with the 
feedback controls are demonstrated in each example. The numerical implemen-
tation is coded by Matlab R2019a running on a PC with Intel i7 7700HQ of 2.8 
GHz CPU and the ordinary differential equation solver adopted is ode45, which 
uses a Runge-Kutta (4, 5) formula. 

Example 4.1. Consider the nonlinear convex programming problem  
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( )

( )
min

s.t. 10 10, 1,2,3,4 .i

f x

x i− ≤ ≤ =
                 (4.1) 

where 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 222 2
2 1 1 4 3 3

2 2
2 4 2 4

100 1 90 1

10.1 1 1 19.8 1 1

f x x x x x x x

x x x x

= − + − + − + −

 + − + − + − − 

, which has been  

discussed in Xiao and Harker [21]. Its optimal solution is ( )T1,1,1,1x∗ = . For 
problem (4.1), ( ) 4 8:g x ℜ →ℜ  can be defined by  

( )

1

2

3

4

1

2

3

4

10
10
10
10

,
10
10
10
10

x
x
x
x

g x
x
x
x
x

− 
 − 
 −
 

− =  − −
 
− − 
 − −  − − 

 

and ( ) 0g x ≤ . 
Figure 1 describes the convergence behaviors of the trajectory ( )x t  of the 

second-order differential equation system with the feedback controls (2.5)-(2.7) 
from a random initial point, which shows that the trajectories of the system 
(2.5)-(2.7) for solving problem 1 converge to the solution ( )T1,1,1,1x∗ = . 

Example 4.2. Consider the variational inequality with constraints problem  

 ( ) 5, 0, ,F x y x y +− ≥ ∀ ∈ℜ                  (4.2) 

where ( )

( )
( )
( )
( )
( )

1

2

3

4

5

arctan 1
arctan 2
arctan 3
arctan 4
arctan 5

x
x
xF x
x
x

 − 
 − 
 −=
 

− 
 − 

, and its solution is ( )T1,2,3,4,5x∗ = . 

The problem can be transformed into the following nonlinear convex pro-
gramming problem  

 
( )

5

min

s.t. .

f x

x +∈ℜ
                        (4.3) 

where ( )F x  is the gradient of the ( )f x , and ( ) 5 5:g x ℜ →ℜ  can be defined 
by  

( )

1

2

3

4

5

,

x
x

g x x
x
x

− 
 − 
 = −
 
− 
 − 

 

and ( ) 0g x ≤ . 
For problem (4.2), Figure 2 describes the convergence behaviors of the tra-

jectory ( )x t  of the second-order differential equation system with the feedback  
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Figure 1. Transient behavior of ( )x t  of the system (5)-(7) for solving problem (1). 

 

 

Figure 2. Transient behavior of ( )x t  of the system (5)-(7) for solving problem (3).  

 
controls (2.5)-(2.7) from three random initial points, which means that the tra-
jectories of the system (2.5)-(2.7) for solving problem 3 converge to the solution 

( )T1,2,3,4,5x∗ = . 
It can be seen from Figure 1 and Figure 2 that the trajectories of the 
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second-order differential equation system with the feedback controls (2.5)-(2.7) 
converge to the solutions of the original problem, which further illustrates the 
effectiveness of the second-order differential equation system with the feedback 
controls for solving the convex programming problem. 

5. Conclusion 

In this paper, we establish a system of second-order differential equation with 
the feedback controls based on the projection operator for solving the problem 
of convex programming (1.1). Firstly, we get the saddle point inequalities (1.2) 
by using the Lagrange function of problem (1.1). Inspired by Antipin [4], we in-
vestigate the properties of the saddle functions and we prove the accumulated 
points of the trajectory of the second-order differential equation system with the 
feedback controls are the solutions to the convex programming problem (1.1). 
At last, we compute two examples by using the second-order differential equa-
tion system with the feedback controls, which show that the effectiveness of the 
second-order differential equation system with the feedback controls for solving 
the problem of convex programming. 
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