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Abstract 
Waste water expulsion containing toxic and hazardous ingredients from tex-
tile industry is one of the biggest concerns in this modern age. N-doped nano 
composites as an efficient catalyst are playing a significant role in reducing 
the toxicity of that textile effluent. N-doped Ti-Mel capped Ag2S NCs 
(N-Ti-C/Ag2S NCs) and N-doped TiO2 capped Ag2S NCs (TiO2/Ag2S NCs) 
were synthesized via calcinations at 700˚C, whereas Ag2S NCs was prepared 
by simple hydrothermal treatment process at 120˚C and confirmed by FTIR 
and SEM (EDX). N-Ti-C/Ag2S NCs were applied in presence of reducing 
agent NaBH4 with a green method to decolorize the textile dyes Levafix 
Amber RR (LA) and Remazol Blue RR (RB). Moreover, Ag2S NCs, TiO2/Ag2S 
NCs, NaBH4 and TiO2 were also investigated. Using UV-visible spectroscopy 
the progress time was measured to decolorize textile dye RB and completed 
within 3.15 mins, 12.15 mins, 12.15 mins for N-Ti-C/Ag2S NCs, Ag2S NCs 
and TiO2/Ag2S NCs respectively, while for LA the catalytic reduction taken 
for the same NCs was 8.15 mins, 12.15 mins and 30.15 mins respectively. 
N-Ti-C/Ag2S NCs based catalyst afforded excellent catalytic reduction activity 
in both cases. Interestingly the effect of NaBH4 itself and TiO2 in presence of 
NaBH4 was less than 5% after 30 mins. Finally, the reusability for Ti-Mel 
capped Ag2S NCs evaluated up to four cycles. 
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1. Introduction 

In nanochemistry community, nanocomposites NCs have diverted the field in a 
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significant way, playing most vital role in green chemistry, while NCs consist of 
more than one phase with different physicochemical properties [1] [2] [3] [4] 
[5]. The majority of binary and tertiary nanocomposites are being attracted to 
the researchers due to their simple nanostructures shapes, small size and large 
surface area through easiest synthetic process [6] [7].  

N-doped metal/non-noble metal carbon composite is another new addition in 
nanocomposites field. Besides other NCs catalysts like photo-catalytic degrada-
tion [8], electro-oxidation [9], biological treatment [10]; reductive catalyst is also 
easily appealing in decolorized toxic organic compounds or dyes [11]. The sur-
face reactivity or the electrical properties eventually improves for enhancing 
electron density in carbon architecture by the incorporation of N atoms [12] 
[13] [14]. Moreover, narrow band-gaped (1.1 ev) semiconductor and low toxic 
nanomaterial Ag2S [3] and TiO2 capped Ag2S [4] are important metal chalcoge-
nides, which are mostly used in photosynthesis or photocatalytic degradation [3] 
[4]. Ag2S is also reported in biomedical and sensor application [15], fuel cell 
[16], solar cell [17] and so on. 

Notably, no report is published yet where N-doped Metal-carbon reductive 
catalyst is capped with Ag2S NCs to decolorize toxic organic dyes or textile dyes 
effluent in reductive process. Textile effluent is considered as the most pollutant 
and hazardous element in the textile growing country like Bangladesh. The con-
dition becomes more eyes curious when it not only pollutes surface and surface 
water, but also soil and air [18] [19] [20]. The Bangladesh Textile Mills Associa-
tion reported that the country has around 450 spinning mills, 1200 weaving mills 
and around 5000 export-oriented dyeing factories [21], which predicted that 
from 100,000 commercially accessible dyes are manufactured 700,000 tones of 
various textile effluents each year [22] [23]. Among all effluents the textile in-
dustry releases (54%) the highest amount of dye effluent, contributing to more 
than half of the existing dye effluents seen in the environment around the world 
[24] [25]. If the current situation is not improved the Textile industries would be 
dumping 203,000 million liters of untreated wastewater into the country's water 
bodies every year from 2021 [21]. 

Levafix Amber RR (LA) and Remazol Blue RR (RB) are the two most useful 
azo textile dyes in textile factories. So, treatment before release of textile dyes ef-
fluent is highly up-and-coming demand. For this purpose we have selected that 
textile azo dye for decolorization/degradation to nontoxic colorless compound 
with N-doped Ti-Mel capped Ag2S NCs reductive catalyst. 

2. Materials and Experimental Method 

The widely used textile dyes Levafix Amber RR and Remazol Blue RR were supplied 
by Dye Star Ltd, Dhaka, Bangladesh and all other chemicals were supplied by Sigma 
& Aldrich chemicals supplier Kuri & Chemicals, Dhaka, Bangladesh. 

2.1. Synthesis of Ag2S NPs 

Ag2SNPs was synthesized first according to D Ayodhya method [3] [4]. A 300 
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mL round bottom flask (RBF) was charged with 40 ml of 0.015 M silver nitrate 
solution and 40 ml of 0.015 M sodium sulfide solution was added drop wise un-
der continuous magnetic stirring at room temperature. The obtained black dis-
persion was stirred vigorously for further 60 min at the same temperature. After 
that, the reaction mixture was transferred into a stainless steel autoclave and 
placed in an oven. Then the mixture was heated at 120˚C for 2 h. The reaction 
mixture was filtered and the black precipitates were washed with distilled water 
(10 mL × 2) and ethanol (5 mL × 1), followed by drying at 230˚C in an oven for 
5 h, to obtain Ag2S NPs.  

2.2. Synthesis of Ti-Melamine Composite  

0.160 g (2 mmol) anatase phase TiO2 and 5.0 g (0.04 mol) melamine were 
charged with 200 mL RBF and dissolved into 25 mL distilled water. Then the 
reaction mixture was continuously stirred for 3 h at 80˚C. Later, the mixture was 
cooled to room temperature and filtered, followed by being dried at 120˚C using 
an oven to obtain white powder Ti-Melamine composite.  

2.3. Synthesis of N-Doped Ti-Mel Capped Ag2S NPs  
(N-Ti-C/Ag2S NCs) 

To a 200 mL, 1.0 g Ti-Mel composite was taken and 25 ml of 0.015 M silver ni-
trate solution was added drop wise at room temperature with continuous vigor-
ous stirring. After 30 minutes, 25 ml of 0.015 M sodium sulfide solution was 
added drop by drop for 15 minutes to the obtained white turbid dispersion at 
room temperature. The white turbid dispersion mixture was continuously stirred 
for further 3 h at room temperature. Later the reaction mixture was transferred 
into a stainless steel autoclave and placed inside an oven. The reaction mixture 
was heated for 60 min at the constant temperature of 120˚C. After that, the reac-
tion mixture was cooled to room temperature and filtered using sintered glass. 
Then obtained white precipitates of Ti-Mel capped Ag2S NPs were washed with 
distilled water (10 mL × 2) and dried over an oven. Finally the composites were 
heated at 700˚C in a tube furnace under an inert atmosphere using continuous 
flow of nitrogen gas for 2 h [11].  

2.4. Synthesis of TiO2 Capped Ag2S NCs 

TiO2 capped Ag2S NCs were synthesized in the same way as N-doped Ti-Mel 
capped Ag2S NPs. To a 200 mL, 1.0 g anatase phase TiO2 was taken and 25 ml of 
0.015 M silver nitrate solution was added drop wise at room temperature with 
continuous vigorous stirring. After 30 minutes, 25 ml of 0.015 M sodium sulfide 
solution was added drop by drop for 15 minutes to the obtained white turbid 
dispersion at room temperature. The white turbid dispersion mixture was con-
tinuously stirred for further 3 h at room temperature. Later the reaction mixture 
was transferred into a stainless steel autoclave and placed inside an oven. The 
reaction mixture was heated for 60 min at the constant temperature of 120˚C. 
After that, the reaction mixture was cooled to room temperature and filtered 
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using sintered glass. Then obtained white precipitates of TiO2 capped Ag2SNPs 
were washed with distilled water (10 mL × 2) and dried over an oven. Finally the 
composites were heated at 700˚C in a tube furnace under an inert atmosphere 
using continuous flow of nitrogen gas for 2 h.  

2.5. Characterization Techniques 

The morphology of all types of nanocomposite was characterized by Scanning 
Electron Microscopy (SEM, JEOL JSM-7600F) with Energy-dispersive X-ray 
spectroscopy (EDX). X-ray diffraction (XRD, GNR, RGC-100, Agilent Technol-
ogies, Bruker X-ray diffractometer equipped with graphite-monochromated CuKα 
radiation at λ = 1.541 Å) with a 2θ range of 10˚ - 85˚. The FTIR spectra were 
recorded in transmittance mode on a Shimadzu spectrophotometer in the wave 
number range of 650 - 4000 cm−1. Spectrophotometer (Shimadzu UV-1800) was 
used to measure the catalytic reduction of textile dyes in the wavelength range of 
200 - 700 nm.  

3. Result and Discussion 

The FTIR spectroscopic measurements were carried out to identify the interac-
tions between the Ag2S and TiO2, Ti-Mel capping materials on the surface of the 
Ag2S NCs. Figure 1 showed a comparison of the FTIR spectra of pure Ag2S NPs, 
TiO2 capped Ag2S NCs, N-doped Ti-Mel capped Ag2S NCs in the measured 
spectral range (650 - 3000 cm−1). The different peak position between (750-1200 
cm−1) confirmed the formation of nanocomposites. 

The morphology and microstructure of the samples were investigated by SEM 
(EDX) (Figure 2), nanoparticles were self-assembled to form uniform spherical 
nanostructures. SEM provides information on the morphology, crystalline and 
chemical composition of the prepared samples. The samples of prepared NCs 
have a mixture of spherical and cubic nanoparticles.  

 

 
Figure 1. FTIR for Ag2S NCs, TiO2 capped Ag2S NCs, N-doped Ti-Mel capped Ag2S NCs. 
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(a)                                  (b) 

 
(c)                                  (d) 

Figure 2. SEM for Ag2S NCs, TiO2, TiO2 capped Ag2S NCs, N-doped Ti-Mel capped Ag2S 
NCs. (a) Ag2S NCs; (b) TiO2; (c) TiO2 capped Ag2S NCs (TiO2/Ag2S NCs); (d) N-doped 
Ti-Mel capped Ag2S NCs (N-Ti-C/Ag2S NCs). 

 
Application of N-doped Ti-Mel capped Ag2S NCs, TiO2 capped Ag2S NCs 

and Ag2S NCs 
The linearity of Levafix Amber RR (LA) and Remazol Blue RR (RB) was eva-

luated by using calibration curve to calculate co efficient of correlation and in-
tercept values. The concentration range was 6.25 ppm to 125 ppm and the cal-
culated value was 0.99986 and 0.9997 respectively for Levafix Amber RR and 
Remazol Blue RR and χmax of Levafix Amber RR and Remazol Blue RR is 410 nm 
and 603 nm respectively (S1). 

In case of optimization of concentration of NaBH4, almost similar results on 
found on both 0.6 M and 0.7 M NaBH4 concentration than 0.5 M NaBH4. So, 0.6 
M NaBH4 was selected as the optimum dose for the reducing agent. During op-
timization and catalytic reduction 0.2 mL NaBH4, 0.2 mL catalyst and 3.0 mL 
dyes solution was used. 

Reduction reaction of the reducing agent 0.6 M NaBH4 and TiO2 (0.2 mL) it-
self (in presence of 0.2 mL 0.6 M NaBH4) reacted very slowly in absence of na-
nocomposites catalyst. After 30 minutes and 35 minutes less than 5% reaction 
was completed for NaBH4 and TiO2 respectively (S3). But in presence of nano-
composites the reaction progress is very fast (Figure 3). N-doped Ti-Mel capped 
Ag2S NCs took less time to complete the catalytic reduction on both dyes Levafix 
Amber RR (8.15 mins) and Remazol Blue RR (3.15 mins) than other NCs.  
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(a)                                          (b) 

 
(c)                                          (d) 

 
(e)                                          (f) 

Figure 3. Catalytic reduction of Ag2S NCs, TiO2 capped Ag2S NCs, N-doped Ti-Mel capped Ag2S NCs on 
Levafix Amber RR (a-c) and Remazol Blue RR (d-f) in presence of 0.6 M NaBH4 presence. (a) Ag2S NCs; 
(b) TiO2 capped Ag2S NCs; (c) N-doped Ti-Mel capped Ag2S NCs; (d) Ag2S NCs; (e) TiO2 capped Ag2S 
NCs; (f) N-doped Ti-Mel capped Ag2S NCs. 

 
Ag2S NCs and TiO2 capped Ag2S NCs finished the reduction of dyes Levafix 
Amber RR (15.15 mins, 30.15 mins) and Remazol Blue RR (12.15 mins, 12.15 
mins) respectively. So, we concluded that N-doped Ti-Mel capped Ag2S NCs 
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showed better catalytic activity for those reduction reactions.  
Kinetics study revealed that the catalytic reduction reaction of Levafix Amber 

RR (r2 value 0.9392) and Remazol Blue RR (r2 value 0.76018) followed 1st order 
reaction (S4).  

Reusability of N-doped Ti-Mel capped Ag2S NCs 
N-doped Ti-Mel capped Ag2S NCs were easily recovered and reused due to 

their heterogeneous phase on solvent. The reusability on Remazol Blue RR was 
evaluated up to fourth cycles (Figure 4, S5) and time required 10.15 mins for the 
complete catalytic reduction of Remazol Blue RR with excellent recovery. The 
time required was more than freshly used N-doped Ti-Mel capped Ag2S NCs 
catalyst, but less than to other freshly used NCs catalysts. It suggested the high 
efficiency and stability of N-doped Ti-Mel capped Ag2S NCs. 

 

 
Figure 4. Reusability of N-doped Ti-Mel capped Ag2S NCs. 

4. Conclusion 

In summary, we have successfully synthesized some high efficient NCs for the 
catalytic reduction of Levafix Amber RR and Remazol Blue RR. The N-doped 
Ti-Mel capped Ag2S NCs required less time to decolorize than Ag2S NCs and 
TiO2 capped Ag2S NCs. The reusability of N-doped Ti-Mel capped Ag2S NCs 
measured up to fourth cycle and found good recovery of catalyst with less reac-
tion completion time. Since textile effluents are now the burning problem over 
the world, the highly efficient, stable and reusable NCs may show the path of 
decreasing the toxicity of textile effluents. We will synthesize more efficient 
N-doped nonnoble metal composite for the decolorization of a wide range of 
textile dyes/effluents. 
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