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Abstract 
This document elaborates on the generic implementation one of the main 
heuristics algorithms verified through its quick application to a biology prob-
lem requiring to find out an optimal sequences tree topology. In order to 
solve this problem, categorized as Non-Polynomial Hard (NP-Hard), “to mi-
nimize differences between given (leaf) and/or derived (parent) sequences”, 
many popular methods are used. “The higher the number of given sequences 
is, the more advisable and efficient it would be to go towards heuristics as 
they would provide a close-enough solution faster, as for instance genetic al-
gorithms amongst others do. Thus, as part of a larger research in Heuristics 
and phylogenies, this paper aims to suggest a generic advanced flexible im-
plementation of the Genetic Algorithm verified by a “general way to encode 
the problem into instances of different heuristic algorithms” as mentioned in 
our first reference below. The proposed algorithm will also present a chro-
nology traceability feature for further analysis and potential improvements. 
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1. Introduction 

One of the many problems that are considered to be NP-Hard is the Multiple 
Sequence Alignment one that initially requires, as for any other of its siblings, a 
specific encoding schema and design of the main functionalities of the heuristics 
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] and [4]. 

In a previous paper published during the ICeND2013 conference, we have 
discussed a generic encoding schema and some main methods that can be used 
in different heuristic algorithms for this particular problem, inspired by papers 
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[5] [6] [7] and [8]. However, taken out of the entire research context, the re-
maining problem was the link between this encoding and the generic imple-
mentation of the main heuristics algorithms. In this paper, we’ll be discussing 
the implementation of the Genetic Algorithm, with some modifications, like a 
chronology traceability feature for further analysis and potential improvements, 
added to try to shorten the gap between the algorithm and the source that in-
spired it, which is none other than the structure and behavior of genome com-
ponents. 

2. Initial Algorithm 
2.1. Standard Genetic Algorithm 

Most Evolutionary Computing algorithms, including Genetic Algorithms, work 
iteratively on a subset of the solution space. We refer to this subset as a “popula-
tion”. After the Initialization of the solution space, a Selection is made to choose 
two or more chromosomes (solutions, ex: phylogenetic trees) of the current 
POPULATION. These chromosomes, denoted as PARENTS, are subjected to a 
Crossover/Recombination operation, which consists of combining bits and pieces 
taken from 2 or more solutions to create as many solutions, called “offspring”. In 
their turn, the resulting OFFSPRING may be subjected to a Mutation process, 
which consists of slightly changing the solution. Both Crossover and Mutation 
operators are applied given certain respective probabilities. An individual Fitness 
Evaluation function is tested on each of the last operator’s results, which will be 
added to an INTERMEDIARY POPULATION refreshed per iteration. An Over-
all Evaluation goes through this new population, evaluating the whole popula-
tion, by computing the fitness of the entire group. The intermediary population 
replaces the current one and the whole process is repeated until a termination 
criterion is met (for example: a certain number of iterations have elapsed). This 
idea was further supported by references [6] and [9] to [15].  

Before stating the main steps of the standard algorithm, we would like to cla-
rify the terminology used there: 
- Solution = chromosome 
- Population = set of solutions (chromosomes) 

2.2. Main Procedure 

The steps of the standard algorithm are as follows: 
 Initialize the population randomly. 
 Initialize to zero the number of generations to deal with 
 While NOT Terminate Process 
  Create a new empty population. 
  Do 
   Select two/more solutions to apply operators 
   Apply recombination between each pair of chromosomes 
    to get corresponding offspring, given a certain probability 
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   Apply mutation to each offspring, given a certain probability 
  While (new population is not full) 
  Get fittest solution of the new population. 
  Compare it to the previous fittest global solution. 
  If (fitness value > that of the global one) Then 
   Update the fittest global solution 
  Set the new population as the current population 
  Increment number of generations 
 Return the fittest global solution found so far 
We can see here that the structure of the solution is somewhat rigid obscuring 

or omitting the complexity of some properties of the input that might be useful 
for the optimization both structure wise and time wise. 

Another main issue when working with the basic algorithm is the fact that it is 
a kind of black box, in the sense that even though the end result would be very 
satisfying we have no traceability on the values and performance of the algo-
rithm which might go far from the optimal solution during one or more itera-
tions, leaving us unable to analyze and help to tune some of the parameters. 

3. Proposed Algorithm 

Since Genetic Algorithms deal, in concept, with maximization, and since the 
suggested evaluation approach retrieves its values from a scoring (cost) matrix, 
the fitness function should be the negative of the evaluation function, as sup-
ported in references [6] to [14] inspiring the below suggested algorithm. 

The steps of the below discussed algorithm are almost very similar to those of 
the basic standard algorithm, with the difference that some of them, highlighted 
in blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/ 
fragments highlighted in green are more of structure enhancements that try to 
bridge the gap between genome composition and our genetic algorithm compo-
nents structure. 

3.1. Main Procedure 

The steps of the algorithm implemented are as follows: 
 Initialize the population randomly. 
 Initialize to zero the number of generations to deal with 
 Select and backup the fittest global individual 
 Record in history the initial population & initialization 
 While NOT Terminate Process 
  Create a new empty population. 
  Do 
   Select two/more individuals to apply operators 
   Apply recombination between their {chromosomes, genes and/or  

alleles} 
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     to get offspring, given a certain probability. 
   Apply mutation to each individual of offspring, given a certain  

probability 
   Save the newly generated individuals in the newly generated  

population 
  While (new population is not full) 
  Get fittest individual of the new population. 
  Compare it to the previous fittest global individual. 
  If (fitness value > that of the global one) Then 
   Update the fittest global individual. 
  Set the new population as the current population 
  Increment number of generations 
  Record in history new population 
  Record in history new population generation time 
 Return the fittest global individual found so far 

 

 
 

Even though crossover and mutation operators are applied given certain 
probabilities, it is very rare to find a parent individual (group of chromosomes) 
selected and passed to the new population without modification. The initial 
population is filled with a fixed number of individuals, whose chromosomes and 
genes are randomly generated. The fitness function of an individual is propor-
tional evaluation of each of the chromosomes that individual includes. The algo-
rithm supports elitism, to keep track of the best-fit individual found in pre-
viously handled and in the current population. It keeps on iterating and han-
dling populations until the process termination criterion. In most problems, the 
termination criterion is satisfied when the algorithm reaches a certain number of 
generations. 

Instead of focusing on speeding up the algorithm itself, we decided to attempt 
to work on the two main issues of the standard algorithm, proposing our own 
alternative or solution, by first “going back to the roots” that inspired the algo-
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rithm originally and give our algorithm the possibility to manage more granu-
larly some properties of the input structure. This granularity brings with it the 
possibility for the algorithm to detect potential differences between evaluations 
due to the diverging effect of two properties previously merged together. 

To support that point, let us consider a certain encoding of the parsimony 
problem discussed in the first reference of this paper. However, before looking at 
the problem from another perspective, let us highlight the post important en-
coding point: the solution is at the base composed of several leaf sequences, each 
of which is formed of a series of genetic code characters; which are then paired 
and linked to a parent (internal) sequence. This process continues until a single 
root node is reached. 

Without flexibility, the default or preliminary evaluation encoding approach 
would be to cumulate the changes between characters at the same location of 
each of the pair nodes into one value for the pair, then into one value for the en-
tire solution. Allowing the main operations of the algorithm to operate on the 
character level would allow evaluations of changes to be more accurate and help 
to gear the algorithm towards a better optimum. For instance, assuming that our 
local optimum would be around ATGATG, mutating ATCACAAG into 
ATGACAA might drive the algorithm closer to the fittest individual than 
ATCACAAG into ATCAGAAG, since moving C to G at the 3rd location would 
score higher than the same operation at the 5th location, as it will transcribe into 
a triplet closer to the one found in the parent. 

While allowing specificity of granular data to help optimizing, we discovered 
the need to be able to recall previous runs, since making the algorithm display 
and/or interact with its designer would obviously be a worst option to consider. 
To avoid losing time at the expense of recording executions we opted to propose 
a simple straight forward approach to be consumed and implemented in a later 
stage, and most probably out of the real scope of this paper. While designing it, 
this functionality seemed to open up not only to improvements to the algorithm 
itself, but also to potential interaction with other components. Indeed, after run-
ning the standard algorithm many times, it remains a black box showing only 
the fittest solution at the end, no matter how much it goes closer to and away 
from the optimum found so far eating up resources. 

Meanwhile, being able to retrace each run would give an edge to the designer 
of the algorithm to fine tune the parameters so that the next algorithm run would 
consume less resources and less time. In parallel, knowing when the algorithm 
was doing good and when it was doing worst can give the designer an edge to 
induce one or more functionalities allowing eventually other algorithms can join 
in and bring their added value into the table. At the same time, this ability can 
dig further towards letting the different operations being implemented/executed 
themselves using another algorithm to return a fair-enough optimal result. 

3.2. Object Oriented Design 

The below class diagram shows an overview of the interaction between the dif-
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ferent classes instantiated during the runtime of the algorithm, discussed below. 
An allele can be found in at least one gene, which in turn may be part of one or 
more chromosomes. An individual can be described as a non-empty pool of 
chromosomes, which may or may not be related to each other. A population in-
cludes a fixed non-negative number of individuals, called the population size S. 

As shown in Figure 1, the suggested flexible Genetic Algorithm tries to mimic 
as close as possible the genome as known in Biology. In other terms, each in-
stance of an NP-problem, encoded to be used in this algorithm as an Individual, 
would be composed of one or more chromosomes. Each chromosome is consti-
tuted of a set of genes, which is defined as a combination of different alleles. In 
our parsimony phylogenetic problem, when dealing with DNA, we are conse-
quently encoding each of the four {A, T, C, G} nucleotides into an allele. There-
fore, a gene will encode a fixed group of DNA nucleotides. 

This design makes the algorithm flexible, in a way that it allows changing the 
encoding schema by just modifying the design and implementation of alleles and 
genes according to the problem being handled. For instance, when dealing with 
binary encoding, an allele would have a value of “0” or “1”. For decimal encod-
ing an allele value could be one of {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”}. 
Moreover, a non-standard decimal encoding could give, for example, allele val-
ues between “00” and “79”. 

Since the encoding can consider different alternatives of values for alleles, 
some methods that are problem-specific methods have to be implemented, 
among them: creating random genes, creating random chromosomes/individuals/ 
populations and their fitness functions, and handled by a sub-class of class “Na-
ture”. The algorithm-dependent procedures (selection, recombination, muta-
tion, termination) are handled by a sub-class of the “GeneticAlgorithm” class. 

Going into further details in the class diagram, we can split the classes into 3 
groups: the main generic classes dedicated to encoding problems (G1—as in 
Figure 2), the main generic GA class itself (G2—Figure 3) and the generic 
components used in the algorithm (G3—Figure 4). 

The base “Nature” component represents the environment offering the possi-
ble {Individual, Chromosome, Gene} values and functionalities that the main  
 

 
Figure 1. Suggested GA components diagram. 
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Figure 2. Suggested GA class diagram for G1. 

 

 
Figure 3. Suggested GA class diagram for G2. 
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Figure 4. Suggested GA components class diagram for G3. 
 
algorithm’s steps will be relying on to execute generic global and specific tasks. 
The other 5 classes are suggested base abstract implementations of the Nature 
component with purpose to handle common radix conversions instead of leav-
ing them to each problem implementation. 

In order to be mimicking as closely as possible the biology genome, the main 
GA algorithm attempts to manipulate these four components whereby the pop-
ulation is considered to be a set of individuals instead of a set of chromosome as 
handled by standard algorithms. Then, each individual is composed of a set of 
chromosomes, which in turn are considered to be a sequence of genes. 

In order to be mimicking as closely as possible the biology genome, the main 
GA algorithm attempts to manipulate these four components whereby the pop-
ulation is considered to be a set of individuals instead of a set of chromosome as 
handled by standard algorithms. Then, each individual is composed of a set of 
chromosomes, which in turn are considered to be a sequence of genes. 

This is the main algorithm offering both flexibility and execution tracing, by 
saving into current instance variables and some inherited properties a specific 
set of values per iteration while running. 

One of the main reasons behind this distribution of components was also to 
allow the algorithm to work with a group of chromosomes as one block instead 
of separated, since in real-life chromosomes belonging to one individual don’t 
really crossover between them. However, during our researching, we discovered 
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the topic of “jumping genes”, which relates in a few words to modifying chro-
mosomes of an individual from a portion already existing on another from this 
same individual. This topic supports the need of having the suggested distribu-
tion of components. 

Since we are talking about a generic implementation of the algorithm and its 
components, we implemented a few problems, as shown in Figure 5, that follow  
 

 
Figure 5. Some supporting problem implementations. 
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the guidelines set by the above mentioned components diagrams but also by 
suggested encoding in reference paper 1, trying to cover different complexities. 
This set is divided into 3 groups relating all to a base class holding the math 
formulas: the first group is working with {2, 8, 10 and 16} radix applied to the 
default “Formula01” functionality; while the second group is a collection of 
problems handling different math formulas. The last group is the implementa-
tion of the encoding suggested in reference paper 1 about phylogenies. 

In order to illustrate the generic implementations applied on these problems, 
we have developed a quick straight forward windows application, in which we 
dynamically modified the parameters a default algorithm based on the suggested 
generic implementation, instead of writing many versions inheriting for our 
main implementation. 

The first step is to specify which problem the algorithm will work on, as per 
Figure 6. This list of problems is dynamically built from the set of problems in-
cluding in the package, not only the one discussed above. 

The second step would be to specify some of the properties required by both 
the Problem and the Algorithm, as shown in Figure 7 and Figure 8. Even 
though default values were given to those parameters, we advise to modify them 
to be able to view effective results. 

The third and final step is to simply run the algorithm. In the above screen-
shot Figure 9, we are showing one population generated by the execution on 
problem Pb001, along with one of its individuals and consequently chromo-
somes and Genes. The next section of the screen shows the result of the execu-
tion leading to a fitness of −625, which is the best so far. If we were to run the 
algorithm for more time, this value will most probably change. 

Figure 10 shows, as a graph, the progress of the algorithm run with the above 
parameters for 50 iterations, in other terms 50 populations were generated and 
evaluated. This graph shows that despite the simplicity of the problem Pb001  
 

 
Figure 6. Win App, GA execution—problem selection. 
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Figure 7. Win App, GA execution problem parameterization. 

 

 
Figure 8. Win App, GA execution algorithm parameterization. 

 

 
Figure 9. Win App, GA execution—sample run. 
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Figure 10. Win App, GA execution—sample run graphs. 

 

 
Figure 11. GA tracing functionality—binary nature. 

 
formula and the algorithm having reached the best fit early, it kept on checking 
for a better one. Meanwhile, the time consumed seemed to stabilize with minor 
time “hiccups”. 

Figure 11 illustrates the execution of the same algorithm run previously but 
on the binary problem implementation suggested earlier. Similar executions 
were done on the other radix implementations. 

The last problem suggested and illustrated in Figure 12, was the implementa-
tion of the encoding suggested in reference paper 1 about phylogenies. For this, 
we added a functionality to decode and display any solution/individual and/or 
the result. 

The third and final step is to simply run the algorithm. In the above screen-
shot Figure 9, we are showing one population generated by the execution on 
problem Pb001, along with one of its individuals and consequently chromo-
somes and Genes. The next section of the screen shows the result of the execution  
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Figure 12. GA tracing functionality—parsimony nature. 

 
leading to a fitness of −625, which is the best so far. If we were to run the algo-
rithm for more time, this value will most probably change. 

4. Conclusions 

This paper focused on the NP-Hard problem of finding an optimal tree topology 
where leaves represent biological sequences [1] [2]. The problem consists of mi-
nimizing the number of changes between given and/or derived sequences. As the 
number of sequences to be compared increases, the size of the search space 
grows exponentially. This fast growth induces the necessity of using optimiza-
tion methods in order to come up with an acceptable optimal topology. 

Since the phylogenetic trees literature have only discussed the use of an exact 
method (Fitch) or only one or at most two Heuristics (Genetic Algorithms, Si-
mulated Annealing, Tabu Search, Simulated Evolution and Stochastic Evolution) 
in each one, with few of them having some pseudo-code/code or none what so 
ever, the entire research to which this paper belongs attempted to suggest an 
encoding schema ready to use in one or more of the above-mentioned algo-
rithms, including the suggested alternatives. 

This paper tried to propose a flexible traceable generic Genetic Algorithm so it 
can be used in other NP problems, not necessarily dealing with bio-informatics. 
The tracing/chronology property can be helpful essentially for detailed evalua-
tion and analysis of the runs executed for the algorithms, with the corresponding 
encoding. 

The research and this paper’s work can be extended by:  
Applying benchmarks to validate the algorithms, and analyze more accurately 

the suggested algorithms’ generic alternatives. 
References [16]-[23] come as a support to the need to Implementing the de-

coding functionality in a generic way, so that it might be applied to other prob-
lem implementations.  
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Attempting to resolve the below mentioned problems that appeared while re-
searching the heuristics, whether the ones implemented, or the initial standard 
ones, are as follows: 
 Fixed Input Parameters: which mean that there is a need to guess or write an 

algorithm to tune those parameters before running the algorithm itself. 
→ Algorithm requests a given number of generations, and population size, 

among others.  
 Randomness doesn’t handle potentially repetitions: 
→ In both mutation & crossover methods. 
 Initial solution may be far from the optimal one, thus the algorithm will take 

more time. 
 Getting stuck with one procedure, even very close to a fairly acceptable solu-

tion. The use of a heuristic or fast algorithm might depend on the “distance” 
between the current solution and the optimal one, thus switching between 
algorithms might be helpful.  
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