
Open Journal of Applied Sciences, 2022, 12, 877-891
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2022.126060 Jun. 13, 2022 877 Open Journal of Applied Sciences

Flexible Traceable Generic Genetic Algorithm

Chadi Kallab1, Samir Haddad1*, Jinane Sayah2

1Department of Computer Science and Mathematics, Faculty of Arts and Sciences, University of Balamand, Koura, Lebanon
2Department of Telecom and Networks, Issam Fares Faculty of Technology, University of Balamand, Koura, Lebanon

Abstract
This document elaborates on the generic implementation one of the main
heuristics algorithms verified through its quick application to a biology prob-
lem requiring to find out an optimal sequences tree topology. In order to
solve this problem, categorized as Non-Polynomial Hard (NP-Hard), “to mi-
nimize differences between given (leaf) and/or derived (parent) sequences”,
many popular methods are used. “The higher the number of given sequences
is, the more advisable and efficient it would be to go towards heuristics as
they would provide a close-enough solution faster, as for instance genetic al-
gorithms amongst others do. Thus, as part of a larger research in Heuristics
and phylogenies, this paper aims to suggest a generic advanced flexible im-
plementation of the Genetic Algorithm verified by a “general way to encode
the problem into instances of different heuristic algorithms” as mentioned in
our first reference below. The proposed algorithm will also present a chro-
nology traceability feature for further analysis and potential improvements.

Keywords
Generic, Heuristics, Phylogenies, Bio-Informatics, NP-Hard, Genetic
Algorithm

1. Introduction

One of the many problems that are considered to be NP-Hard is the Multiple
Sequence Alignment one that initially requires, as for any other of its siblings, a
specific encoding schema and design of the main functionalities of the heuristics
algorithm being implemented and executed. This design was supported by ref-
erences [1] [2] [3] and [4].

In a previous paper published during the ICeND2013 conference, we have
discussed a generic encoding schema and some main methods that can be used
in different heuristic algorithms for this particular problem, inspired by papers

How to cite this paper: Kallab, C., Had-
dad, S. and Sayah, J. (2022) Flexible Trace-
able Generic Genetic Algorithm. Open
Journal of Applied Sciences, 12, 877-891.
https://doi.org/10.4236/ojapps.2022.126060

Received: April 29, 2022
Accepted: June 10, 2022
Published: June 13, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2022.126060
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2022.126060
http://creativecommons.org/licenses/by/4.0/

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 878 Open Journal of Applied Sciences

[5] [6] [7] and [8]. However, taken out of the entire research context, the re-
maining problem was the link between this encoding and the generic imple-
mentation of the main heuristics algorithms. In this paper, we’ll be discussing
the implementation of the Genetic Algorithm, with some modifications, like a
chronology traceability feature for further analysis and potential improvements,
added to try to shorten the gap between the algorithm and the source that in-
spired it, which is none other than the structure and behavior of genome com-
ponents.

2. Initial Algorithm
2.1. Standard Genetic Algorithm

Most Evolutionary Computing algorithms, including Genetic Algorithms, work
iteratively on a subset of the solution space. We refer to this subset as a “popula-
tion”. After the Initialization of the solution space, a Selection is made to choose
two or more chromosomes (solutions, ex: phylogenetic trees) of the current
POPULATION. These chromosomes, denoted as PARENTS, are subjected to a
Crossover/Recombination operation, which consists of combining bits and pieces
taken from 2 or more solutions to create as many solutions, called “offspring”. In
their turn, the resulting OFFSPRING may be subjected to a Mutation process,
which consists of slightly changing the solution. Both Crossover and Mutation
operators are applied given certain respective probabilities. An individual Fitness
Evaluation function is tested on each of the last operator’s results, which will be
added to an INTERMEDIARY POPULATION refreshed per iteration. An Over-
all Evaluation goes through this new population, evaluating the whole popula-
tion, by computing the fitness of the entire group. The intermediary population
replaces the current one and the whole process is repeated until a termination
criterion is met (for example: a certain number of iterations have elapsed). This
idea was further supported by references [6] and [9] to [15].

Before stating the main steps of the standard algorithm, we would like to cla-
rify the terminology used there:
- Solution = chromosome
- Population = set of solutions (chromosomes)

2.2. Main Procedure

The steps of the standard algorithm are as follows:
 Initialize the population randomly.
 Initialize to zero the number of generations to deal with
 While NOT Terminate Process
 Create a new empty population.
 Do
 Select two/more solutions to apply operators
 Apply recombination between each pair of chromosomes
 to get corresponding offspring, given a certain probability

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 879 Open Journal of Applied Sciences

 Apply mutation to each offspring, given a certain probability
 While (new population is not full)
 Get fittest solution of the new population.
 Compare it to the previous fittest global solution.
 If (fitness value > that of the global one) Then
 Update the fittest global solution
 Set the new population as the current population
 Increment number of generations
 Return the fittest global solution found so far
We can see here that the structure of the solution is somewhat rigid obscuring

or omitting the complexity of some properties of the input that might be useful
for the optimization both structure wise and time wise.

Another main issue when working with the basic algorithm is the fact that it is
a kind of black box, in the sense that even though the end result would be very
satisfying we have no traceability on the values and performance of the algo-
rithm which might go far from the optimal solution during one or more itera-
tions, leaving us unable to analyze and help to tune some of the parameters.

3. Proposed Algorithm

Since Genetic Algorithms deal, in concept, with maximization, and since the
suggested evaluation approach retrieves its values from a scoring (cost) matrix,
the fitness function should be the negative of the evaluation function, as sup-
ported in references [6] to [14] inspiring the below suggested algorithm.

The steps of the below discussed algorithm are almost very similar to those of
the basic standard algorithm, with the difference that some of them, highlighted
in blue, offer the possibility to later on trace back each execution and allow bet-
ter analysis, thus resulting in eventual update of initial parameters. The words/
fragments highlighted in green are more of structure enhancements that try to
bridge the gap between genome composition and our genetic algorithm compo-
nents structure.

3.1. Main Procedure

The steps of the algorithm implemented are as follows:
 Initialize the population randomly.
 Initialize to zero the number of generations to deal with
 Select and backup the fittest global individual
 Record in history the initial population & initialization
 While NOT Terminate Process
 Create a new empty population.
 Do
 Select two/more individuals to apply operators
 Apply recombination between their {chromosomes, genes and/or

alleles}

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 880 Open Journal of Applied Sciences

 to get offspring, given a certain probability.
 Apply mutation to each individual of offspring, given a certain

probability
 Save the newly generated individuals in the newly generated

population
 While (new population is not full)
 Get fittest individual of the new population.
 Compare it to the previous fittest global individual.
 If (fitness value > that of the global one) Then
 Update the fittest global individual.
 Set the new population as the current population
 Increment number of generations
 Record in history new population
 Record in history new population generation time
 Return the fittest global individual found so far

Even though crossover and mutation operators are applied given certain
probabilities, it is very rare to find a parent individual (group of chromosomes)
selected and passed to the new population without modification. The initial
population is filled with a fixed number of individuals, whose chromosomes and
genes are randomly generated. The fitness function of an individual is propor-
tional evaluation of each of the chromosomes that individual includes. The algo-
rithm supports elitism, to keep track of the best-fit individual found in pre-
viously handled and in the current population. It keeps on iterating and han-
dling populations until the process termination criterion. In most problems, the
termination criterion is satisfied when the algorithm reaches a certain number of
generations.

Instead of focusing on speeding up the algorithm itself, we decided to attempt
to work on the two main issues of the standard algorithm, proposing our own
alternative or solution, by first “going back to the roots” that inspired the algo-

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 881 Open Journal of Applied Sciences

rithm originally and give our algorithm the possibility to manage more granu-
larly some properties of the input structure. This granularity brings with it the
possibility for the algorithm to detect potential differences between evaluations
due to the diverging effect of two properties previously merged together.

To support that point, let us consider a certain encoding of the parsimony
problem discussed in the first reference of this paper. However, before looking at
the problem from another perspective, let us highlight the post important en-
coding point: the solution is at the base composed of several leaf sequences, each
of which is formed of a series of genetic code characters; which are then paired
and linked to a parent (internal) sequence. This process continues until a single
root node is reached.

Without flexibility, the default or preliminary evaluation encoding approach
would be to cumulate the changes between characters at the same location of
each of the pair nodes into one value for the pair, then into one value for the en-
tire solution. Allowing the main operations of the algorithm to operate on the
character level would allow evaluations of changes to be more accurate and help
to gear the algorithm towards a better optimum. For instance, assuming that our
local optimum would be around ATGATG, mutating ATCACAAG into
ATGACAA might drive the algorithm closer to the fittest individual than
ATCACAAG into ATCAGAAG, since moving C to G at the 3rd location would
score higher than the same operation at the 5th location, as it will transcribe into
a triplet closer to the one found in the parent.

While allowing specificity of granular data to help optimizing, we discovered
the need to be able to recall previous runs, since making the algorithm display
and/or interact with its designer would obviously be a worst option to consider.
To avoid losing time at the expense of recording executions we opted to propose
a simple straight forward approach to be consumed and implemented in a later
stage, and most probably out of the real scope of this paper. While designing it,
this functionality seemed to open up not only to improvements to the algorithm
itself, but also to potential interaction with other components. Indeed, after run-
ning the standard algorithm many times, it remains a black box showing only
the fittest solution at the end, no matter how much it goes closer to and away
from the optimum found so far eating up resources.

Meanwhile, being able to retrace each run would give an edge to the designer
of the algorithm to fine tune the parameters so that the next algorithm run would
consume less resources and less time. In parallel, knowing when the algorithm
was doing good and when it was doing worst can give the designer an edge to
induce one or more functionalities allowing eventually other algorithms can join
in and bring their added value into the table. At the same time, this ability can
dig further towards letting the different operations being implemented/executed
themselves using another algorithm to return a fair-enough optimal result.

3.2. Object Oriented Design

The below class diagram shows an overview of the interaction between the dif-

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 882 Open Journal of Applied Sciences

ferent classes instantiated during the runtime of the algorithm, discussed below.
An allele can be found in at least one gene, which in turn may be part of one or
more chromosomes. An individual can be described as a non-empty pool of
chromosomes, which may or may not be related to each other. A population in-
cludes a fixed non-negative number of individuals, called the population size S.

As shown in Figure 1, the suggested flexible Genetic Algorithm tries to mimic
as close as possible the genome as known in Biology. In other terms, each in-
stance of an NP-problem, encoded to be used in this algorithm as an Individual,
would be composed of one or more chromosomes. Each chromosome is consti-
tuted of a set of genes, which is defined as a combination of different alleles. In
our parsimony phylogenetic problem, when dealing with DNA, we are conse-
quently encoding each of the four {A, T, C, G} nucleotides into an allele. There-
fore, a gene will encode a fixed group of DNA nucleotides.

This design makes the algorithm flexible, in a way that it allows changing the
encoding schema by just modifying the design and implementation of alleles and
genes according to the problem being handled. For instance, when dealing with
binary encoding, an allele would have a value of “0” or “1”. For decimal encod-
ing an allele value could be one of {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”}.
Moreover, a non-standard decimal encoding could give, for example, allele val-
ues between “00” and “79”.

Since the encoding can consider different alternatives of values for alleles,
some methods that are problem-specific methods have to be implemented,
among them: creating random genes, creating random chromosomes/individuals/
populations and their fitness functions, and handled by a sub-class of class “Na-
ture”. The algorithm-dependent procedures (selection, recombination, muta-
tion, termination) are handled by a sub-class of the “GeneticAlgorithm” class.

Going into further details in the class diagram, we can split the classes into 3
groups: the main generic classes dedicated to encoding problems (G1—as in
Figure 2), the main generic GA class itself (G2—Figure 3) and the generic
components used in the algorithm (G3—Figure 4).

The base “Nature” component represents the environment offering the possi-
ble {Individual, Chromosome, Gene} values and functionalities that the main

Figure 1. Suggested GA components diagram.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 883 Open Journal of Applied Sciences

Figure 2. Suggested GA class diagram for G1.

Figure 3. Suggested GA class diagram for G2.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 884 Open Journal of Applied Sciences

Figure 4. Suggested GA components class diagram for G3.

algorithm’s steps will be relying on to execute generic global and specific tasks.
The other 5 classes are suggested base abstract implementations of the Nature
component with purpose to handle common radix conversions instead of leav-
ing them to each problem implementation.

In order to be mimicking as closely as possible the biology genome, the main
GA algorithm attempts to manipulate these four components whereby the pop-
ulation is considered to be a set of individuals instead of a set of chromosome as
handled by standard algorithms. Then, each individual is composed of a set of
chromosomes, which in turn are considered to be a sequence of genes.

In order to be mimicking as closely as possible the biology genome, the main
GA algorithm attempts to manipulate these four components whereby the pop-
ulation is considered to be a set of individuals instead of a set of chromosome as
handled by standard algorithms. Then, each individual is composed of a set of
chromosomes, which in turn are considered to be a sequence of genes.

This is the main algorithm offering both flexibility and execution tracing, by
saving into current instance variables and some inherited properties a specific
set of values per iteration while running.

One of the main reasons behind this distribution of components was also to
allow the algorithm to work with a group of chromosomes as one block instead
of separated, since in real-life chromosomes belonging to one individual don’t
really crossover between them. However, during our researching, we discovered

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 885 Open Journal of Applied Sciences

the topic of “jumping genes”, which relates in a few words to modifying chro-
mosomes of an individual from a portion already existing on another from this
same individual. This topic supports the need of having the suggested distribu-
tion of components.

Since we are talking about a generic implementation of the algorithm and its
components, we implemented a few problems, as shown in Figure 5, that follow

Figure 5. Some supporting problem implementations.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 886 Open Journal of Applied Sciences

the guidelines set by the above mentioned components diagrams but also by
suggested encoding in reference paper 1, trying to cover different complexities.
This set is divided into 3 groups relating all to a base class holding the math
formulas: the first group is working with {2, 8, 10 and 16} radix applied to the
default “Formula01” functionality; while the second group is a collection of
problems handling different math formulas. The last group is the implementa-
tion of the encoding suggested in reference paper 1 about phylogenies.

In order to illustrate the generic implementations applied on these problems,
we have developed a quick straight forward windows application, in which we
dynamically modified the parameters a default algorithm based on the suggested
generic implementation, instead of writing many versions inheriting for our
main implementation.

The first step is to specify which problem the algorithm will work on, as per
Figure 6. This list of problems is dynamically built from the set of problems in-
cluding in the package, not only the one discussed above.

The second step would be to specify some of the properties required by both
the Problem and the Algorithm, as shown in Figure 7 and Figure 8. Even
though default values were given to those parameters, we advise to modify them
to be able to view effective results.

The third and final step is to simply run the algorithm. In the above screen-
shot Figure 9, we are showing one population generated by the execution on
problem Pb001, along with one of its individuals and consequently chromo-
somes and Genes. The next section of the screen shows the result of the execu-
tion leading to a fitness of −625, which is the best so far. If we were to run the
algorithm for more time, this value will most probably change.

Figure 10 shows, as a graph, the progress of the algorithm run with the above
parameters for 50 iterations, in other terms 50 populations were generated and
evaluated. This graph shows that despite the simplicity of the problem Pb001

Figure 6. Win App, GA execution—problem selection.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 887 Open Journal of Applied Sciences

Figure 7. Win App, GA execution problem parameterization.

Figure 8. Win App, GA execution algorithm parameterization.

Figure 9. Win App, GA execution—sample run.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 888 Open Journal of Applied Sciences

Figure 10. Win App, GA execution—sample run graphs.

Figure 11. GA tracing functionality—binary nature.

formula and the algorithm having reached the best fit early, it kept on checking
for a better one. Meanwhile, the time consumed seemed to stabilize with minor
time “hiccups”.

Figure 11 illustrates the execution of the same algorithm run previously but
on the binary problem implementation suggested earlier. Similar executions
were done on the other radix implementations.

The last problem suggested and illustrated in Figure 12, was the implementa-
tion of the encoding suggested in reference paper 1 about phylogenies. For this,
we added a functionality to decode and display any solution/individual and/or
the result.

The third and final step is to simply run the algorithm. In the above screen-
shot Figure 9, we are showing one population generated by the execution on
problem Pb001, along with one of its individuals and consequently chromo-
somes and Genes. The next section of the screen shows the result of the execution

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 889 Open Journal of Applied Sciences

Figure 12. GA tracing functionality—parsimony nature.

leading to a fitness of −625, which is the best so far. If we were to run the algo-
rithm for more time, this value will most probably change.

4. Conclusions

This paper focused on the NP-Hard problem of finding an optimal tree topology
where leaves represent biological sequences [1] [2]. The problem consists of mi-
nimizing the number of changes between given and/or derived sequences. As the
number of sequences to be compared increases, the size of the search space
grows exponentially. This fast growth induces the necessity of using optimiza-
tion methods in order to come up with an acceptable optimal topology.

Since the phylogenetic trees literature have only discussed the use of an exact
method (Fitch) or only one or at most two Heuristics (Genetic Algorithms, Si-
mulated Annealing, Tabu Search, Simulated Evolution and Stochastic Evolution)
in each one, with few of them having some pseudo-code/code or none what so
ever, the entire research to which this paper belongs attempted to suggest an
encoding schema ready to use in one or more of the above-mentioned algo-
rithms, including the suggested alternatives.

This paper tried to propose a flexible traceable generic Genetic Algorithm so it
can be used in other NP problems, not necessarily dealing with bio-informatics.
The tracing/chronology property can be helpful essentially for detailed evalua-
tion and analysis of the runs executed for the algorithms, with the corresponding
encoding.

The research and this paper’s work can be extended by:
Applying benchmarks to validate the algorithms, and analyze more accurately

the suggested algorithms’ generic alternatives.
References [16]-[23] come as a support to the need to Implementing the de-

coding functionality in a generic way, so that it might be applied to other prob-
lem implementations.

https://doi.org/10.4236/ojapps.2022.126060

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 890 Open Journal of Applied Sciences

Attempting to resolve the below mentioned problems that appeared while re-
searching the heuristics, whether the ones implemented, or the initial standard
ones, are as follows:
 Fixed Input Parameters: which mean that there is a need to guess or write an

algorithm to tune those parameters before running the algorithm itself.
→ Algorithm requests a given number of generations, and population size,

among others.
 Randomness doesn’t handle potentially repetitions:
→ In both mutation & crossover methods.
 Initial solution may be far from the optimal one, thus the algorithm will take

more time.
 Getting stuck with one procedure, even very close to a fairly acceptable solu-

tion. The use of a heuristic or fast algorithm might depend on the “distance”
between the current solution and the optimal one, thus switching between
algorithms might be helpful.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of

MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.
https://doi.org/10.1080/028418501127346846

[2] Hu, T. and Desai, J.P. (2004) Soft-Tissue Material Properties under Large Deforma-
tion: Strain Rate Effect. Proceedings of the 26th Annual International Conference of
the IEEE EMBS, San Francisco, 1-5 September 2004, 2758-2761.
https://doi.org/10.1109/iembs.2004.1403789

[3] Ortega, R., Loria, A. and Kelly, R. (1995) A Semiglobally Stable Output Feedback
PI/sup 2/D Regulator for Robot Manipulators. IEEE Transactions on Automatic
Control, 40, 1432-1436. https://doi.org/10.1109/9.402235

[4] Prasad, A.S. (1982) Clinical and Biochemical Spectrum of Zinc Deficiency in Hu-
man Subjects. In: Prasad, A.S., Ed., Clinical, Biochemical and Nutritional Aspects of
Trace Elements, Alan R. Liss, Inc., New York, 5-15.

[5] Wit, E. and McClure, J. (2004) Statistics for Microarrays: Design, Analysis, and In-
ference. 5th Edition, John Wiley & Sons Ltd., Chichester.

[6] Wu, J.K. (1994) Two Problems of Computer Mechanics Program System. Proceed-
ings of Finite Element Analysis and CAD, Peking University Press, Beijing, 9-15.
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.as
px?referenceid=2642945

[7] Honeycutt, L. (1998) Communication and Design Course.
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.as
px?referenceid=773988

[8] Wright and Wright, W. (1906) Flying-Machine. US Patent No. 821393.

[9] Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica Della Pineta di

https://doi.org/10.4236/ojapps.2022.126060
https://doi.org/10.1080/028418501127346846
https://doi.org/10.1109/iembs.2004.1403789
https://doi.org/10.1109/9.402235
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2642945
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2642945
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=773988
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=773988

C. Kallab et al.

DOI: 10.4236/ojapps.2022.126060 891 Open Journal of Applied Sciences

san Vitale (Ravenna). Ph.D. Thesis, Bologna University, Bologna.

[10] Affenzeller, M. and Mayrhofer, R. (2004) Generic Heuristics for Combinatorial Op-
timization Problems.
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combi
natorial_Optimization_Problems

[11] Si, Y.W., Chan, V.I., Dumas, M. and Zhang, D. (2018) A Petri Nets Based Generic
Genetic Algorithm Framework for Resource Optimization in Business Processes.
Simulation Modelling Practice and Theory, 86, 72-101.
https://doi.org/10.1016/j.simpat.2018.05.004

[12] Cao, K. and Ye, X. (2012) Coarse-Grained Parallel Genetic Algorithm Applied to a
Vector Based Land Use Allocation Optimization Problem: The Case Study of
Tongzhou Newtown, Beijing, China. Stochastic Environmental Research and Risk
Assessment, 27, 1133-1142. https://doi.org/10.1007/s00477-012-0649-y

[13] Zegordi, S.H. and Nia, M.A.B. (2009) A Multi-Population Genetic Algorithm for
Transportation Scheduling. Transportation Research Part E: Logistics and Trans-
portation Review, 45, 946-959. https://doi.org/10.1016/j.tre.2009.05.002

[14] Albadr, M.A., Tiun, S., Ayob, M. and AL-Dhief, F. (2020) Genetic Algorithm Based
on Natural Selection Theory for Optimization Problems. Symmetry, 12, Article No.
1758. https://doi.org/10.3390/sym12111758

[15] Pandey, A., Banerjee, S. and Sahoo, G. (2014) Applications of Meta Heuristic Search
Algorithms in Software Testing: An Investigation into Recent Trends. Advances in
Computer Science and Information Technology, 1, 61-64.

[16] Katoch, S., Chauhan, S.S. and Kumar, V. (2020) A Review on Genetic Algorithm:
Past, Present, and Future. Multimedia Tools and Applications, 80, 8091-8126.
https://doi.org/10.1007/s11042-020-10139-6

[17] Langer, M., Brown, R., Morrill, S., Lane, R. and Lee, O. (1996) A Generic Genetic
Algorithm for Generating Beam Weights. Medical Physics, 23, 965-971.
https://doi.org/10.1118/1.597858

[18] Jiao, J.R., Zhang, Y. and Wang, Y. (2007) A Generic Genetic Algorithm for Product
Family Design. Journal of Intelligent Manufacturing, 18, 233-247.
https://doi.org/10.1007/s10845-007-0019-7

[19] Lianga, W.-Y. and Huang, C.-C. (2009) The Generic Genetic Algorithm Incorpo-
rates with Rough Set Theory—An Application of the Web Services Composition.
Expert Systems with Applications, 36, 5549-5556.
https://doi.org/10.1016/j.eswa.2008.06.084

[20] Thengade, A.M. and Dondal, R. (2012) Genetic Algorithm—Survey Paper. IJCA
Proceedings on National Conference on Recent Trends in Computing, No. 5, 25-29.

[21] Lambora, A. and Gupta, K. (2019) Kriti Chopra. Genetic Algorithm—A Literature
Review. 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), Faridabad, 14-16 February 2019, 380-384.
https://doi.org/10.1109/COMITCon.2019.8862255

[22] McCall, J. (2005) Genetic Algorithms for Modelling and Optimization. Journal of
Computational and Applied Mathematics, 184, 205-222.
https://doi.org/10.1016/j.cam.2004.07.034

[23] Borana, K. (2010) Genetic Algorithms and Its Application to Economic Load Dis-
patch. AIP Conference Proceedings, 1324, 239-243.
https://doi.org/10.1063/1.3526203

https://doi.org/10.4236/ojapps.2022.126060
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combinatorial_Optimization_Problems
https://www.researchgate.net/publication/2902641_Generic_Heuristics_for_Combinatorial_Optimization_Problems
https://doi.org/10.1016/j.simpat.2018.05.004
https://doi.org/10.1007/s00477-012-0649-y
https://doi.org/10.1016/j.tre.2009.05.002
https://doi.org/10.3390/sym12111758
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1118/1.597858
https://doi.org/10.1007/s10845-007-0019-7
https://doi.org/10.1016/j.eswa.2008.06.084
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1016/j.cam.2004.07.034
https://doi.org/10.1063/1.3526203

	Flexible Traceable Generic Genetic Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Initial Algorithm
	2.1. Standard Genetic Algorithm
	2.2. Main Procedure

	3. Proposed Algorithm
	3.1. Main Procedure
	3.2. Object Oriented Design

	4. Conclusions
	Conflicts of Interest
	References

