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Abstract 
Potato late blight and early blight are common hazards to the long-term pro-
duction of potatoes, impacting many farmers around the world, particularly 
in Africa. Early detection and treatment of the potato blight disease are critical 
for promoting healthy potato plant growth and ensuring adequate supply and 
food security for the fast-growing population. As a result, machine-driven dis-
ease detection systems may be able to overcome the constraints of traditional 
leaf disease diagnosis procedures, which are generally time-consuming, inac-
curate, and costly. Convolutional Neural Networks (CNNs) have been shown 
to be effective in a variety of agricultural applications. CNNs have been shown to 
be helpful in detecting disease in plants because of their capacity to analyze 
vast volumes of data quickly and reliably. However, the method hasn’t been 
widely used in the detection of potato late blight and early blight diseases, 
which reduce yields significantly. The goal of this study was to compare six 
cutting-edge CNN architectural models, taking into account transfer learning 
for training and four hyperparameters. The CNN architectures evaluated 
were AlexNet, GoogleNet, SqueezeNet, DenseNet121, EfficientNet b7, and 
VGG19. Likewise, the hyperparameters analyzed were the number of epochs, 
the batch size, the optimizer, and the learning rate. An open-source dataset 
containing 4082 images was used. The DenseNet121 architecture with a batch 
of 32 and a Stochastic Gradient Descent (SGD) optimizer with a learning rate 
of 0.01 produced the best performance, with an accuracy of 98.34% and a 
97.37% f1-score. The DenseNet121 model was shown to be useful in devel-
oping computer vision systems that aid farmers in improving their disease 
management systems for potato cultivation. 
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Hyperparameters 

 

1. Introduction 

Contemporary society is concerned about food security issues due to the conti-
nual increase in population, rural to urban migration, climate change, and the 
reduction of cultivable land caused by the increase in industrialization and ur-
banization processes. The agricultural sector remains important to the so-
cio-economic development of Africa, contributing 32% of the GDP. About 80% 
of the agricultural output comes from smallholder farmers and employs nearly 
65% of the population. Low productivity, which characterizes agricultural pro-
duction, remains a major concern in many African countries [1].  

Potato is the third most important food crop in terms of global consumption 
[2]. The improvement of the potato production system in sub-Saharan Africa can 
be a pathway out of poverty. Potato has a short cropping cycle and produces a 
large amount per unit area in a short period (International Potato Centre, 
Sub-Saharan Africa 2020). However, diseases such as early blight, late blight 
(LB), bacterial wilt (BW), and viruses reduce the production of smallholder po-
tato farmers in sub-Saharan Africa. Potato late blight and early blight influence 
the quality and quantity of the potatoes, hence causing direct crop loss. They are 
leaf spot diseases caused by Phytophthora infestans and the fungus Alternaria so-
lani respectively that cause average yield losses of between 30% and 75% [3]. Typ-
ically, small-scale farmers continuously use fungicides to combat these diseases, 
but this practice creates a dependency on pesticides and compromises human 
health and the environment [4]. Furthermore, regulators such as the European 
Union (EU) are enacting increasingly stringent chemical usage requirements for 
agricultural products entering their markets [5]. 

Early diagnosis of plant diseases plays an important role in improving agri-
cultural yield. Disease-infected plants typically have visible markings or lesions 
on their leaves, stems, flowers, and/or fruits. In general, each illness state has a 
distinct visual pattern that can be utilized to diagnose the disease. Small rounds 
or irregular dark-brown to black dots on the older (lower) leaves are the first 
signs of early blight (Figure 2). These patches can grow up to 3/8 inch in diame-
ter and become angular-shaped over time [6]. Small, light to dark green, round 
to irregularly shaped water-soaked dots are the earliest signs of late blight in the 
field (Figure 2). The lowest leaves are frequently the first to get these diseases 
[7]. Plant diseases have traditionally been diagnosed by human experts. This is, 
however, costly, time-consuming, and, in some situations, unworkable; there-
fore, farmers are not able to respond quickly and accurately [8]. This has prompt-
ed studies that utilize deep learning, particularly used in image processing, for 
the early detection and management of diseases in agriculture [9]. The main 
contribution of this research was to determine the Convolutional Neural Network 
(CNN) architecture and hyperparameters that may be suitable to be deployed in 
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conventional as well as mobile/embedded computing environments for disease 
detection on potatoes in the field. To achieve it, transfer learning and fine-tuning 
were applied to six (6) state of art Convolutional Neural Networks (AlexNet, Ef-
ficientNet b7, GoogleNet, SqueezeNet, DenseNet121, and VGG19) to identify 
the hyperparameters that best influenced the training of architectures for late 
blight and early disease identification on potato leaves. The hyperparameters 
analyzed were the number of epochs, batch size, optimizer, and learning rate. 

The rest of the paper is structured as follows: Section 2 provides an overview 
of related studies. The tests and six state-of-the-art CNN architectures are in-
troduced in Section 3. The results are presented in Section 4. Section 5 is where 
the discussion takes place, and Section 6 is where the conclusions are reported. 

2. Related Works 

Convolutional Neural Network (CNN) is a type of artificial neural network used 
to interpret visual imagery in deep learning. CNNs are used in a variety of agri-
cultural applications, including crop type classification, and the detection of dis-
eases on plant leaves [10] [11]. The use of CNN for the detection of disease has 
been tested in several studies. KC et al. [12] used different CNN architectures to 
detect 58 diseases of 25 types of plants with a success rate of 99.5%. Fuentes et al. 
[13] compared the ability of several CNN architectures were able to recognize 
nine types of diseases and pests in tomato plants. Mohanty et al. [14] used the 
Plant Village dataset to develop a deep CNN to identify 14 crop species and 26 
diseases with 38 different classes.  

In the case of potatoes, studies have employed CNNs for the detection and ca-
tegorization of disease. Islam et al. [15] created a classifier that could classify 
healthy leaves and those affected by late and early blight diseases using 300 po-
tato images drawn from the PlantVillage dataset [16]. Multiclass SVM was used 
to identify leaf pictures into three groups based on ten color and textural 
attributes. The system’s cross-validated accuracy was 93.7 percent. The original 
dataset, on the other hand, included 152 photographs of healthy potato leaves 
and 1000 photographs of late and early blight, respectively. Showing the system’s 
performance on a wider dataset would have been beneficial. Sanjeev et al. 2021 
[17] used the Feed Forward Neural Network (FFNN) Model to forecast and clas-
sify illness in potato leaves. The model’s accuracy was determined to be 96.5 
percent. However, FFNN needs a long training time and a large number of pairs 
of input and targets for the training process [18]. Lee et al. 2020 [19] built a 
CNN model for detecting early and late blight illnesses on potatoes and com-
pared it to VGG16 and VGG19. The PlantVillage dataset, which is unbalanced, 
was also used by the researchers. Benchmarking these models using the evalua-
tion metric because the dataset is imbalanced would have been beneficial. 

Generally, many researchers use accuracy as a criterion for selecting the best 
CNNs. However, the accuracy has various flaws, including reduced uniqueness, 
discriminability, informativeness, and bias towards data from the majority class 
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[20]. Tiwari et al. 2020 [21] fine-tuned (transfer learning) pre-trained models 
like VGG19 for late blight and early blight disease detection on potato leaves. 
The model was fine-tuned to extract relevant characteristics from the dataset. 
The results were then analyzed using multiple classifiers, logistic regression out-
performed the others by a significant margin of classification accuracy, achieving 
97.8% on the test dataset. This study didn’t describe the choice of independent 
variable which is one of the challenges in logistic regression. There are limited 
numbers of independent variables and wrongly identifying them generates er-
rors in the model [22]. Oppenheim et al. 2017 [23] used CNNs for disease detec-
tion of four disease classes and an uninfected class on potatoes tuber of different 
shapes and sizes. The acquisition device and conditions of the 2465 pictures ca-
tegorized by the trained CNN model varied. The results show that the classifica-
tion method was robust enough to handle uncontrolled acquisition situations. 
Afzaal et al. [24] trained and compared 3 CNN models namely GoogleNet, 
VGGNet, and EfficientNet for accurate identification of early blight disease on 
potatoes at different growth stages using the PyTorch framework. The results 
showed that EfficientNet was the most effective model. There are few studies 
presenting models for potato late blight and early disease identification. This 
study presents one study on late blight and early blight with a wide dataset. 

3. Materials and Methods 

Figure 1 depicts a comprehensive disease dedication technique on potato leaves 
utilizing transfer learning. First and foremost, the data was gathered through an 
internet database. 
 

 
Figure 1. Overview architecture of the proposed study. 

3.1. Dataset Description 

The dataset was downloaded from [25] and accessed on 12 November 2021. The 
dataset contained 4082 images of potato leaves. The data had a spread of 3 class 
labels assigned to them: Healthy class, Late Blight, and Early blight. Figure 2 shows a 
sample of the three classes of potato images obtained from the Kaggle. Low-quality 
JPG images were used because of their capacity to represent real-world scenarios 
such as the presence of noise, contrast, and blur [17].  
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(A)                     (B)                     (C) 

Figure 2. Example of dataset images. (A) Early blight, (B) Late blight, and (C) Healthy. 
 

The dataset was distributed into training, validation, and testing. The training 
dataset was used to train the various CNN models, while the validation and test 
datasets were utilized for testing and evaluation of statistical measures after the 
CNNs were trained. As a result, the training, validation, and testing datasets 
were split into 80%, 10%, and 10%, respectively (Table 1). Different data aug-
mentation techniques, including resizing, rotation, shear range, zoom range, ho-
rizontal flip, brightness, width shift, and height shift, were used on the training 
set to expand the dataset’s diversity. It would solve the overfitting problem, al-
lowing models to be more generalized. The accuracy of each CNN architecture 
was assessed using statistical measures including accuracy, recall, precision, spe-
cificity, and FScore. 

3.2. Convolutional Neural Networks 

CNNs are built by superimposing convolutional layers that apply a set of local 
filters through the dimensions of the data entry. Thus, these networks detect 
patterns by calculating local correlations using a kernel whose parameters are 
determined by the learning process. Kernels are tiny sections of the convolution 
that glide over the convolution; to extract meaningful information with fewer di-
mensions. The output of the preceding layer, called the feature map, is often 
switched to a pooling layer that reduces the dimensions of this map by sub-sampling 
it, thus giving the result the property of translation invariance. The reduction of 
the dimension is generally achieved by taking the maximum or the average of 
values over a set of pixels. The stacking of convolution and pooling layers at 
various scales can detect larger and more complex patterns [26]. These mechan-
isms are summarized in Figure 3.  

It is time-consuming to collect images belonging to a specific area of interest 
and train a classifier from scratch. Transfer learning makes it possible to over-
come this challenge by using a pre-trained model and changing its last few lay-
ers. This helps to achieve good results even with a small dataset since the basic 
image features have already been learned in the pre-trained model from a much 
larger dataset. In this study, AlexNet, GoogleNet, SqueezeNet, EfficientNetb7, 
VGG19, and DenseNet121 were used for transfer learning since they have shown 
high accuracy in earlier datasets. 
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Table 1. Training, validation, and testing data sets for potato Late Blight disease identifi-
cation. 

Label Training/Validation/testing Images used Total Images 

Early Blight 

Training 1303 

1628 Validation 163 

Testing 162 

Late Blight 

Training 1132 

1434 Validation 161 

Testing 141 

Healthy 

Training 816 

1020 Validation 102 

Testing 102 

 

 
Figure 3. Overall mechanism of the CNN architecture. 

3.2.1. AlexNet Architectures 
The AlexNet architecture [27] consists of 5 convolution layers and 3 fully con-
nected layers. The first convolutional layer consists of 96 filters of sizes 11 × 11 
and uses a step of 4 pixels. The second layer comprises 256 filters of 5 × 5 sizes. 
Layers three and four use 384 filters each of size 3 × 3. The last convolutional 
layer has 256 filters of size 3 × 3. Finally, the 2 fully connected layers have 4096 
and 1000 neurons respectively. The number of neurons in the final layer is often 
modified to suit the problem.  

3.2.2. GoogleNet Architectures 
GoogleNet is a 22-layer deep convolutional neural network. GoogleNet was built 
by Google to improve the performance of deep neural networks both in terms of 
speed and precision. Its evolution and iterative improvement led to the emer-
gence of several versions of the network. Inception-v1 [28], Inception-v2 [29], 
Inception-v3 [29], and Inception-v4 [30] are the most popular versions of 
GoogleNet. The Inception architecture consists of 4 branches concatenated in 
parallel. The first branch consists of a 1 × 1 kernel convolution, followed by two 
3 × 3 convolutions. The second branch comprises a 1 × 1 convolution, followed 
by a 3 × 3 convolution. The third branch has a pooling, followed by a 1 × 1 con-
volution. Finally, the last branch is a 1 × 1 convolution. Inception V4 is a result 
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of the combination of ResNet and Inception V3. This combination is due to the 
fact that, in the ImageNet Large Scale Visual Recognition Challenge 2015, Res-
Net and Inception V3 had nearly identical results. The two structures were com-
bined to cut down on computational costs and improve performance. For this 
study, Inception V4 was used. 

3.2.3. SqueezeNet  
SqueezeNet architecture is a smaller network that was created to be a more 
compact alternative to AlexNet [31]. It consists of 26 convolutional layers and 
SqueezeNet. It has over 50 times fewer parameters than AlexNet but performs 
three times faster. SqueezeNet takes advantage of the convolution layer (which 
has only 1 × 1 filters), feeding into an expanded layer that has a mix of 1 × 1 and 
3 × 3 convolution filters and chains a bunch of these modules together to arrive 
at a smaller model. 

3.2.4. EfficientNet-b7 
EfficientNet is a convolutional neural network architecture and scaling method 
that uniformly scales the existing model network width, depth, and resolution 
with a set of fixed scaling coefficients to improve its performance [32]. This is 
unlike conventional practice that arbitrarily scales these factors. 

3.2.5. VGG19 
The VGG19 model is a variation of the VGG model that has 19 layers in total (16 
convolution layers, 3 fully connected layers, 5 MaxPool layers, and 1 SoftMax 
layer). There are other VGG variations such as VGG11, VGG16, and more. VGG 
architecture comprises six main structures, each of which mainly consists of 
multiple connected Convolutional layers and full-connected layers. The convo-
lutional kernel is the size of 3 × 3, and the input size is 224 × 224 × 3 (height, 
width, and channels). The number of layers is generally concentrated at 16-19 
[33]. 

3.2.6. DenseNet121 
Recent research has demonstrated that CNNs with shorter connections between 
layers adjacent to the input and those close to the output can be significantly 
deeper, more accurate, and more efficient to train. In the feed-forward approach, 
DenseNet connects each layer to every other layer. DenseNet’s network has L (L 
+ 1)/2 direct connections, whereas standard CNNs with L layers have L connec-
tions, one between each layer and its succeeding layer. All previous layers’ fea-
ture maps are utilized as inputs into each layer, and their feature maps are used 
as inputs into all subsequent layers. In comparison to standard CNN, DenseNet 
requires fewer parameters and allows feature reuse, resulting in more compact 
models and better outcomes across competing datasets [34]. 

3.3. Hyperparameters 

Optimization of a model is the process of changing the hyperparameters of the 

https://doi.org/10.4236/ojapps.2022.125049


S. E. Arnaud et al. 
 

 

DOI: 10.4236/ojapps.2022.125049 730 Open Journal of Applied Sciences 
 

model and observing its outputs. These hyperparameters are among others: the 
learning rate, epochs, optimizer, batch size, number of layers, and activation 
functions. In this study, the values of the optimizer, learning rate, batch size, and 
epochs were changed. For the optimizer, the network was trained with Adaptive 
Moment Estimation (Adam) and Stochastic Gradient Descent (SGD) which have 
good performance for image classification [27]. The learning rate for the opti-
mizers was 0.01 and 0.001. The batch size value was 16 and 32. The number of 
epochs was 25 and 50. The number of layers was dependent on the CNN model. 

3.4. Experimental Framework 

It takes a lot of computing power to train modern CNN systems. Therefore, 
Google Colab GPU resources were used including the library sci-kit-learn, Py-
Torch, and OpenCV to perform transfer learning and evaluation of the different 
CNN architectures. For the standard evaluation of a classifier, several perfor-
mance measures are defined. The most widely used quality metric is classifica-
tion accuracy. When the test dataset contains an equal number of samples from 
each class, classification accuracy is a useful way to quantify performance. How-
ever, the dataset used to solve the categorization problem in question is uneven. 
This needs a more thorough assessment of the proposed system using additional 
performance indicators. The confusion matrices were utilized to investigate the 
tumor classification system’s performance. The confusion matrix was used to 
describe the performance of the CNNs due to its ability to accurately measure 
the performance of a model with two or more classes. The Matrix checks how 
often its predictions are accurate compared to reality in classification problems. 
Each row in the matrix corresponds to a predicted class and each column cor-
responds to an actual class. The confusion matrix makes predictions for each 
row of a test dataset. Based on its predictions and the expected results, the ma-
trix indicates the number of correct and incorrect predictions for each class. This 
will allow the evaluation metrics of sensitivity, accuracy, specificity, precision, 
and f1-score to be calculated. 

The sensitivity, also known as the recall, is the proportion of potato leaves that 
were accurately labeled as positive to those that were truly positive. Equation (1) 
was used to compute the sensitivity, where TP stands for true positives, which is 
the number of positive cases that are correctly identified, and FN stands for false 
negatives, which is the number of positive cases that are incorrectly classified as 
negative. 

TPRecall
TP FN

=
+

                          (1) 

Equation (2) represents accuracy, which estimates the percentage of samples 
that are correctly classified, where TN is the number of true negatives or nega-
tive cases that are negative and classified as negative, and FP is the number of 
false positives, which are defined as negative instances that are incorrectly classi-
fied as positive cases. 
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TP TNAccuracy
TP TN FP FN

+
=

+ + +
                   (2) 

Specificity is defined as the conditional probability of true negatives given a 
secondary class, which approximates the probability of the negative label being 
true; it is represented by Equation (3).  

TNSpecificity
TN FP

=
+

                      (3) 

Precision, defined as the number of images that were correctly classified as 
positive out of all positives, is given by Equation (4). It assesses the algorithm’s 
prediction ability. Precision refers to how “accurate” the model is in terms of 
how many of the anticipated positives are actually positive. 

TPPrecision
TP FP

=
+

                      (4) 

As illustrated in Equation (5), the F-score is calculated as the harmonic mean 
precision and recall. It concentrates on the study of positive classes. This statistic 
has a high value if the model performs well in the positive class. 

2 TPf1-score
2 TP FP FN

∗
=

∗ + +
                  (5) 

4. Results  

This section compares six state-of-the-art CNN architectures in order to deter-
mine the best model for detecting late blight and early blight diseases in pota-
toes. The goal of this study was to compare CNN models based on their accura-
cy, precision, sensitivity, specificity, and F1-Score. The following quality indica-
tors were used while presenting the results and comparing the models: Accuracy 
is defined as the ratio of correctly labeled images to the total number of samples 
and the F1-score (5) is a useful performance statistic, especially when there is an 
unequal distribution of classes. The dataset utilized in this work contained 1628 
images of early blight, 1434 images of late blight, and 1020 healthy leaves. As a 
result, the model/optimizer with the highest f1-score was deemed the most 
suited architecture for the detection of potato late blight and early blight diseases 
in the field. 

Validation accuracy ranged from 81.36 to 98.34 when using the SGD parame-
ters as an optimizer, while f1-score values ranged from 56.67 to 97.37 for all 
CNNs. Table 2 shows that DenseNet and VGG19 had the best accuracy for the 
evaluation with 25 epochs, with an accuracy of 98.34 and a learning rate of re-
spectively 0.001 and 0.01. Looking at the f1-score result the DenseNet (97.38%) 
had the best performance with 25 epochs. Furthermore, for 10 epochs DenseNet 
once again performed comparatively better with the highest accuracy (97.84) 
and f1-score (96.63) for a learning rate of 0.01. On the other hand, the lowest 
performance recorded for 10 and 25 epochs was SqueezeNet with an accuracy of 
respectively 81.23 and 81.36 and an f1-score of respectively 57.02% and 51.46% 
for a learning rate of 0.1. According to the specificity metrics, the majority of the  
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Table 2. Performance evaluation of six CNN architectures, changing the value of the epoch, batch size, and learning rate using 
Stochastic Gradient Descent as an optimizer.  

model batch Epoch Learning rate Accuracy precision Recall specificity F1-score Time 

ALEXNET 

16 

10 

0.1 

94.59% 91.50% 92.53% 96.10% 92.01% 286 

32 94.24% 91.43% 92.12% 95.75% 91.77% 263 

64 94.25% 91.41% 91.91% 95.71% 91.66% 250 

DENSENET 

16 97.67% 96.14% 96.72% 98.33% 96.43% 515 

32 97.33% 95.86% 96.28% 98.04% 96.07% 461 

64 97.84% 96.60% 96.66% 98.37% 96.63% 428 

EFFICIENTNET 

16 95.29% 93.07% 92.96% 96.34% 93.01% 497 

32 95.97% 93.76% 93.79% 96.94% 93.77% 478 

64 95.84% 93.52% 93.65% 96.85% 93.58% 457 

GOOGLENET 

16 95.13% 92.43% 92.49% 96.43% 92.46% 382 

32 95.80% 93.38% 93.55% 96.89% 93.46% 335 

64 95.47% 93.03% 93.08% 96.69% 93.05% 301 

SQUEEZENET 

16 97.33% 95.48% 96.31% 98.15% 95.89% 330 

32 95.97% 94.07% 94.27% 96.99% 94.17% 313 

64 81.23% 50.59% 65.31% 83.26% 57.02% 266 

VGG19 

16 93.73% 91.07% 90.42% 95.31% 90.74% 768 

32 94.77% 91.74% 92.28% 96.13% 92.01% 625 

64 93.39% 90.71% 89.61% 95.03% 90.16% 611 

ALEXNET 

16 

0.01 

93.73% 91.93% 90.03% 95.14% 90.97% 287 

32 95.11% 92.51% 92.67% 96.29% 92.59% 265 

64 95.11% 93.15% 92.64% 96.24% 92.89% 256 

DENSENET 

16 97.33% 95.72% 96.40% 98.07% 96.06% 512 

32 97.16% 95.40% 96.05% 97.96% 95.72% 457 

64 97.33% 95.82% 96.13% 98.05% 95.97% 424 

EFFICIENTNET 

16 95.80% 93.62% 93.64% 96.79% 93.63% 501 

32 95.46% 93.64% 92.87% 96.41% 93.25% 478 

64 96.32% 94.41% 94.74% 97.19% 94.57% 457 

GOOGLENET 

16 95.12% 92.49% 92.49% 96.36% 92.49% 384 

32 94.60% 91.53% 91.96% 95.97% 91.74% 374 

64 95.12% 92.80% 92.49% 96.29% 92.64% 339 

SQUEEZENET 

16 96.82% 95.05% 95.64% 97.68% 95.34% 336 

32 96.82% 95.11% 95.51% 97.67% 95.31% 309 

64 96.31% 94.24% 94.96% 97.32% 94.60% 263 

VGG19 

16 86.48% 78.35% 90.89% 85.15% 84.16% 1314 

32 93.40% 90.52% 89.40% 94.99% 89.96% 628 

64 93.58% 90.51% 89.67% 95.11% 90.09% 619 
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Continued 

ALEXNET 

16 

 0.001 

94.08% 90.80% 91.94% 95.79% 91.37% 286 

32 95.80% 93.38% 93.76% 96.86% 93.57% 264 

64 94.60% 91.46% 92.38% 96.11% 91.92% 261 

DENSENET 

16 95.98% 93.87% 93.73% 96.95% 93.80% 505 

32 95.63% 93.32% 93.50% 96.76% 93.41% 455 

64 89.47% 88.58% 81.19% 91.84% 84.72% 427 

EFFICIENTNET 

16 95.11% 92.79% 92.28% 96.20% 92.53% 504 

32 94.07% 91.39% 91.04% 95.38% 91.21% 480 

64 90.88% 86.68% 86.09% 92.84% 86.38% 460 

GOOGLENET 

16 94.25% 91.15% 91.55% 95.67% 91.35% 421 

32 92.13% 89.72% 86.99% 93.72% 88.33% 377 

64 88.88% 86.24% 81.68% 90.98% 83.90% 340 

SQUEEZENET 

16 96.66% 94.79% 95.37% 97.54% 95.08% 330 

32 95.46% 92.96% 93.47% 96.66% 93.21% 310 

64 94.25% 91.25% 91.91% 95.79% 91.58% 263 

VGG19 

16 93.23% 90.89% 89.01% 94.83% 89.94% 662 

32 92.34% 88.38% 88.59% 94.33% 88.48% 435 

64 92.62% 89.69% 88.47% 94.37% 89.08% 262 

ALEXNET 

16 

25 0.1 

95.80% 93.33% 94.31% 96.94% 93.82% 697 

32 95.80% 93.66% 93.98% 96.85% 93.82% 637 

64 94.59% 92.11% 92.36% 95.95% 92.23% 616 

DENSENET 

16 97.50% 96.09% 95.94% 98.12% 96.01% 3593 

32 98.00% 96.75% 97.17% 98.54% 96.96% 2043 

64 98.34% 97.18% 97.49% 98.81% 97.33% 2300 

EFFICIENTNET 

16 96.66% 95.05% 94.91% 97.42% 94.98% 1226 

32 96.83% 95.21% 95.36% 97.57% 95.28% 1178 

64 96.48% 94.62% 94.92% 97.34% 94.77% 1129 

GOOGLENET 

16 95.80% 93.23% 93.94% 96.96% 93.58% 938 

32 95.30% 92.43% 92.63% 96.53% 92.53% 802 

64 95.13% 92.16% 92.85% 96.51% 92.50% 731 

SQUEEZENET 

16 81.36% 50.88% 65.34% 83.53% 57.21% 876 

32 97.50% 95.84% 96.49% 98.22% 96.16% 824 

64 73.21% 42.41% 65.43% 76.39% 51.46% 701 

VGG19 

16 98.34% 97.18% 97.49% 98.81% 97.33% 3943 

32 94.44% 91.77% 90.85% 95.79% 91.31% 1183 

64 95.30% 92.65% 92.60% 96.47% 92.62% 729 
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Continued 

ALEXNET 

16 

 

0.01 

94.77% 92.06% 91.59% 95.95% 91.82% 713 

32 96.14% 94.18% 94.33% 97.10% 94.25% 652 

64 95.97% 93.92% 93.94% 96.96% 93.93% 628 

DENSENET 

16 95.63% 93.39% 93.29% 96.67% 93.34% 3593 

32 98.34% 97.22% 97.55% 98.80% 97.38% 2043 

64 97.84% 96.55% 96.66% 98.42% 96.60% 2300 

EFFICIENTNET 

16 96.48% 94.72% 94.53% 97.29% 94.62% 1243 

32 95.80% 93.60% 93.67% 96.79% 93.63% 1193 

64 95.99% 94.18% 93.97% 96.88% 94.07% 1142 

GOOGLENET 

16 95.46% 92.72% 93.32% 96.71% 93.02% 948 

32 94.95% 92.27% 92.34% 96.22% 92.30% 807 

64 94.42% 91.50% 91.57% 95.79% 91.53% 734 

SQUEEZENET 

16 97.33% 95.86% 96.37% 98.04% 96.11% 862 

32 97.50% 96.28% 96.52% 98.14% 96.40% 843 

64 97.17% 95.73% 96.05% 97.91% 95.89% 817 

VGG19 

16 94.09% 91.09% 90.77% 95.55% 90.93% 764 

32 93.58% 91.04% 89.91% 95.17% 90.47% 619 

64 94.36% 91.36% 91.08% 95.76% 91.22% 628 

ALEXNET 

16 

0.001 

95.11% 92.31% 93.15% 96.45% 92.73% 708 

32 95.46% 93.11% 93.41% 96.59% 93.26% 661 

64 94.08% 90.80% 91.94% 95.79% 91.37% 633 

DENSENET 

16 97.16% 95.32% 96.23% 97.98% 95.77% 1894 

32 96.66% 94.64% 95.32% 97.58% 94.98% 1850 

64 96.32% 94.56% 94.35% 97.22% 94.45% 2310 

EFFICIENTNET 

16 95.81% 93.43% 94.07% 96.87% 93.75% 1244 

32 95.46% 93.30% 93.11% 96.47% 93.20% 1196 

64 93.89% 91.55% 90.35% 95.18% 90.95% 1147 

GOOGLENET 

16 97.67% 96.04% 96.72% 98.36% 96.38% 976 

32 94.42% 92.37% 91.33% 95.67% 91.85% 848 

64 91.24% 88.97% 85.69% 92.97% 87.30% 768 

SQUEEZENET 

16 96.15% 94.04% 94.48% 97.19% 94.26% 5524 

32 96.66% 94.87% 95.28% 97.53% 95.07% 5564 

64 95.46% 93.13% 93.90% 96.68% 93.51% 3144 

VGG19 

16 93.57% 90.70% 89.82% 95.10% 90.26% 703 

32 93.05% 90.00% 89.08% 94.74% 89.54% 675 

64 92.52% 89.20% 88.67% 94.36% 88.93% 677 

https://doi.org/10.4236/ojapps.2022.125049


S. E. Arnaud et al. 
 

 

DOI: 10.4236/ojapps.2022.125049 735 Open Journal of Applied Sciences 
 

misclassifications are related to the SqueezeNet architecture (76.39%) for a batch 
size of 64, the learning rate of 0.1, and 25 epochs. 

Table 3 compares the CNN architectures when utilizing the Adaptive Mo-
ment Estimation (Adam) parameter as an optimizer. The results indicated that 
DenseNet (98.34%) had the best accuracy for 10-epochs using a learning rate of 
0.01 and a batch size of 16. While EfficientNet b7 (89.46%) and VGG19 (91.25%) 
had the lowest accuracy with a learning rate of 0.1. The highest f1-score percen-
tages recorded for the Adam optimizer were obtained by SqueezeNet (97.65%) 
and DenseNet (97.34%) for a learning rate of 0.01. EfficientNet b7 had the worst 
f1-score performance 85.33%, with a learning rate of 0.1 and a batch size of 16.  

 
Table 3. Performance evaluation of six CNN architectures, changing the value of the epoch, batch size, and learning rate using 
Adaptive Moment Estimation (Adam) as an optimizer.  

model batch Epoch Learning rate accuracy precision recall specificity F1-score Time 

ALEXNET 

16 

10 

0.1 

93.03% 89.44% 90.50% 94.75% 89.97% 303 

32 94.61% 92.42% 91.96% 95.85% 92.19% 280 

64 93.89% 91.32% 90.11% 95.16% 90.71% 264 

DENSENET 

16 97.50% 96.09% 95.94% 98.12% 96.01% 446 

32 96.82% 94.93% 95.42% 97.70% 95.17% 431 

64 98.01% 96.73% 97.17% 98.55% 96.95% 411 

EFFICEINTNET 

16 89.46% 88.05% 82.78% 91.39% 85.33% 1561 

32 93.03% 89.61% 90.99% 94.87% 90.29% 1483 

64 92.31% 88.94% 89.49% 94.21% 89.21% 1452 

GOOGLENET 

16 94.59% 91.88% 91.60% 95.87% 91.74% 484 

32 94.95% 92.02% 92.25% 96.30% 92.13% 417 

64 94.77% 91.82% 93.01% 96.36% 92.41% 315 

SQUEEZENET 

16 96.49% 94.28% 94.86% 97.45% 94.57% 356 

32 95.30% 93.35% 91.73% 96.24% 92.53% 327 

64 95.29% 93.28% 92.30% 96.27% 92.79% 282 

VGG19 

16 91.25% 87.42% 87.60% 93.49% 87.51% 278 

32 94.24% 91.10% 91.79% 95.71% 91.44% 272 

64 94.39% 92.45% 90.47% 95.73% 91.45% 264 

ALEXNET 

16 

0.01 

92.87% 89.68% 89.87% 94.61% 89.77% 304 

32 92.52% 89.69% 89.61% 94.40% 89.65% 279 

64 92.66% 89.02% 90.30% 94.72% 89.66% 267 

DENSENET 

16 98.17% 96.98% 97.37% 98.67% 97.17% 756 

32 95.46% 93.64% 92.87% 96.41% 93.25% 712 

64 97.33% 95.74% 96.22% 98.05% 95.98% 672 

EFFICEINTNET 

16 94.08% 91.36% 91.10% 95.38% 91.23% 457 

32 95.46% 93.00% 93.68% 96.58% 93.34% 441 

64 94.59% 91.94% 92.29% 95.92% 92.11% 421 
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Continued 

GOOGLENET 

16 

 

 

95.30% 92.54% 93.60% 96.70% 93.07% 400 

32 94.94% 91.98% 92.76% 96.34% 92.37% 349 

64 94.43% 91.21% 91.21% 95.79% 91.21% 316 

SQUEEZENET 

16 97.84% 96.34% 96.78% 98.46% 96.56% 354 

32 97.84% 96.23% 96.87% 98.51% 96.55% 332 

64 98.34% 97.16% 97.52% 98.82% 97.34% 282 

VGG19 

16 93.72% 91.17% 90.17% 95.05% 90.67% 280 

32 93.75% 90.77% 89.93% 95.26% 90.35% 266 

64 94.28% 91.70% 90.70% 95.67% 91.20% 260 

ALEXNET 

16 

0.001 

94.94% 91.99% 92.88% 96.34% 92.43% 298 

32 94.42% 91.69% 92.51% 95.92% 92.10% 265 

64 95.45% 93.15% 93.17% 96.53% 93.16% 249 

DENSENET 

16 98.17% 96.92% 97.34% 98.69% 97.13% 540 

32 98.34% 97.10% 97.70% 98.85% 97.40% 488 

64 98.01% 96.73% 97.01% 98.54% 96.87% 457 

EFFICEINTNET 

16 97.00% 95.64% 95.69% 97.66% 95.66% 463 

32 95.80% 93.57% 93.88% 96.81% 93.72% 438 

64 96.65% 95.05% 94.85% 97.41% 94.95% 419 

GOOGLENET 

16 95.12% 92.51% 92.21% 96.29% 92.36% 404 

32 95.30% 92.65% 92.72% 96.55% 92.68% 345 

64 95.47% 92.92% 92.99% 96.63% 92.95% 314 

SQUEEZENET 

16 97.50% 96.37% 96.28% 98.14% 96.32% 355 

32 96.65% 94.66% 95.37% 97.59% 95.01% 315 

64 96.82% 94.90% 95.70% 97.72% 95.30% 282 

VGG19 

16 95.64% 93.13% 93.19% 96.75% 93.16% 276 

32 95.63% 93.31% 93.44% 96.67% 93.37% 273 

64 95.64% 93.13% 93.19% 96.75% 93.16% 251 

ALEXNET 

16 

25 0.1 

92.52% 89.69% 89.37% 94.32% 89.53% 718 

32 94.59% 91.57% 92.68% 96.12% 92.12% 671 

64 94.08% 90.75% 91.79% 95.72% 91.27% 653 

DENSENET 

16 96.15% 93.82% 94.93% 97.33% 94.37% 3975 

32 97.50% 96.05% 96.46% 98.16% 96.25% 1183 

64 96.83% 94.91% 95.72% 97.68% 95.31% 1097 

EFFICEINTNET 

16 94.25% 91.46% 91.28% 95.54% 91.37% 1152 

32 94.94% 92.32% 92.64% 96.15% 92.48% 1457 

64 95.46% 93.38% 93.14% 96.47% 93.26% 1556 
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GOOGLENET 

16 

 

 

95.11% 92.59% 92.55% 96.26% 92.57% 1011 

32 94.09% 90.61% 90.68% 95.58% 90.64% 870 

64 93.73% 90.18% 90.99% 95.48% 90.58% 785 

SQUEEZENET 

16 96.70% 93.07% 95.27% 97.01% 94.16% 6522 

32 97.67% 96.28% 96.39% 98.26% 96.33% 6085 

64 97.16% 95.53% 95.74% 97.87% 95.63% 6344 

VGG19 

16 94.94% 92.21% 92.46% 96.23% 92.33% 694 

32 93.38% 90.92% 88.89% 94.80% 89.89% 662 

64 95.11% 92.56% 92.46% 96.29% 92.51% 651 

ALEXNET 

16 

0.01 

91.96% 87.95% 88.60% 94.02% 88.27% 696 

32 94.07% 92.11% 90.59% 95.31% 91.34% 639 

64 92.31% 89.94% 87.92% 93.92% 88.92% 600 

DENSENET 

16 98.17% 96.98% 97.37% 98.67% 97.17% 3943 

32 97.33% 95.76% 96.34% 98.05% 96.05% 3720 

64 98.01% 96.61% 97.29% 98.60% 96.95% 1107 

EFFICEINTNET 

16 96.82% 95.28% 95.30% 97.54% 95.29% 2163 

32 96.32% 94.65% 94.38% 97.13% 94.51% 1179 

64 95.80% 93.65% 94.01% 96.81% 93.83% 1122 

GOOGLENET 

16 96.15% 93.71% 94.60% 97.27% 94.15% 984 

32 94.08% 90.70% 91.13% 95.66% 90.91% 844 

64 95.29% 92.48% 93.54% 96.68% 93.01% 759 

SQUEEZENET 

16 98.25% 97.08% 97.60% 98.94% 97.34% 935 

32 97.67% 96.11% 96.57% 98.33% 96.34% 873 

64 96.83% 95.33% 95.58% 97.62% 95.45% 795 

VGG19 

16 93.48% 90.26% 90.28% 95.03% 90.27% 695 

32 94.61% 92.18% 91.11% 95.92% 91.64% 662 

64 93.58% 90.82% 89.30% 95.07% 90.05% 689 

ALEXNET 

16 

0.001 

96.14% 93.94% 94.08% 97.11% 94.01% 690 

32 95.80% 93.72% 93.49% 96.74% 93.60% 649 

64 95.28% 92.70% 93.39% 96.51% 93.04% 615 

DENSENET 

16 97.67% 96.04% 96.72% 98.36% 96.38% 3972 

32 98.00% 96.68% 97.29% 98.57% 96.98% 1940 

64 98.01% 96.64% 97.11% 98.58% 96.87% 1143 

EFFICEINTNET 

16 96.31% 95.02% 93.96% 97.06% 94.49% 1238 

32 95.98% 93.84% 93.88% 96.92% 93.86% 1180 

64 96.49% 94.63% 95.07% 97.33% 94.85% 1128 
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Continued 

GOOGLENET 

16 

  

95.30% 92.63% 92.69% 96.56% 92.66% 989 

32 94.78% 91.78% 92.01% 96.15% 91.89% 845 

64 95.12% 92.34% 92.58% 96.42% 92.46% 762 

SQUEEZENET 

16 97.67% 96.47% 96.69% 98.28% 96.58% 872 

32 97.16% 95.48% 96.14% 97.95% 95.81% 809 

64 97.16% 95.62% 96.05% 97.90% 95.83% 702 

VGG19 

16 94.43% 92.13% 91.21% 95.77% 91.67% 691 

32 94.96% 92.29% 91.80% 96.23% 92.04% 677 

64 94.45% 92.00% 90.88% 95.83% 91.44% 661 

 
Table 2 and Table 3 indicate that for most of the hyperparameters, all CNN 

models generated a somewhat greater percentage of recall than precision for 
both Adam and SGD optimizers. When compared to the training labels, a sys-
tem with high recall but low precision returns many results, but the majority of 
its predicted labels are inaccurate. High scores for both, on the other hand, indi-
cate that the classifier is producing accurate (high precision) results as well as a 
majority of all positive results (high recall). SqueezeNet had the worst perfor-
mance in this evaluation, scoring more than a 10% difference between precision 
and recall during testing (precision = 42.41 and recall = 65.43 percent) with the 
SGD optimizer, a learning rate of 0.1, batch size of 64, and 2 epochs. 

Table 2 and Table 3 show that across all hyperparameters for the time para-
meter, there was no clear pattern for selecting the architecture with the least 
training time. AlexNet’s values tended to be low. The AlexNet model had the 
lowest values with 250 seconds in epochs (10), batch (64), and learning rate 
(0.1). On the other hand, AlexNet’s accuracy and f1-score were frequently lower 
than those reported by other CNN architectures. With a learning rate of 0.1 and 
a batch size of 1, SqueezeNet (6522) had the slowest training speeds in 25 epochs 
(16). Finally, the EfficientNet b7 architecture required the most training time for 
the majority of hyperparameters. The longest training times had no bearing on 
the accuracy, regardless of how high or low it was. 

5. Discussion 

The optimizer plays a key role in minimizing the error function, allowing the 
model to conform to the instances in the training set. For both Adam and SGD 
optimizer, the validation accuracy and F1-score of CNNs in detecting early 
blight and late blight disease ranged from 81.23 to 98.51 and 56.67 to 97.37 re-
spectively. It was observed that training the network with Adam as the optimizer 
increased the accuracy of all models to be between 89.46 and 98.51 as shown in 
Table 3. However, the GoogleNet architecture may have contributed to poor va-
lidation accuracy using the Adam optimizer since it starts with a large receptive 
field to decrease computing requirements [12]. These findings are consistent 
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with those of Russakovsky et al. After tuning the hyperparameters, it was also 
observed that the highest accuracy and f1-score for detection of potato late blight 
and early blight disease was obtained from DenseNet (97.37). The findings re-
veal that a larger batch size does not always result in high accuracy, and that the 
learning rate and optimizer utilized can have a major impact. Lowering the 
learning rate and batch size will help the network to train more efficiently, espe-
cially when fine-tuning. Our findings are consistent with those of Masters et al. 
[35], who suggested that smaller batch sizes be employed. Radiuk et al. [36] claim 
that when a high learning rate is utilized, the larger the batch size, the better the 
CNN’s performance. While we do not encourage using big batch size numbers 
in our research, Radiuk’s findings are consistent with our findings on the batch 
size and learning rate relationship. We specifically mentioned that better learn-
ing rates necessitate bigger batch sizes. Finally, Bengio et al. [37] suggested that a 
batch size of 32 is a good place to start. While our trials (which showed that a 
batch size of 32 produced decent results) back this up, the best results were ob-
tained with a batch size of 16. 

The lowest performance recorded for 10 and 25 epochs was SqueezeNet with 
an accuracy of respectively 73.21% and an f1-score of 50.86% with SGD opti-
mizer for a learning rate of 0.1 and a batch size of 64. The best performance 
(98.34% validation accuracy and 97.37 f1-score) was obtained using a combina-
tion of batch (32), learning rate (0.01), and epochs (25).  

Table 4 compares this study to similar studies in which the best-performing 
CNN designs have been reported. Yen Lee et al. [19] focused solely on con-
structing a CNN architecture for disease detection on potatoes, achieving a 92 
percent accuracy. Similarly, Tiwari et al. [21] used fine-tuning (transfer learning) 
to extract significant characteristics from the dataset using pre-trained models 
like VGG19. The results were then analyzed using multiple classifiers, with logis-
tic regression outperforming the others by a significant margin of classification 
accuracy, achieving 97.8% over the test dataset. Multiclass SVM was used by Is-
lam et al. [15] to divide leaf images into three classes based on ten color and tex-
tural variables. The cross-validated accuracy of the system was 93.7 percent. Fi-
nally, this study evaluated the performance of six CNNs using transfer learning 
and modifying four hyperparameters, resulting in the DenseNet model with the  
 
Table 4. Comparaison of the conducted study with similar studies. 

Reference Disease Dataset size Methodology Accuracy 

[18] Early and late blight 1150 CNN 92% 

[20] Early and late blight 2152 
SVM, KNN,  

and Neural NetCNN 
97.8% 

[14] Early and late blight 300 Segment and Multi SVM 95% 

This study Early and late blight 4072 
AlexNet, GoogleNet,  

EfficientNet_b7, SqueezeNet, 
VGG19. And DenseNet 

98.34% 
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highest performance, with 98.34% validation accuracy and 97.37% f1-score. Si-
milarly, VGG 16, Inception V4, ResNet with 50, 101, and 152 layers, and Den-
seNets with 121 layers were all tested by Too et al. [38]. The investigation em-
ployed data from PlantVillage from 38 different classes, including damaged and 
healthy photos of leaves from 14 different plants. DenseNets121 produced the 
best results, with a testing accuracy of 99.75 percent. 

6. Conclusion 

The agriculture industry can considerably benefit from the use of CNN in image 
classification to boost yield production. The performance of five CNN models 
(VGG19, AlexNet, GoogleNet, EfficientNet-b7, SqueezeNet, and DenseNet) was 
evaluated in this study. The epochs, batch, optimizer, and learning rate hyper-
parameters of all the CNN architectures were varied. The learning rate and batch 
size, according to our findings, have a substantial impact on the network’s per-
formance. The learning rate and batch size have a strong relationship; when 
learning rates are high, a big batch size performs better than when learning rates 
are low. The results showed that DenseNet architecture, which used the SGD 
optimizer, had the greatest performance for early and late blight disease diagno-
sis with 98.34% validation accuracy and 97.37% F1-score. SqueezeNet architec-
ture had the lowest performance 73.21% accuracy and an f1-score of 50.86% 
when utilizing the SGD optimizer. Overall, the Adam optimizer outperforms the 
SGD optimizer, although the SGD optimizer yields the best results. The SGD 
optimizer has no visible effect on reaching high accuracy. 
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