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Abstract

In this paper, we investigate the existence of time-periodic solutions to the
n-dimension hydrodynamic model for a reacting mixture with a time-periodic
external force when the dimension n>5 is under some smallness assump-
tion. The energy method combined with the spectral analysis is used to obtain
the optimal decay estimates on the linearized solution operator. We study the
existence and uniqueness of the time-periodic solution in some suitable func-
tion space by using a fixed point method and the decay estimates. Further-
more, we obtain the time asymptotic stability of the time-periodic solution.

Keywords
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1. Introduction

Mathematical models for mixtures of the hydrodynamic equations in the space
R" have been studied for quite a few years. Notice that if the radiation effect is
neglected, the existence, uniqueness and dynamic behavior of solutions were
recognized by Chen [1] [2] and Li [3] under the initial value satisfies certain as-
sumptions; if the radiation effect is considered, for (1.1) in one dimensional, the
existence and uniqueness of the global solution to the Cauchy problem is ob-
tained by Liao and Zhao [4] under the assumption of constant viscosity coeffi-
cient; the global existence and uniqueness of solutions for initial boundary value
problems of viscous radiative reactive gases were achieved very well by Liao and
Zhao [5], Ducomet [6], Jiang and Zheng [7] [8] and Umehara [9] [10]. Besides,

for (1.1) in multidimensional, global existence and exponential stability of
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spherically symmetric solutions in a bounded annular domain for compressible
viscous radiative reactive gases were well obtained by Qin, Zhang, and Su [11]
and Liao, Wang and Zhao [12] for spherical solutions in an exterior domain.
When the initial data is in the neighborhood of the trivial stable solution, the
global existence and uniqueness of the strong solution of Cauchy problem are
proved effectively by Wang and Wen [13]. In addition, there are lots of re-
searches on the time-periodic solution of the Navier-Stokes system, what we
want to say most is that the existence of a time-periodic solution for the Navi-
er-Stokes equations with time-periodic external force under some assumptions
when the space dimension n>5 was well proved by Ma, Ukai and Yang [14];
The existence of time-periodic solutions for compressible Navier-Stokes equa-
tions under general external forces when space dimension n=4 was defined
by Jin [15]; For the time-periodic parallel flow problem in n-dimensional space,
there is a time-periodic solution for the Navier-Stokes equation with a special
time-periodic external force was controlled by Brezina and Kagei by [16]. In
summary, it’s still open whether the time-periodic solution to (1.1) exists and is
unique in 7 dimensions.

In this paper, we consider the Cauchy problem of a model for the combustion

of the hydrodynamic equations with a time-periodic external force in R":
py +div(pu)=0,
(pu), +div(pu2)+VP(p,9) =divS+pf,
(pe), +div(peu)+ Pdivu =—divQ +S: Vu + Kqp(0) pZ,
(pZ), +div(puZ)=-Kp(0)pZ +divF

(1.1)

for xeR",te[0,+), where p(t,x), u(t,x)=(u,u,--u)(t,x), 0(tx),
Z(t,x) denote the density, the velocity, the temperature and the mass fraction
of the reactant, respectively. The last term on the right side of the energy Equa-
tion (1.1); is the reactant energy difference Kqe(6)pZ , which means the dif-
ference between the rate of gained energy for the product and that of lost energy
for the reactant. The constant K >0 is the reaction rate. g is the difference of
the stoichiometric coefficients for components appearing as reactant and prod-
uct. pZ =pZ(t,x) represents the density of the reactant. ¢ =¢(0) is the
reaction function which is assumed to satisfy the first-order Arrhenius law as
follows (see [6]):

0, 0<0<6,;

o(0)=1 a

0% ?, 0>6,,5>0,
where A is a positive constant and stands for the activation energy. 6, >0 is
the ignition temperature. Combustion will occur when the temperature of the
given fluid particle rise above 6, . Then, the reactant is transformed to the
product via an irreversible reaction governed by the function 6, .

The heat flux Q =Q(p,0,V0) satisfies the Fourier law
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Q=-«(p,0)Vo, (1.2)

eb
where «(p,0) =i +Kx,—>0 is the heat conductivity coefficient. &, &,
p

and b are positive constants.
The function F that we assumed denotes the diffusion velocity and satisfy

Fick’s law

F = DVZ = dOpVZ, (13)

where D=d,p stands for the reactant flux diffusion coefficient and the posi-
tive constant d, is the species diffusion in the reaction.

The total pressure Pin the gas and the corresponding specific internal energy
ehave the following form

4
P=P(p,t9)sz¢9+%t94, e=e(p.0)=co+a’l, (1.4)
Yol
where constants R>0, aand C, are positive.

The viscous stress tensor is given in system (1.1) by

(1.5)

nxn?

S= y(Vu +VTu)+ﬂdiqu

2
where g is the heat viscosity coefficient, 4 =¢——pu with the bulk viscosity
n

coefficient ¢ >0. Thus

. S \2
i i
S:Vuzzﬂ(%+%] + 2 |divul”. (1.6)

In what follows, we first make two assumptions:

Al f(t,x)=(f,f,,-, f,)(tx) is periodic on time with period T >0.

A2. P(p,0) is a smooth function in a neighborhood of the constant state
(5,0,5,0) with 5>0, 6>0. In addition, P(p,0) satisfies P, (ﬁ,§)> 0
and P, (/3,9_)> 0.

In this paper, our main purpose is to obtain a time-periodic solution of (1.1)
around the constant state ( 2..,0, Hw,O) which has the same period as the peri-
odic function f (t,x). Our main idea is to combine the energy method with
spectral analysis to get the optimal decay estimates of the linearized solution op-
erator S, (t,s), which we will introduce in Section 2 and obtain the decay rates
of S,(t,s) in Section 4.

Let N >n+2, we define the solution space by

X (o,T;a'):{(p,u,e,z)(t);p(t,x)ec°(o,T; HYE(R))CH(0,T;H 2 (")),

(u,6,2)(t,x) €C°(0,T;HN (R")) A CH (O, T HM 2 (")),

(1.7)
Vp(t,x)e *(0,T;HN ! (R")), v (u,0)(t,x) e L*(0,T;H" (R")),
Z(t,x)e (0, T;HY(R")),0< Z (t,x) <1,]|(p,u.0,2)| < a’},
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with some constant &' > 0. The corresponding norm |||||| is defined as follows:
l(o.0.0.2)[f = sup [(o.u.0.2)()
T (1.8)

(o, o), 4120

N-1

)dt.
N+1

In this paper, we will study the existence and uniqueness of time-periodic so-
lutions and associate optimal time-decay estimates for the time-periodic solution
which we obtained in R". Now we are in a position to state our main results.

Theorem 1.1. Let n>5, N >=n+2. Suppose

f (t, X) eC’ (O,T; H N’l)(R” )m I (R”) . Under assumptions A.1-A.2, there ex-
ists a ﬁxed constant 8, >0 given in the proof, such that if

" N1 S <hy, for some sufficiently small constant h, >0, then the
0<t<T

system (1 1) admits a unique time-periodic solution ( pPruPr grz per) with
period T >0, which satisfies ( e pu O 0,2 per)e X(0,T;a,).

We consider the Cauchy problem of the system (1.1) with the initial data
(po,uo,HO,Zo)(x):(p,u,H,Z)L:tO (1.9)

for some fixed initial time t; € R. When the initial data is a small perturbation
of the periodic solution ( pPruPr gz pe’) stated in Theorem 1.1, we obtain
the stability of the solution around this time-periodic solution.

Theorem 1.2. Assume that ( PP UPT P ZP") s stated in Theorem 1.1.
Foreach t, e R, let “(po—pper (to) Ug —UP" (ty),6, =07 (t,),Zy =27 (t “N .
is sufficiently small under the same conditions of Theorem 1.1, then the Caucby

problem (1.1) and (1.9) has a unique global solution ( p,U,0, Z) which satisties
p_pper cC? (tO,OO; H N (Rn ))mcl (tO,OO; HN-2 (Rn )), (1.10)

U—U™ 0—0" €C° (to,oo, H N‘l(R”))mCl (to,oo; HNS (]R”)), (1.11)
T NS T Y

and it holds that

o002+ (56t oV @o0L, RS
to 1.13

<Cy (2o =P () g U™ (8), 6 0™ (8 ),ZO—ZPEf(to))”Z

N1

Moreover, if
(po—p "(ty). Uy —u™ (t,),6, — 0™ (t,), ZO—Zper(to))e Ll(R”), then exists a

constant C; such that

N-1

; (1.14)
§C0(1+t)7||(p0_pper(t ) U, _uper( ) 0, eper( ) ZO_Zper(to))

HN2AL

Notations For a multi-index k =(k;,k,,---,k,), we denote |k|=zn:ki and
i=1
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oy =R -0y . f(§)=(2n)’% j f(x)e™dx, f(x)=(2n EJ' )e<de
n R"

for xeR", £ecR". Here, ||||Hm =||||m for m>0 in the Sobolev Space

H™(R").

The rest of the paper is organized as follows. In the second section, we intro-
duce appropriate variable transformations to linearize the transformed equations.
In Section 3, we first show the energy estimates of the solution to (1.1). Then we
study the periodicity of the solution of the linearized system with respect to time.
Finally, we obtain the time-periodic solution of the nonlinear equation ac-
cording to the expression of the solution of the equations. In Section 4, the
proof of Theorem 1.1 is given. In the last section, we study the stability of the

time-periodic solution.

2. Reformations

From the system (1.1), we have

p, +div(pu) =0,
p(u +(u-V)u)+VP(p,0) = pAu+(u+A)Vdivu+pf,

. . (2.1)
pe + pu-Ve+Pdivu = div(x(p,0)VE)+S:Vu+Kde () pZ,
PZ +pu-VZ =—Ko(6) pZ +dypAZ +dVpVZ.
In terms of the definition of e = e(p, 9) in (1.3), we can see that
4 4 3
e (p.0)=-22 <0, e(p.0)=c,+ a; >0, 2.2)
By using (2.1), we have
e +u-Ve=eg,(p,0)0,0-e,(p,0)pdivu+e,(p,0)u-Vo. (2.3)

Taking a change of variables by c=p-p, U=U, v=0-6, Z=Z, and
using (2.3), then the problem (1.1) can be reformulated as
+pVU+u-Vo =S (o,u),

P(p.0 P,(p.0
u, + p(/_) )Vcr+ g(/j )Vv ﬁAu ('UJ_F )levu=S (o.uv)+f
P P P P
P(p,0)-¢e, (p.0)p° p,0 Kae(6
v, + (7 )_p_(p_ )7 divu - K(;D_)_Av— qui(_)z S;(o,u,v,2)
&(p.0)p &(p.0)p  &(p.0)
Z,-d,AZ +Kp(0)Z =S, (o,u,v,2),
(2.4)
where
S,(o,u)=-0V-u,
S, (0,u,v) ==(u-V)u+g,(0,V)Vo+9, (o,v)VW—h(c) £ Au
P
(#+2)
vdivu,
~h(e) )
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S;(o,u,v,Z)=—u-Vv+h (o,v)divu—h,(o,v)Av-h,(o,v)Z
+1,(a,v)S:Vu+1,(o,v)VoVv+1, (o,v) |V,
S,(o,u,v,Z)=-u-VZ+h,(v)Z+1,(co)VoVZ,

with

|
S—
<0
—_
q
+
Dl
<
+
|
SN—

quo(g) ~ Kq¢(v+§)
&(p.0) e(c+pv+0

hy(o,v) = ), h, (v) = Kgo(é)— K¢)(V+§),
1 Kp(a+/3,v+§)

W)= &(c+pv+0)(c+p) 4= & (0 +pv+0)(0+7p)

L (o) = K, (c+pV+0)

&(c+pv+d)(o+p) o+p’ c+p
Taking a change of variables again by

o=0, w=aU, V=0V, r= (2.5)

and

Then, the regularized problem (2.4) can be reformulated as
o+ AVo+,0-Vo =G (o),
o, + A4V o+ LW - Ao —(f+2)Vdive =G, (o, 0,v)+af,
v + Ldivo - AV A =G, (o, 0,V,T),
I —dyAr + 4, =G, (o,u,v,r),

(2.6)
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where

(G,,G,,G,,G, ) = 5,5, S, —¥F__s, o—,iw,iv,mr . (27)
&(p.0) a p ap

Notice that G;,G,,G;,G, have the following properties:
G, (o,0)~ oV -,
G,(o,0,V)~(@-V)w+0oVo+VWao+0oVV+VWV+oAw+oVdive,
G;(0,0,V,1) ~ @-VV+odivo+vdiveo+ oAV +VAV + 0T +Vr +0S : Ve
+S:Vaor+ oV oW +WoW + o W[ +v[vy[’,

G, (o, @,V,1) ~ @-Vr+vr+oVoVr.

Let U =(c,m,v,r), G=(G,G,,G,,G,), F=(0,af,0,0).

Then, we can get

~Adivo-A,0-Vo+G, (U)

O-t
o | _ —ﬂNo-—AZVV+(/7Aa)+(ﬁ+Z)VdiVa))+Gz(U)+af s
Vi —Adiveo+yAv+ A1 +G; (U)

-

doAr —A,r +G, (U)

Referred to the way of [14], we are using A and B, to denote the

(n+2)x(n+2) matrix differential operators, we can write as

0 -, div 0 0 AoV 0 0 0
A_| AV A+ (E+A)Vdiv -4,V 0 B 0 000
0 —A,div %A 2 ! 0 000
0 0 0 dA-4 0 000
From (2.6), we can write as
U, =(A+B,)U+G(U)+F. (2.9)

To obtain the periodic solution of the above problem, we consider the follow-

ing linear system
o, + Adivo+ 4,u-Vo =G (W),
o, +21Va+ﬂ,2Vv—(ﬁAa)+(ﬁ+/T)Vdiva)) =G,(W)+af,
v, + diveo -y, Av— 4,1 =G, (W),
L —doAr + 4,r =G, (W),

(2.10)

for any given W =(p,u,0,Z) satisfying
p(t)e HY (R"),(u,0,Z)(t)e H"*(R"),vt > 0.
That’s to say (2.10) can be written by

U, =(A+B,)U+G(W)+F. (2.11)

From (2.11), we use the Duhamels principle to determine the solution of the
system (2.10)
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U(1)=5, (t5)U (5)+] 5, (to)(GW)+F)()dr, t2s  (212)

S

where S, (t,s) is the corresponding linearized solution operator.

3. Energy Estimates

In this section, we assume that f (t,x)e H"™ (R” ) AL (R“) forall t>0.We
list the following inequalities for later use; cf. [17].
Lemma 3.1. Let ueCy (R”), we have

1) |ulf, <c|v™ulvull, n=2m;
@ . <cl v "
(2) Ju- <C[v™u ||V’“u||, n=2m+1.
Lemma 3.2. Assume that f,geC; (R”) If Ve >0, we have
C
[ -g-hdx<e[vrie] +olf Il (3.2)
IR”
2 C m-1 |12 2
[ f-g-hdx<e|f] +=|v o, Inl°, (3.3)
]Rn

where mis defined in Lemma 3.1.

3.1. The Energy Estimates on the Higher Order Derivatives

Lemma 3.3. Assume that n>5, N>n+2. Let (o-, w,V, r) be the solution
0£(2.10), it holds that

d
Sebvir. . 3 [ooven]

1<k|<N-1 gn
2

ve, (Vi O, +[v: (@mf, , +[vr ;)
<c(W O, +M O )(Ive O, +Iv (wo) O, +[z ()
et (O, +C (ol Pl M,

+C[vru@|Fe ), Ve O],

where constants ¢, >0 and ¢, >0 with ¢, islarge suitably.
Proof. For each multi-index & with 1<|k|<N . Applying &} to (2.10); -
(2.10);, multiplying them by o¥o, 0w, v respectively, and using Young’s

2
N+1

) (3.4)

inequality and integration by parts over R", one can get

1d ()« 2) _
——|lo +
2dt( x@ "

=—4, [ 804 (u-Vo)dx+ [ 8- d4G, (W )dx+ [ 85w- 4G, (W )dx
R" R" R"

“ okal +]okv 6';Va)||2 +(m+7) 6‘;diva)||2 +7, 6§Vv"2

(3.5)
+a [ 05w ok fdx+ [ dkv-04G, (W )dx+ 4 [ dv-ofrdx

R" R" R"

=L +L+ L+, + 1+ 1.
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For each multi-index kwith |k| =1, using Hélder’s inequality and Lemma 3.1,
we have

I, =4, [ (34dko)-(u-Vo)dx < 4, |uv?s], VAl
R"

- <Clul|vo]

where m = nT_ if nis odd, m :2 if n is even. For each multi-index & with

2<|k|<N, using Lemma 3.1, Lemma 3.2 and the fact that for n>5 and
N=n+2, m+2+|k|<2N,wehave

1
I, = 2™

(%) (65 "u-8\Vo)dx
k gn

<c|vul. ||

<clvul,[ve, , +c|v*ulviel, ,[v*o], ,
Thusfor n>5 and N>n+2, m>2 and m+2<n+1<N, we can get
<ol ol el vl 09
For the term Iy, let Vk'<k with |k’|=1, we have

:_jakak FG, (W )dx < e[ Vale|

Jore, w6

Now, we need to prove that the term

056, )< o (v )+

+|[0%” '(pVH)"
 (pvdivu)|,

(3.8)

can be estimated by C” P, 6’ " (|Vp||N 1-}-"V u, 6’ " ) where we show the
estimate on the term of 0% ( delvu) which can be written as
o (pvdivu)= > 8% pok ™ (vdivu)

"<k 2K Jkj<m

k
+ > K pal K (vdivu).

K"<k—K' Jk"|zm+1

(3.9)

Notice that for any k"<k-k' with |k"|<m, N-12|k’|+(m+1); for any
k"<k-k" with |k"|>m+1, N+1>|k—k'—k"|+2+(m+1). Then, Lemma 3.1
implies that

|25 (pvdivu)| <ol [divu],,

which is the desired estimate. Note that the other terms can be estimated simi-

larly. Hence, we have
L <e|viof, +c.f(puo) (Vo < VWO, ). 1o

Similar to 1, and |, it follows from Lemma 3.1 and Lemma 3.2 that

(oo <e|viol +C, |l vulf.  Gan

and
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eVl +C W (9o 9 ), )

+C, |65 {p-S:Vu +S:Vu}||

+C,

A p-vpvo+0-Vpv o+ p- VO +0-V e[|

W[, W) (Vel [ ol + (2 )

Now we turnto |,, forany k'<k with |k’|:1,wehave

2
< 5||V2V|| +C, (
N-1

I, =—a [ 0ok 07 fdx < .g||v2w||";fl +C, [f[E,- (3.12)
Rn
For the term |, we can get
Al + Bl < Blivall + 22 vrlP
Iy <ol + 3 [osr s?||V2v||Nil+?||Vr||Nil. (3.13)

Now, we estimate the unknown function Zand VZ. Multiplying &% (2.10),

by 0%r and integrating with respect to xover R", we can get

1d

2+d
2 dt 0

okr ain"2 + 2, |6k

"= [ dkrakG, (W)dx. (3.14)
Rn

Similar to the estimation on 1, let Vk'<k with |k’|=1, we have

[ &irokG, (W)dx<—[ 8- o5 G, (W )dx
R" R (3.15)

<evat] +c, Jo e, w) .

Then, we have

L0 o (dy o) 2
> el Vil + (@ =2)Vorl + AVl (3.16)

<C (W, WL (9ol + [ w0, +l2IE )

2
Meanwhile, to estimate "Va';cr for |k|=1,2,---,N -1, by applying &} to

(2.10),, multiplying them by Vé%o and integrating them on R", we obtain

A4 J. |V6§O'
an

“dx=— [ okq - Voiotx— 4, [ VO'v-Viodx
R" R"
+1 [ Adkw-Vokodx+(i+ ) [ Vakdive-Véiodx (3.17)
R" R"
+ [ 05(G, (W)+af) Volodx.
Rn

By applying V&% to (2.10);, multiplying them by 8%, integrating them on

R", we obtain

[ dw-Véiodx+ 4 [ o VEVadx+ 4, [ 85wVl (u-Vo)dx
R" R" R" (3.18)

Meanwhile, using integration by parts and putting (3.18) into (3.17), we have
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A|véio

A [ 8w Vetodx
1 dt ),

=—4 [ B VoV wdx -4, [ dfw- Vol (u-Vo)dx
R" R" (319)
+ [ 05w VoG, (W)dx -4, [ Valv-Viodx+ i [ Adke-Vaiodx
R" R" R"
+(z+2) [ vokdive - Vokodx+ [ 85 (G,(W)+af)-Vdiodx
R" R"

By using Holder’s inequality, it holds that
4 | ko VoV wix—4, [ dkw- Vel (u-Vo)dx+ [ diw- VLG, (W)dx
R" R" R"

e

And by using Youngs inequality, we obtain

(3.20)
<C "V@';a)

i [ Adko-Vatodk < 2 |votolf + - [victof
R" 8 /11

2
(ﬁ+2)ﬂifn vokdive-Vokodx < %"V@';a ’ +M|

2
X

|V26ka)

, (3.21)
; +ﬁ||vagv 2

2, j vk -vokodx < i||va§a

jak W)+at) Volodx < 21||vak ~Jes (e, w)+af)|.

Similar to the estimation on |, we have
x u~V0' "2
<C([(p.u.0) || Lol (vl v wel,) 22

"N -1 "v O-”N -2

Hence, from (3.19) to (3.22), we can get

Aviolr 3 [ dovelon

dt 1<\k\<N -1l

e w)f +[o

2 (G, (W)+af)[

sc(wNuN,l+|w||N,1)(||VpnM+||v<u,9>||i)+c||v2<w,v>||ifz (2)
refflE,

5 12
”N—l "V O-"N—Z

Combining I, (i=1,2,3,4,5,6), (3.17) and (3.23) yields the inequality (3.4).
This completes the proof of the lemma.

3.2. The Energy Estimates on the Lower Order Derivatives

In this subsection, the usual energy method does not work here for the system

(2.10) because the zero order derivative term J |V|2 dx cannot be controlled. In
Rn

order to overcome this difficulty, we would like to rewrite the system (2.10) and
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then obtain a new system about some modes
o, o, V=V+r, T. (3.24)

Then the system (2.10) could be rewritten as
o+ Adivo+4,u-Vo =G (W),
o + AV o+ LW (Ao +(a+ ) Vdive) - 2,Vr =G, (W) +af,
V, + Adivo— AV +(y, —dy )Ar =G, (W) +G, (W),
r—doAr+ A4,r =G, (W),

(3.25)

Lemma 3.4, Assume that n>5, N>n+2. Let (o,wV,r) be the solution
0£(2.10), it holds that

%(cs (e 0v. (O + | a)~Vadx]
‘e, (||Vo(t)||2 v (V)0 +||r(t)||2) (526)
<c(Ju®f+Ju(f +2)Ivo @, +c v (V) +<]t )

W) (Iv (ou o) +12E).

where constants ¢; >0, ¢, >0 and &£>0 with C; is suitably large and ¢

2

+C(|| p:u,6,Z)(t)

+||pu€Z)

m+1

is small enough.
Proof. Multiplying (3.25),, (3.25); and (3.25); by o, @ and V, integration

by part over R" respectively, one obtains

Il #lolf + VI )+ vl + (4 ) Jeivol + 7
=1 I (u-Vo)dx+ [ oG, (W)dx+ [ @-G,(W)dx+4, [ @-Vrdx
R" R" R" (3.27)
+aj - fdx+ [V (G4 (W)+G, (W))dx—(r, —dy) [ V-Ardx
R" R" R"

=) +J,+3;+3,+I,+ 3, + ;.
For the term J, , we obtain

<C|Vofluo|<clulveiv o,

For J,, by using Lemma 3.2, we have

J, :—f -(pdivu) dx<g||Vm N

For J; and Jg,Lemma 3.1 and Lemma 3.2 give

m-1

)

(VG o)+ )

J3S£|

N

V'“‘1V|E +C, (

(p,uHZ

+|(p.u,0.2)

m+1

For J,, one can get

=-1, j dive-rdx < ’u ||d|v I+

( )II I

For J,, we obtain
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2
f"L1 :

Js = aj w- fdx < g"Vm’la)"Z +C,
Rn
For J,, we have
_ V4 2 (7/1_do)2 2
3, =(n—do) [ WV Vi< OV
R" 1

Dueto n>5, N>n+2, we get that m-1>1 and m+1>N-1. Now we
estimate the unknown function Zand VZ. Multiplying (3.25)s by r and inte-

grating with respect to xover R", we can get
1d
S+ Ve + (2 =2

e e L A LA e e

<c(ltewo)f, lowo),. (7 (ou o) +12E)
Next, we need to estimate ||Vo-||2 , similar to the estimation on "V@ia ’ , we
obtain
Aol + 2 [ o-vods
2 at gy (3.29)

2

<V (V) +Cl(ou0)f [V (p.u.0)f +C[ [ +C[uf* Vol

m+1
Combining J; (j =1,2,3,4,5,6, 7) , (3.28) and (3.29) yields the inequality

(3.26). This completes the proof of the lemma.

4. Conclusion

In this section, we will present the proof of two Theorems in Section 1.

4.1. The Proof of Theorem 1.1

Let S,(t,s) be the solution operator for the case when u=0, by spectral
analysis, we have the following time decay properties for S (t,s), cf. [13].

Proposition 4.1. Assume 1< p<2, nx5, for any integer a>0, if
U(s)eH* (R”)m LP (R"), then for Vt>s, we have

20 (5, (L5)U (V)] <C (-5 252 5u (s)

(4.1)

HZALP

By Proposition 4.1 and the estimates obtained in Section 3, the solution oper-
ator S, (t,s) has the decay estimates as follows.

Proposition 4.2. Let (cr, w,V, r) be a smooth solution to the system (2.10),
integers n>5 and a> [g}+2 , there exist three positive constant C; and
Ce with C; being suitably large and &(s,a) >0, such that for Vt>s, seR
and U (s)e H*(R")ALP(R") if suplu(t)], <& (s, ).

Then it holds that -

D) [s, (Ls)U (D) <C2+t-s) 3 ]u(s) (4.2)

H AL
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<C(rt-s)y iU s)

(4.3)

2) [V(8, (ts)u(t))

From the assumptions of time-periodic solution and global solution given

P HY AL
above, we will prove Theorem 1.1 as follows and the proof is divided into two
steps.

Proof. (Theorem 1.1). 1) Choosing the time S=-kT for ke N, we can
suppose that there exists a time-periodic solution U =U (t), teR with pe-
riod T >0 for the system (2.10) with the initial data U, =U (s) at any given
time seR.Then (2.12) can be written

t
U (t)=S, (t—kT)Us+ [ S, (t.5)(G(W)(s)+F(s))ds, (4.4)
kT

where W =(p,u,6,Z), U =(o,0,v,r) and fare periodic on time with period
T >0 in the system (2.10). Dueto N >n+2> [g} + 2, from proposition 4.2, if
g € H"Y N L}, we obtain

S, (t,s)g"N SC(1+t—s)_%||g||HNle -0 as s— - (4.5)

In addition, since L> NL' isdensein L?, from (4.5), we have

S,(t.s)g|, >0 as s—>—ok—>+n,vgeH".
Therefore, since % >1 when n=>5, the fact that

S, (t,s)g"N SC(l+t—s)_% lollyn,.o for geH" AL, which means that the

convergence of the integral can be guaranteed in (4.4). Then, it holds that
t
U(t)= [ S, (ts)(G(W)(s)+F(s))ds,t=0. (4.6)

For any given perturbed solution U :(0', a),v,r), we can define a map
H[U](t):
H[UJ(t)=]" S, (t.s)(G(U)(s)+F(s))ds,t>0. (4.7)

And by (4.6), there exists a fixed point which is also the mild solution of (2.10)
inmap H [U](t); on the contrary, suppose that there exist a unique fixed point
in map A, denoted by U, (t)=(oy,@,,V;,1)(t). Because Fand fhave the same
time period 7; we set U, (t)=(oy,@,V,,1)(T +t), then
S, (t+T,5+T)=S, (t,5) since w,(t)=w, (T +t). Wehave

U, (t)= H[U](T +1)

T+t

_ j S, (T+t,5)(G(U,)(s)+F(s))ds

—0
t

:J Sy (T+LT+5)(G(U,)(T +5)+F (T +s))ds (4.8)

t

::[CSWZ (t.5)(G(U,)(s)+F(s))ds
=H[U] ().
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Thus from the uniqueness, U; =U, which is the desired periodic solution to
the system (2.10).

2) For the periodic function £ we assume that
o (17 GO+ Jat <y,

and hy >0 is small enough, then for some appropriate constant &,, H has a
unique fixed point in the space X (0,T;é,). Firstly, Since the period of the
time-periodic solution U =(o,®,v,r)=H(W) is also 7, for n>5 and

N >n+2, from lemma 3.3 and lemma 3.4, we can choose a small constant ¢,

alarge enough ¢, >0 andaconstant C; >0 such thatif sup (u (t)"N_1 <g
0<t<T
e lwovnf + ¥ [ oo voonx
dt N kR g
<5 (IV (@), +lrfh .+l ) 49)

<c(l(p.0.2)

(pu0.2)[,,)(Ivelh . +[v (o) +12Ir.,)

#Cll s e +C [Vl o], [0,

Since the period of U (t)=(o,®,v,r)(-t) is 7, and the inequality (4.9) is in-
tegrated with respect to #in [0,t], it can be got

(e I 2 M
T
<Cl(W W )(1vPl v @Ol +2f e @0

.
(LW A L W

O —y

Then, from the definition of |||( p,U,6,Z )|||2 , one can get

T
J(1¥ (@), +IrF . +19 ;o

<C(Iw]"+ [l )+CI [ 5 sup [V (4.1
2 2
+Co ()S(Lljg v G"N 3.[ ”V " dt.
And choosing a small constant ¢, >0 such that C ¢, < % . Then if
sup Vza(t)"N , <&, from (4.11),, it can be written as
o<t<T -
T
J(IV (@i +Irli, +1v el et
0 (4.12)

< c(|||w||| +wf )+CT SUp | £ s+ sup [v2o

0<t<T 2 o<t<T

N-3

Secondly, from (4.6), one gets
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v ®,- <CI =) 4 [+ (5 )
% <I> (1= S (W) (3 05 (@.13)
+cj (1+t-s) ||f M. ovs s Gs.
From (2.10), we have
|6 (W)(s)],pnse 241:" (W)()|na, (4.14)

Therefore, due to % >1 for n>5 , by (4.13), we can obtain

bl <cE{aetiear s o) (W, el )

( )"HN’lle

1
(Iwp ol 17 @O, +12f o[+ p

0<t<T
< (W +wif')+c sup

0<t<T

)"HN’lle ’

(4.15)

From (4.12) and (4.15), there exist two positive constants C,, C, indepen-
dent of W, such that

[IH ) < e (W +IwF)+c. sup

0<t<T

( )"H N-L L (4.16)

Finally, set W, =(p,,1,,6,,Z,), W, =(p,,u,,6,,Z,),let U =H(W,),
U, =H(W,),ifweset U=U,-U,.By (2.8), we have

[ )= )< s o+ [+ el s w19

where there is no relationship between C; and W. Assume that a= |||VV||| and
h= j(|f | Nl+|f| ) we choose 0<a'<b=min{s(0,N-1),,s,}
and sufficiently small h>0, such that

C,(a”+a®)+Ch<a and 2C,(a'+a”)<l.

Then, we can get through simple calculation

a’<min{ (4; T 1—— b} (4.18)
and
a'>lim| - ! z—c—zh+i =0. (4.19)
h—0 (401) 2C, 4C,

Hence if h<h, for a positive constant h,, the inequalities (4.18) and (4.19)
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are both allowed to make sense. When @, satisfies (4.18) and (4.19), for
hy <h,, His a contraction in the complete space X (0,T;a,). Then A has a
unique fixed pointin X (0,T;a,). We have proved the Theorem 1.1.

4.2. The Proof of Theorem 1.2

In this section, the proving of Theorem 1.2 can be arranged as follows. Firstly,
under the same conditions of Theorem 1.1, in order to prove the global existence
of the solution to the Cauchy problem (1.1) and (1.9), we can suppose that
t, =0 without loss of generality. Let ( pPruPr grrz pe') be the
time-periodic solution constructed in Theorem 1.1 and ( p,u,H,Z) be a solu-
tion to (1.1) and (1.9). As in Section 2, denote

(o-,a),v,r):[p—ﬁ,au,ﬂ(ﬁ—é),ig)ZJ,

(O_per,wper’vper,rper)z[pper _E’auper’ﬁ(eper _5)'6 qﬂe_)zper}

Then the difference

tion to the Cauchy problem

5 +AV®
=(§1(5+a”er,cb+a) Vv r+rper) G( Per,vper,rper)'
@+ VG + VT —(IAd+(f+ ) Vdivo )

=éz(&+ape',a3+a;”er,\7+vper,F+r"e’)—Gz(aper,wper,vpe’,rper),
(4.20)

U, + 4,divéd — y, AV — 4,7

:GS(5+0””,£)+ P +VP, r+r"er) Ga(ape’,a)pe’,vpe’,rpe’),

£ —dyAF + A,F

=G4(&+ape',a3+a;per,\7+vper,f+r"e’)—G4(aper,wper,vpe’,r"er),

where Gl(a,a),v, r)=G,(c,0,v,r)-4,Vo- o, G, (o,0,v,1)=G,(c,0,V,r) ,
G3 (O',a),v, I‘) = G3(O',a),V, r). Then our problem is turned to prove the global
existence and decay estimates on the solution to the Cauchy problem (4.20) and
(4.21). Define the function space of Cauchy problem (4.20) and (4.21) by
X (0,00) , where for 0<t <t, <oo.Thus we have
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X (tt) = {(6,0,9,7)(1);6(tx) € C° (b, b H (R")) 1 C (1,6, HY# (R")),
(d),v)(t,x)eco(tl,tz;HN‘l(R”))mcl(tl,tz;HN‘3(R”)),
VE el (bt HY?(R")),Va, Vi e (b, 1, HYH(R")),
Ftx)e (bt HY (R))),

(4.22)
with the norm N (t,,t,) is given by
N(t.t) = sup |(&3,0. )0,
1=1=02
(4.23)

o0, A @O A Jo

Notice that (aper,wper,vper,rper)e X (O,T). As usual, the local existence of
the Cauchy problem (4.20) and (4.21) can be given by the standard argument of
the contracting map theorem. Hence we omit the details of this proof.

Proposition 4.3. (The local existence). Assume that (&,,@,,V,,%)e HN™ (R”)
such that Inf {GO +p,V, +t9} >0 and 0<F,(x)<1. Then there exists a con-
stant T, > g depending on N (0,0) such that the Cauchy problem (4.20) and
(4.21) has a unique solution (&,®,V,F)e X (0,T,), which satisties

N(0,T,)<C,N(0,0), (4.24)

where C, isindependent of N (0,0).

Proposition 4.4. (A priori estimates). Suppose that (&,,@,,V,, ) e HN ™ (R” ),
let (&,0,9,F)e X (0,T,) for some positive constant T, be a solution of the
Cauchy problem (4.20) and (4.21). Thus if the solution for sufficiently small

positive constants & and Cg satisfies

(6.@,9,7)(t)|<o. (4.25)
It holds the following estimate that
t
@m0+ [(Fo ) IV @DEN, IFE

- -~ o~ o~ 2
<C, ”(ao,a)o,vo,r0 )”N_l,

(4.26)

where Vte[0,T,].

Remark 4.1. Here C, isindependentof ¢ and & ,set 6 = max{

2a)
such that

2

2
16,.9.7) O <Ca|(G0r30. 70 B ), s(% S aw

Then, the global solution to the Cauchy problem (4.20) and (4.21) will be ob-
tained by combining Propositions 4.3 and 4.4 by the standard continuity argu-

ment. Finally, we have the following decay property of the solution (&,®,V,F).
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Proposition 4.5. [14] Assume that (6,,@,,9,,f,)eH N'l(R”) be such that
||(6-0,a30,\70,I’O)”HM1 is small enough and "(5—0,5?)0,\70,l’o)"L1 is bounded. Then

the solution (6,®,9,F) to(4.20) and (4.21) has the decay property

\(6.@.9.7)|, <C(L+t)e (60, @5, 9. 15| (4.28)

HN—lﬁLl .
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Appendix

In this section, we will give the proof of propositions used by Theorem 1.1 and
1.2.

A.1. The Proof of Proposition 4.2

Proof. Let us rewrite the problem (2.11) when G(W)=0, f =0 as follow:

U (1) =5, (,5)U (5)+ ], (t,2)(-B,U)(r)dv. (A1)

S

In addition, by the proof of Lemma 3.3 in Section 3, when G (W) =0, f=0,
and if the condition sup||u (t)”a < g(S, a) is tenable, we can easily get
t>s

%(cs||v(o,a),v,r)(-,t)||i1+ > I@ta)-va‘;adxj

1<k|<a-1 gn

(A.2)

e[V, +Ivr  +|viel ) <o

2
a-2

We can construct an energy function ¢, (U (t)) on the higher order deriva-

tives by

C Y [dw-viod  (a3)

lS‘k‘Sa—l R"

4, (U(t)=c ||V(0, oV, 1)(-1)

Because of the sufficient large constant ¢, >0, we obtain

4, (U ()~ V(o) (Y, (A4)
Notice that if there exist a constant 7 > 0, it holds that
d
S (U (1) +n4, (U () <C|vu (L) (A.5)

We solve above inequality by solving general solutions of ordinary differential

equations, then

4, (U(t)<g, (U(s)e" ™+ cje*”“*f) VU (7)[ dz. (A.6)

Thus, we calculate the time decay estimate (i) by using (6.1) and Proposition
4.1, then when taking p=1, «=0:

Ju ) <c@et-s)y|u(s)

t n
Al +CI(1+t _T)iZ "BuU (T)"Hzm_l dz; (A7)
S
when taking p=1, a=1:

“ dr.(A.8)

HiA

n t n
[VU (t)] <C(1et=s) 5 2|U(s)],. +CJ(L+t—r) 52 |BU (o)
S

Notice that

B (7)], = [-Au- Vol < C(Jul.- +[Vul- )[vol..
8.V (7)) =[-u-Vol, <Clullval.
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Since az[g}z,ﬁom Lemma 3.1, we obtain ul. <[ul., [vul. <[u.

Thus, we can easily get

Ju @ <crt-s)su(s)]s .

t n (A.9)
sofsebol, st ruelor
and
VU (O <Ctst-s)y 2 |us),, .
(A.10)

+C(sup||u (t)
t>s

aji(“t o)y vU (o) de.

According to the definition of the energy equation ¢, (U (t)), the time decay
estimation of ¢, (U (t)) can be further obtained, assume that for the time de-

cay estimation (i),

3. (t)=sup (L+7-5)2 4, (U (7)), (A11)

s<r<t

for the time decay estimation (ii),
_ n 1
¢, (t)=sup (1+r—s)2[?EJ ¢, (U (7)) (A.12)

We use the definition of ¢, (t), (A.4) and (A.10), taking (A.11) and (A.12)
into (A.6) to get

¢, (U (1))
L) U'U O+ (s, ] 4 (t)ﬁ e (Lot r) Tdr (A13)

Scmt_s)z[@ U)o +{slocol, ) . (”J'

2
wlo(0], ) 4.0
<C(a (V)W O (a1
<[ ()l -
Similar to (A.13) and (A.14), by (A.12), we have

O e i O M TIE M (P U )

(A.15)

2.(0)<C(d, (U () HU()e i )< S (A.16)

3. (1)< c(% (U () (S +(sup

We can obtain that
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Ju ) <ca+t-sy ||U

H”‘le'

VU@ <crt-sy i)

HY AL

Then, we complete the proof of the proposition 4.2.

A.2. The Proof of Proposition 4.4

Proof. Before proving this proposition, we need to recall the third section of
energy estimation. By (4.22) and the smallness condition on (o-”er L v r pe’) ,
then there exist some positive constants d;,d,,d;,d, and ¢>0 with d;,d,
being suitably large and d,,d, being sufficiently small, we can get by direct

calculation of the energy estimates for (&,®,V,F)

d .~
dt{d 1<\k\§N—1 sonnf + 1sfsN - sz ) Vo ) J (A.17)
v, |7 ((z),v(t))"zN_z Ve, +|v? 5(t)||2N_3) <c|v(s.a01)(1)f .
and
8 alannof o) vawe]
(A.18)
+d4(||V(a3,\7 YO +[F @) +[va©f )<c:||v2 XS0

From (A.17) and (A.18), by noticing that m—1< N —3, we can choose a con-
stant d; suitably large such that

L |ea0nOf .+ 3 [at) voe(t)dx
dt N =N -2 gn (A.19)
~ o~ 2 ~ 2 - 2
«c(v@oof, ol Ive ol ,)<o
which implies (4.26) is hold. This completes the proof of proposition 4.4.
A.3. Some Useful Formulas
Here, we list some known formulas.
Lemma A.1. (Duhamels principle). Assume that the function
u (xl, Xoye ooy Xy T, z-) is the solution of the Cauchy problem
u, —m’Au=0,t>r,
ul,_ =0, (A.20)

u‘|t:1 :h(xvxzr"',xn,z‘)

then the function V(XXX t):j;u(xl,xz, -, X, t,7)dz is the solution of

1y M

the Cauchy problem
2
v:a—y—mzAv= h(%, X0 0 Xy, ),
ot (A.21)
V(X %0, %,,0) =0,
Ve (X X000, %,,0) =0
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Lemma A.2. (Holder inequality). Assume that 1< p,q< o, 1+1:1. If
P q
uel? (R”), velS (R”), we have

Joo

uv] dx < |ul|

Lp(R") V"l_q (R") : (A.22)
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