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Abstract 
In this article, we introduce a new type of contraction named almost type 
α-F-Z-weak contraction, which comes from a combination of F-contraction, 
Z-contraction, and almost contraction, and then we provide sufficient condi-
tions for the existence and uniqueness of fixed point of such contractions in 
complete metric spaces and give some related fixed point results. In addition, 
some related fixed point results can derive from our main results.  
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1. Introduction 

In 1922, Banach [1] proved a famous theorem named the Banach contraction 
principle. Many scholars developed it. In 2012, Wardowski [2] introduced 
F-contraction which is an amusing development of Banach contraction. In 2014, 
Wardowski and Dung [3] extended F-contraction to F-weak contraction. In the 
same year, several fixed point results of the F-Suzuki contraction were got by Piri 
and Kumam [4], and an F-contraction of Hardy-Rogers type was raised by Co-
sentino and Vetro [5]. In 2018, Ali et al. [6] presented an (α, F)-contraction 
which is a generalization of the Wardowski type contraction. Qawaqneh et al. [7] 
posed (α-β-F)-Geraghty contraction. Several authors gained some interesting 
extensions and generalizations of the F-contraction (see [8] [9] [10] [11] and 
references therein). In 2015, Khojasteh et al. [12] projected the Z-contraction via 
simulation function, this kind of contraction was generalized to the Banach con-
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traction and several known types of nonlinear contractions. Recently, a number 
of researchers have studied these contractive conditions (see [13]-[18] and ref-
erences therein). For more recent results related to fixed point theory, refer to 
[19] [20] [21] [22]. In 2018, Isik et al. [23] acquired the existence and uniqueness 
of fixed point of almost contraction via simulation functions in metric spaces.  

Inspired by the researches of F-contractions, Z-contractions, and almost con-
traction, in this article, by combining the ideas of these contractions, we propose 
a new almost type α-F-Z-weak contraction in complete metric spaces. Some suf-
ficient conditions for the existence and uniqueness of fixed points in complete 
metric spaces were provided. Furthermore, some related fixed point results can 
derive from our main results. 

2. Preliminaries 

In the section, we firstly list some useful definitions and results. we denote by R 
the set of all real numbers, by R+ the set of all non-negative real numbers, by N 
the set of all non-negative integers and by X the set of all nonempty. 

In 2012, α-admissible mapping was firstly introduced by Samet et al. [24]. 
Definition 1. [24] If there exists a function : X X Rα +× →  such that a 

mapping :T X X→  satisfies 

( ) ( ), 1 , 1s t Ts Ttα α≥ ⇒ ≥ , for all ,s t X∈ . 

Then mapping T is an α-admissible mapping. 
Example 1. Let [ )0,X = ∞ , :T X X→  and : X X Rα +× →  by 5

2
sTs = , 

s X∈ , and 

( )
5 ,
4,
1 ,
2

s t
s t

s t
α

 ≥= 
 <


 

Then T is an α-admissible mapping. 
In 2013, Karapınar et al. [25] presented triangular α-admissible mapping. 
Definition 2. [25] If there exists a function : X X Rα +× →  such that a 

mapping :T X X→  satisfies 
1) ( ) ( ), 1 , 1s t Ts Ttα α≥ ⇒ ≥ , for all ,s t X∈ ; 
2) ( ), 1s tα ≥  and ( ) ( ), ,t z x zα α⇒ , for all , ,s t z X∈ . 
Then mapping T is a triangular α-admissible mapping. 
Definition 3. [2] If ( ): 0,F R+∞ →  satisfies the following conditions: 
(F1) F is strictly increasing, i.e., ( ) ( )s t F s F t< ⇒ < , for all ( ), 0,s t∈ +∞ ; 
(F2) for each sequence { }ma  of positive numbers, lim 0mm

a
→∞

=  if and only if 
( )lim mm

F a
→∞

= −∞ ; 
(F3) there exists ( )0,1l∈  such that ( )

0
lim 0l

a
a F a

+→
= . 

Then we say that F is a F-function.  
We denote the set of all functions by F. 
Example 2. The following functions ( ): 0,F R+∞ →  are elements of  . 
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1) ( ) 1F s sλ= , where 1 0λ > ; 

2) ( )
2

1F s
sλ

= − , where 2, 0s λ > ; 

3) ( )
3

1 es

sF s
λ

=
−

, where 3, 0s λ > . 

In 2012, Wardowski [2] advanced F-contraction and obtained the existence 
and uniqueness of the fixed point of F-contraction in complete metric spaces. 
Without special explanation, F later in the article belongs to  . 

Definition 4. [2] Let ( ),X d  be a metric space. If there exists a 0τ >  such 
that a mapping :T X X→  satisfies  

( ) ( )( ) ( )( ), 0 , ,d Ts Tt F d Ts Tt F d s tτ> ⇒ + ≤ , for all ,s t X∈ . 

Then T is said to be an F-contraction. 
In 2014, Wardowski and Dung [3] extended F-contraction to F-weak contrac-

tion. 
Definition 5. [3] Let ( ),X d  be a metric space. If there exists a 0τ >  such 

that a mapping :T X X→  satisfies 

( ) ( )( ) ( )( ), 0 , ,d Ts Tt F d Ts Tt F M s tτ> ⇒ + ≤ , for all ,s t X∈ , 

where 

( ) ( ) ( ) ( ) ( ) ( ), ,
, max , , , , , ,

2
d s Tt d t Ts

M s t d s t d s Ts d t Tt
+  =  

  
 

Then T is said to be an F-weak contraction. 
Remark 1. If ( ) ( ), ,M s t d s t= , then F-weak contraction becomes F-contraction. 

It indicated that F-contraction is a special form of F-weak contraction. 
In 2018, Ali et al. [6] projected (α, F)-contraction. When ( ), 1s tα =  for all 

,s t X∈ , then (α, F)-contraction reduces to F-contraction. 
Definition 6. [6] Let ( ),X d  be a metric space. If there exists a 0τ >  and 
: X X Rα +× →  such that a mapping :T X X→  satisfies  

( ) ( ) ( )( ) ( )( ), 0 , , ,d Ts Tt F s t d Ts Tt F d s tτ α> ⇒ + ≤ , for all ,s t X∈ , 

Then T is said to be an (α, F)-contraction. 
In 2015, Khojasteh et al. [12] defined Z-contraction and gained the existence 

and uniqueness of the fixed point. 
Definition 7. [12] Let ( ),X d  be a metric space. If there exists a  
: R R Rζ + +× →  such that a mapping :T X X→  satisfies  

( ) ( )( ), , , 0d Ts Tt d s tζ ≥ , for all ,s t X∈ . 

Then T is said to be a Z-contraction, where : R R Rζ + +× →  is a mapping 
satisfying the following conditions: 

(ζ1) ( )0,0 0ζ = ; 
(ζ2) ( ),s t t sζ < − , for all , 0>s t ; 
(ζ3) if { } { },m ms t  are sequences with ( ), 0,m ms t ∈ ∞  such that  

lim lim 0m mm m
s t

→∞ →∞
= = , then ( )limsup , 0.m m

m
s tζ

→∞
<  
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Now we take some examples. 
Example 3. [12] (1) ( ),s t s tζ λ= − , [ )0,1λ ∈ ; 
(2) ( ) ( ) ( ),s t t tζ ψ φ= − , where ,ψ φ  are self-mappings on [ )0,∞  such 

that ( ) ( ) 0t tψ φ= =  if and only if 0t =  and ( ) ( )t t tψ φ< ≤ , for all 0t > ; 
(3) ( ) ( ),s t t s tζ ϕ= − − , where ϕ  is a self-mapping on [ )0,∞  with  
( )1 0 0ϕ− =  and , 0s t ≥ . 

Theorem 1. [12] Every Z-contraction in complete metric spaces has a unique 
fixed point. 

In 2018, Isik and Gungor et al. presented almost Z-contraction and obtained 
the following fixed point theorem. 

Definition 8. [23] Let ( ),X d  be a metric space. We say that :T X X→  is 
an almost Z-contraction, if there exists a constant 0L ≥  such that 

( ) ( ) ( )( ), , , , 0d Ts Tt d s t LR s tζ + ≥ , for all ,s t X∈ . 

where 

( ) ( ) ( ) ( ) ( ){ }, min , , , , , , , .R s t d s Ts d t Tt d s Tt d t Ts=  

Theorem 2. [23] Let ( ),X d  be a complete metric space and :T X X→  be 
an almost Z-contraction. Then, T has a unique fixed point, for arbitrary initial 
point 0x X∈ , the Picard sequence { }0Tx  converges to the fixed point. 

3. Main Results 

Firstly, we put forward almost type α-F-Z-weak contraction in metric spaces.  
Definition 9. Let ( ),X d  be a metric space and :T X X→  be a given 

mapping. We say that T is said to be an almost type α-F-Z-weak contraction if 
there exist : X X Rα +× → , 0L ≥ , 0τ > , F ∈  and Zζ ∈  such that 

( ) ( ) ( )( ) ( ) ( )( )( ), 0 , , , , , 0d Ts Tt F s t d Ts Tt F M s t LN s tζ τ α> ⇒ + + ≥ ,  (1) 

for all ,s t X∈ , where 

( ) ( ) ( ) ( ) ( ) ( ), ,
, max , , , , , , ,

2
d s Tt d t Ts

M s t d s t d s Ts d t Tt
+  =  

  
 

( ) ( ) ( ){ }, min , , , .N s t d s Ts d t Ts=  

Remark 2. If T is an almost type α-F-Z-weak contraction, then 

( ) ( )( ) ( ) ( )( ), , , ,τ α+ ≤ +F s t d Ts Tt F M s t LN s t , for all ( ), 0d Ts Tt > .  (2) 

Example 4. Let ( ),X d  and d be the usual metric on X. Define a mapping 
:T X X→  by 

5 2 5, , ,
2 5 2
0, otherwise.

s
Ts

  ∈  =  


 

Also define ( ) lnF s s=  and ( ) 1,
2

s t t sζ = − . 
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Then T is an almost type α-F-Z-weak contraction with 

( )

2 2 51, , 0, or , ,
5 5 2

,
5 , otherwise

5

s t s t
s t

e

α

    ∈ ∈       = 



 

and 
50

ln 2e
τ< ≤ − , 2L = . But T is not an F-weak contraction. Indeed, when 

5
2

s = , 0t = , 5 5ln ln
2 2

τ + ≤ , this is a contradiction. 

Remark 3. By the definition of T and Remark 2, we notice that an (α, 
F)-contraction must be an almost type α-F-Z-weak contraction, but the converse 
is not true (see Example 4). The converse holds only if 0L = . 

Example 5. Let [ ]0,1X =  and ( ),d s t s t= − . Define :T X X→  by 

[ )1 , 0,1
2
0, otherwise

s
Ts

 ∈= 


 

Also define ( ) lnF s s= , and ( ) 1,
2

s t t sζ = −  

( )
[ )6, , 0,1

, 1 , otherwise
4

s t
s tα

 ∈
= 


 

Then T is an almost type α-F-Z-weak contraction for all ,s t X∈  and 
ln 8τ = , 2L = . 

Now we prove our main results. 
Theorem 3. Let ( ),X d  be a complete metric space. Suppose that T is an al-

most type α-F-Z-weak contraction. If T satisfies the following conditions: 
1) There exists 0s X∈  such that ( )0 0, 1s Tsα ≥ ; 
2) T is triangular α-admissible; 
3) T or { }0

n
ns T s=  satisfy one of the following conditions: 

a) T is continuous; 
b) 2T  is continuous and if ns s→ , such that ( ), 1Ts sα ≥ ; 
c) If { }ns  is a sequence in X such that ( )1, 1n ns sα + ≥  for all n and  

ns s X→ ∈ , then ( ), 1ns sα ≥ , for all n N∈ , then T has at least a fixed point. 
Proof. Define a sequence { }ns  by 1 0

n
n ns Ts T s+ = = , n N∈ . By (1), (2) and 

Mathematical induction, it easily follows that 

( )1, 1n ns sα + ≥ , for all n N∈ ,                  (3) 

and 

( ), 1m ns sα ≥ , for all ,m n N∈  with n m> .             (4) 

If there exists 0n N∈  such that 
0 0 1n ns s += , then 

0 0n nTs s= , so 
0ns  is a 

fixed point of T, the proof is completed. If 1n ns s +≠  for all n N∈ , i.e., 
( )1, 0n nd s s + >  for all n N∈ . Set ns s= , 1nt s +=  in (1), by (2) and (3), then 
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( )( ) ( ) ( )( )
( )( ) ( )

1 1 1

1 1

, , ,

, ,
n n n n n n

n n n n

F d s s F s s d s s

F M s s LN s s

τ τ α+ − +

− −

+ ≤ +

≤ +
            (5) 

where 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ){ }

1

1 1
1 1 1

1 1

,

, ,
max , , , , , ,

2

max , , , ,

n n

n n n n
n n n n n n

n n n n

M s s

d s Ts d s Ts
d s s d s Ts d s Ts

d s s d s s

−

− −
− − −

− +

 + =  
  

=

 

( ) ( ) ( ){ }1 1 1 1, min , , , 0.n n n n n nN s s d s Ts d s Ts− − − −= =  

Now if ( ) ( )1 1, ,n n n nM s s d s s− += , by (5), it deduce that 

( )( ) ( ) ( )( ) ( )( )1 1 1 1, , , , ,n n n n n n n nF d s s F M s s LN s s F d s sτ + − − ++ ≤ + =   (6) 

this is a contradiction. So ( ) ( )1 1, ,n n n nM s s d s s− −= , we get 

( )( ) ( ) ( )( ) ( )( )1 1 1 1, , , , ,n n n n n n n nF d s s F M s s LN s s F d s sτ + − − −+ ≤ + =  

So 

( )( ) ( )( )1 1, , ,n n n nF d s s F d s s+ −<  

By (F1), we have ( ) ( )1 1, ,n n n nd s s d s s+ −< . Thus ( ){ }1,n nd s s +  is a strictly 
non-increasing sequence with ( )1, 0n nd s s + ≥ . so assume that ( )1lim ,n nn

d s s a+→∞
= . 

If 0a > , take the right limits on the both sides of (6), it follows that  

( ) ( )0 0 ,F a F aτ + + ≤ +  

this is a contradiction. So 0a = , that is 

( )1lim , 0.n nn
d s s +→∞

=                        (7) 

Now we claim that { }ns  is a Cauchy sequence. If { }ns  is not a Cauchy se-
quence, then there exist 0ε > , and two sequences ( ){ }n ps , ( ){ }m ps , where 
( )n p , ( )m p  are two positive integers and ( ) ( )n p m p>  such that  

( ) ( )( ),m p n pd s s ε≥ , ( ) ( )( )1,m p n pd s s ε− < . By the triangle inequality, it follows that 

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
1 1

1

,

, ,

, .

m p n p

m p n p n p n p

n p n p

d s s

d s s d s s

d s s

ε

ε

− −

−

≤

≤ +

< +

               (8) 

Take the limits on the both sides of (8), we obtain 

( ) ( )( )lim , .m p n pp
d s s ε

→∞
=                     (9) 

By the triangle inequality, we have  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1, , , ,n p m p n p m p m p m pd s s d s s d s s+ +≤ +          (10) 

and  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1, , , .n p m p n p m p m p m pd s s d s s d s s+ +≤ +          (11) 
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Let p →∞  in (10) and (11), hence  

( )( )( ) 1lim , .m p n pp
d s s ε+→∞

=                    (12) 

In the similar way, therefore  

( ) ( )( )1lim , ,m p n pp
d s s ε+→∞

=                    (13) 

( ) ( )( )1 1lim , .m p n pp
d s s ε+ +→∞

=                   (14) 

Set ( )m ps s= , ( )n pt s=  in (1), by (2) and (4), it follows that  

( ) ( )( )( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

( )1 1 1 1, , ,

, ,

m pm p n p n p m p n p

m p n p m p n p

F d s s F s s d s s

F M s s LN s s

τ τ α+ + + ++ ≤ +

≤ +
   (15) 

where  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1 1

, max , , , , , ,

, ,

2

max , , , , , ,

, ,
,

2

m p n p m p n p m p m p n p n p

m p n p n p m p

m p n p m p m p n p n p

m p n p n p m p

M s s d s s d s Ts d s Ts

d s Ts d s Ts

d s s d s s d s s

d s s d s s

+ +

+ +


= 


+ 




= 


+ 



 (16) 

and  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ){ }1 1

, min , , ,

min , , , .

m p n p m p m p m p n p

m p m p m p n p

N s s d s Ts d s Ts

d s s d s s+ +

=

=
       (17) 

Let p →∞  in (16), (17) and by (9), (12), (13), (14), it shows  

( ) ( )( ) ( ) ( )( )lim , , lim , .m p n p m p n pp p
M s s N s sε ε

→∞ →∞
= =  

So 

( ) ( )( ) ( ) ( )( )lim , , .m p n p m p n pp
M s s LN s s ε

→∞
+ =              (18) 

Take the right limits on the both sides of (15) and by (14) and (18),  

( ) ( )0 0 ,F Fτ ε ε+ + ≤ +  

this is a contradiction. So { }ns  is a Cauchy sequence in complete metric space 
( ),X d . Thus there exists a *s X∈  such that *

ns s→ , as n →∞ . Further-
more 

Case I: (1) holds; 
Then we obtain 
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( )* *
1lim lim lim ,n n nn n n

s s Ts T s Ts+→∞ →∞ →∞
= = = =  

that is * *s Ts= . 
Case II: (2) holds; 
We have  

( )* 2 2 2 *
2lim lim lim ,n n nn n n

s s T s T s T s+→∞ →∞ →∞
= = = =  

that is 
* 2 *.s T s=                           (19) 

If * *s Ts≠ , set *s Ts= , *t s=  in (1), by (2) and (19), it follows that  

( )( ) ( ) ( )( )
( ) ( )( )

2 * * 2 * * 2 * *

* * * *

, , ,

, ,

F d T s Ts F T s Ts d T s Ts

F M Ts s LN Ts s

τ τ α+ ≤ +

≤ +
       (20) 

where  

( )

( ) ( ) ( ) ( ) ( )

( )

* *

2 * * * *
* * 2 * * * *

* *

,

, ,
max , , , , , ,

2

, ,

M Ts s

d T s s d Ts Ts
d Ts s d T s Ts d s Ts

d Ts s

 + =  
  

=

 

( ) ( ) ( ){ }
( ) ( ){ }

* * * 2 * * 2 *

* * * *

, min , , ,

min , , ,

0.

N Ts s d Ts T s d s T s

d Ts s d s s

=

=

=

 

So (20) can be simplified to ( )( ) ( )( )* * * *, ,F d Ts s F d Ts sτ + ≤ , this is a con-
tradiction. So * *s Ts= . 

Case III: (3) holds;  
If there exists 0n  such that *

ns Ts= , 0n n≥ , then * *lim nn
s s Ts

→∞
= = , that is 

* *s Ts= . On the contrary, set ns s= , *t s=  in (1), by (2) and ( )*, 1ns sα ≥ , 
then  

( )( ) ( ) ( )( )
( ) ( )( )

* * *
1 1

* *

, , ,

, , ,

n n n

n n

F d s s F s s d s Ts

F M s s LN s s

τ τ α+ ++ ≤ +

≤ +
          (21) 

where  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*

* *
* * *

* *
1* * *

1

,

, ,
max , , , , , ,

2

, ,
max , , , , , , ,

2

n

n n
n n n

n n
n n n

M s s

d s Ts d s Ts
d s s d s Ts d Ts s

d s Ts d s s
d s s d s s d Ts s +

+

 + =  
  
 + =  
  

    (22) 

( ) ( ) ( ){ } ( ) ( ){ }* * *
1 1, min , , , min , , , .n n n n n n nN s s d s Ts d s Ts d s s d s s+ += =  (23) 
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Let n →∞  in (22) and (23), it shows  

( ) ( ) ( )* * * *lim , , , lim , 0.n nn n
M s s d Ts s N s s

→∞ →∞
= =  

So  

( ) ( ) ( )* * * *lim , , , .n nn
M s s LN s s d Ts s

→∞
+ =               (24) 

Take the right limits on the both sides of (21) and by (24), we get  

( )( ) ( )( )* * * *, 0 , 0 ,F d Ts s F d Ts sτ + + ≤ +  

this is a contradiction. So * *s Ts= . Hence, T has a fixed point. 
Remark 4. In the proof of Theorems 3, we only use (F1), (ζ2), it shows Theo-

rems 3 is true as long as F and ζ satisfy (F1) and (ζ2), respectively.  
Remark 5. Example 4 satisfies all the hypothesis of Theorem 3, so T has a 

fixed point. Indeed, 0s =  and 5
2

s =  are two fixed points of T.  

Theorem 3 shows that T has a fixed point, but it can’t guarantee the unique-
ness of fixed point of T. Now in order to assure the uniqueness of fixed point of 
T, we consider the following condition:  

4) For all s, ( ) ( ), 1t Fix T s tα∈ ⇒ ≥ , where ( )Fix T  denotes the set of fixed 
points of T. 

Theorem 4. Adding (4) to the conditions of Theorem 3, we can assure the 
uniqueness of fixed point of T. 

Proof. We argue by contradiction, assume that there exist ,s t X∈  such that 
,Ts s=  Tt t=  with s t≠ . From (4), we have ( ), 1s tα ≥ . Therefore, if follows 

from the definitions of T and ζ  

( )( ) ( )( ) ( ) ( )( )
( ) ( )( )

, , , ,

, , ,

F d Ts Tt F d s t F s t d s t

F M s t LN s t

τ τ τ α+ = + ≤ +

≤ +
       (25) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

, max , , , , , , , ,
2

d s Tt d t Ts
M s t d s t d s Ts d t Tt d s t

+  = = 
  

 

( ) ( ) ( ){ }, min , , , 0.N s t d s Ts d t Ts= =  

So (25) can be simplified to ( )( ) ( )( ), ,F d s t F d s tτ + ≤ , it is a contraction. So 
s t= . 

Remark 6. Example 5 satisfies all the hypothesis of Theorem 4, so T has a 

unique fixed point. In fact, 1
2

s =  is the unique fixed point of T. 

Corollary 5. Let ( ),X d  be a complete metric space. Suppose T satisfies the 
following conditions: ( ) ( ) ( ) ( )( ), 0 , , , , 0ζ τ α> ⇒ + ≥d Ts Tt s t d Ts Tt M s t , for 
all , ∈s t X , 

1) There exists 0s X∈  such that ( )0 0, 1s Tsα ≥ ; 
2) T is triangular α-admissible;  
3) T is continuous or T2 is continuous and if { }0

n
ns T s=  is a sequence in X 
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such that lim nn
s s

→∞
= , then ( ), 1Ts sα ≥  or if { }0

n
ns T s=  is a sequence in X 

such that ( )1, 1n ns sα + ≥  and lim nn
s s

→∞
= , then ( ), 1ns sα ≥  for all n N∈ , then 

T has a fixed point. 
Proof. Take 0L =  in Theorem 3. 
Corollary 6. Let ( ),X d  be a complete metric space. If there exists  
[ ) [ ): 0, 0,φ ∞ → ∞  is a lower semi-continuous function with ( ) 0tφ =  if and 

only if 0t =  such that for all ,s t X∈ , 

( ) ( ) ( )( ), , ,φ< −d Ts Tt M s t M s t , for all , ∈s t X ,        (26) 

then T has a unique fixed point. 
Proof. From (26), so there exists 0τ >  such that  

( ) ( ) ( )( ), , ,d Ts Tt M s t M s tτ φ+ ≤ − . 
Let ( ) ( ),s t t s tζ φ= − − , ( )F t t= , 0L = , ( ), 1s tα = , so T is an almost type 

α-F-Z-weak contraction. By Theorem 4, the proof is completed. 
Corollary 7. [1] Let ( ),X d  be a complete metric space. If there exists
( ]0,1k ∈  such that for all ,s t X∈ , ( ) ( ), ,d Ts Tt kd s t≤  then T has a unique 

fixed point. 
Proof. Let ( ) ( ) ( ) ( )1 , , ,t k t M s t d s tφ = − = , so by Corollary 6, the proof is 

completed. 

4. Consequences 
4.1. Fixed Point Theorems in Partially Ordered Metric Spaces 

Definition 10. ( ), ,X d   is said to a complete partially ordered metric space, 
if ( ),X d  is a complete metric space and X is a nonempty set endowed with a 
partial order  . 

Definition 11. :T X X→  is non-decreasing endowed with a partial order 
  if s t Ts Tt⇒  . 

Theorem 8. Let ( ), ,X d   be a complete partially ordered metric space. If 
there exist 0, 0L τ≥ >  Such that T satisfies the following conditions: 

1) There exists 0s X∈  such that 0 0s Ts ; 
2) T is non-decreasing; 
3) for all s t ,  
( ) ( ) ( ) ( )( )( )( ), 0 , , , , 0d Ts Tt F d Ts Tt F M s t LN s tζ τ> ⇒ + + ≥ ; 
4) T is continuous or if ( ){ }0ns T s=  is a sequence in X such that 1n ns s +  

and lim nn
s s

→∞
=  for all n N∈ , then ns s , then T has a fixed point. 

Proof. Let ( ), 1,s t s tα =  . Then T satisfies all the conditions of Theorem 3, 
so the proof is completed. 

Now in order to assure the uniqueness of fixed point of T, we considesr the 
following condition: 

4') For all ( ),s t Fix T∈  such that s t  or t s . 
Theorem 9. Adding (4') to the conditions of Theorem 8, we can assure the 

uniqueness of fixed point of T. 
Proof. Let ( ), 1,s t s tα =  . Then T satisfies all the conditions of Theorem 4, 
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so the proof is completed. 

4.2. Fixed Point Theorems of Cyclic Mappings 

Definition 12. Let A and B be two nonempty subsets of a metric ( ),X d  and 
:T A B A B∪ → ∪  be a mapping. If ( )T A B⊂  and ( )T B A⊂ , then T is a 

cyclic mapping. 
Theorem 10. Let ( ),X d  be a complete partially ordered metric space, A and 

B be two nonempty subsets of X such that A B∩ ≠ ∅  and :T X X X× → . If 
there exist 0L ≥ , 0τ >  such that T satisfies the following conditions: 

1) There exists 0s X∈  such that ( ) ( ) ( )0 0,s Ts A B B A∈ × ∪ × ; 
2) T is a cyclic mapping; 
3) For all ( ) ( ) ( ),s t A B B A∈ × ∪ × , 

( ) ( ) ( ) ( )( )( )( ), 0 , , , , 0d Ts Tt F d Ts Tt F M s t LN s tζ τ> ⇒ + + ≥ ; 

4) T is continuous or if there exists a sequences ( ){ }0ns T s=  such that 
( ) ( ) ( )1,n ns s A B B A+ ∈ × ∪ ×  and lim nn

s s
→∞

=  for all n N∈ , then  
( ) ( ) ( )1,n ns s A B B A+ ∈ × ∪ × , then T has a fixed point, that is, there exists a 
u A B∈ ∩  such that Tu u= . 

Proof. Let ( ), 1s tα = , ( ) ( ) ( ),s t A B B A∈ × ∪ × . Then T satisfies all the con-
ditions of Theorem 3, so T has a fixed point, the proof is completed. 

Now in order to ensure the uniqueness of fixed point of T, we consider the 
following condition: 

4") for all ( ),s t Fix T∈  such that ( ) ( ) ( ),s t A B B A∈ × ∪ × . 
Theorem 11. Adding (4") to the conditions of Theorem 10, we can assure the 

uniqueness of fixed point of T. 

5. Conclusion 

In this paper, we investigate a new type of contraction named almost type 
α-F-Z-weak contraction, which is produced by the combination of F-contraction, 
Z-contraction, and almost contraction. In Section 3, sufficient conditions for the 
existence and uniqueness of the fixed point of such contraction in complete me-
tric spaces are provided. There are some related fixed point results that can de-
rive from our results. In Section 4, we propose the cases of partially ordered me-
tric spaces and cycle mappings, some corresponding fixed point results are ob-
tained. 
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