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Abstract 
The goal of zero-shot recognition is to classify classes it has never seen before, 
which needs to build a bridge between seen and unseen classes through se-
mantic embedding space. Therefore, semantic embedding space learning plays 
an important role in zero-shot recognition. Among existing works, semantic 
embedding space is mainly taken by user-defined attribute vectors. However, 
the discriminative information included in the user-defined attribute vector is 
limited. In this paper, we propose to learn an extra latent attribute space au-
tomatically to produce a more generalized and discriminative semantic em-
bedded space. To prevent the bias problem, both user-defined attribute vector 
and latent attribute space are optimized by adversarial learning with au-
to-encoders. We also propose to reconstruct semantic patterns produced by 
explanatory graphs, which can make semantic embedding space more sensi-
tive to usefully semantic information and less sensitive to useless information. 
The proposed method is evaluated on the AwA2 and CUB dataset. These re-
sults show that our proposed method achieves superior performance. 
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1. Introduction 

Zero-shot learning is one of the research focuses in the field of transfer learning. 
Unlike the traditional image classification, it needs to classify classes that have 
unseen before. Therefore, in the task of Zero-shot learning, the classes in the 
training set and the classes in the evaluation set are disjoint. Its superiority is 
that it can solve the problem of insufficient training data for every possible class. 
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For example, if some scene images of ‘kitchen’ are collected, some object images 
of ‘bowl’ are meanwhile obtained. Once the classifier for ‘kitchen’ is trained, this 
classifier can also be used to recognize ‘bowl’. To describe the logic relationships 
between seen and unseen classes, a semantic embedding space should be defined 
which relies on several visual concepts [1] [2], such as user-defined attributes 
and Word2vec. Map images in seen and unseen classes into this semantic em-
bedding space. The mapping from semantic embedding space to class labels is 
pre-defined. In this way, unseen classes can be classified without training data. 

To learn the mappings between seen and unseen classes, existing methods can 
be classified into two categories: recognition using independent semantics (RIS) 
[3] [4] [5] and recognition using semantic embeddings (RULE) [6] [7] [8]. RIS 
learns an independent classifier for each semantic concept (one attribute like 
‘has a tail’ or ‘green wings’) in semantic embedding space. Because of its simplic-
ity, RIS is widely used in attribute recognition. RULE learns a bilinear compati-
bility function between semantic concepts and class labels. By learning all the 
semantics at the same time, RULE leverages the advantages of the dependencies 
between semantics concepts. To exploit the complementarity between RIS and 
RULE, Morgado and Vasconcelos in [9] reduced them to several constraints in 
CNN architectures, where RIS learns each independent CNN for each semantic 
concept, and RULE learns a single CNN for all semantic concepts. The balance 
between RIS and RULE is guaranteed by hyperparameters in this work. 

In [9], RIS and RULE are mapped into regularization constraints. They at-
tempted to optimize a single semantic embedding space by RIS and RULE, which 
limits the dimensions of the solution space. In this paper, we design two seman-
tic embedding spaces, one optimized by RIS and the other optimized by RULE. 
This design extends the solution space to a higher dimension. It can optimize 
user-defined attribute space by RIS, and optimize the discriminative semantic 
embedding space by RULE. The advantages of RIS and RULE can be better 
combined by this design. 

The goal of both RIS and RULE is to learn the mappings from visual feature 
space to semantic embedding space. Both two methods face the strong bias 
problem in which unseen classes tend to be classified as one of the seen classes 
[10]. To improve the generalization capability of semantic embedding space, ex-
isting methods can be divided into three groups: 

Knowledge graph. This kind of methods models mappings between different 
categories by knowledge graphs [11] [12], by which the learned manifold of se-
mantic embedding space is aligned to the knowledge graph. 

Embedding reconstruction. This kind of method first reconstructs input 
images by training an encoder/decoder network, which can encode more gene-
ralized features. The output of the encoder is taken as regularization of semantic 
embedding space in the classification network [7] [13]. 

Latent attributes. This kind of method learns latent attributes and us-
er-defined attributes jointly [9] [14], which improves the discriminative ability 
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of semantic embedding space. In [14], optimizing the extra latent attributes 
space by class labels is based on triplet loss, since this space has no ground-truth 
labels. 

The latent attributes in group 3 are more descriptive and flexible than the us-
er-defined attributes, while the user-defined attributes are more transferable 
than the latent attributes. To take the advantage of both, we propose to learn the 
user-defined and the latent attributes jointly, and then concatenate them into a 
unified semantic embedding space. However, both user-defined and latent attributes 
suffer from the bias problem, which tends to learn attributes over-fitted to 
training set. To reduce the bias problem and improve the generalization capacity, 
we propose to take the user-defined and the latent attributes regularized by the 
output of the auto-encoder. To achieve this goal, we input both the semantic 
embedding space and the output of the encoder into a discriminator, which tries 
to classify two kinds of inputs while a generator tries to confuse the discrimina-
tor. This process is always formulated as an adversarial learning objective. The 
method in [13] has proved the superiority of adversarial learning. In this paper, 
we also use adversarial learning loss to constrain the learning processes of both 
user-defined attributes and latent attributes. As presented in [9], RIS and RULE 
are two kinds of optimization loss functions. In deep learning framework, RIS 
aims to learn several independent CNNs, one CNN for per semantic attribute, 
which makes the output of the classification network to be completely the same 
with ground-truth semantic embedding vectors. RULE aims to learn a single 
CNN for all semantic attributes automatically. The user-defined attributes can 
be optimized by RIS and the latent attributes can be optimized by RULE. The 
user-defined attributes are not exhaustive, especially when two or more catego-
ries share too many semantic attributes. The latent attributes of the training set 
are not discriminative enough on evaluation set, especially when the training set 
is quite misaligned with the evaluation set. To take the advantage of two kinds of 
attributes, [9] proposed to constrain optimization objectives of the user-defined 
attributes and the latent attributes as a single loss function, and optimization of 
the user-defined attributes is considered as a regularization constraint. [14] 
proposed to learn extra latent attributes optimized by a triplet loss. The learned 
latent attributes are connected with user-defined attributes to form a semantic 
embedding space. The method in [14] achieved much better performance than 
[9] because [14] took advantage of much higher attribute dimensions. The entire 
framework is jointly trained. The framework of the method we propose is shown 
in Figure 1. 

In group 2, the semantic embedding space is constrained to reconstruct entire 
original images. The constraint can easily introduce a lot of noise and cause se-
rious bias problems in the training set. In group 3, the learned attributes are only 
discriminative on training set, and some attributes on zero-shot classes are ig-
nored. If taking the advantages of groups 2 and 3 are combined, learned seman-
tic embedding spaces from training set will be transferred to zero-shot sets much  
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Figure 1. Summarization of existing zero-shot learning frameworks, where ‘X’ represents input features, ‘A’ represents us-
er-defined attributes, ‘L’ represents latent attributes, ‘Y’ represents class labels and ‘V’ represents autoencoders’ output. 

 
better. Motivated by this, we propose to reconstruct semantic patterns of origi-
nal images in an organized way to constraint semantic embedding. The semantic 
patterns are discovered and organized by explanatory graphs proposed in [15]. 
Zhang et al. in [15] revealed the knowledge structures hidden in CNNs. The core 
idea of this method is to disentangle part patterns of high-level layers to form an 
explanatory graph. Each graph node corresponds to each part pattern, and each 
edge represents the cooperation and spatial relationships between part patterns. 
This explanatory graph can organize chaotic information hidden in trained 
CNNs into structural features. 

Traditional reconstruction methods are more sensitive to variances like rota-
tion, flipping, and so on. When the images have large variances, their linear fea-
ture vectors will have large variances, but cooperation and spatial relationships 
can be still stable. These stable relationships can be learned automatically by ex-
planatory graphs and can be used to bridge a semantic embedding space between 
seen classes and unseen classes. In this way, the generalized capacity of semantic 
embedding space is improved to a higher level. 

We summarize our contributions as follows: 
• Our proposed method optimizes user-defined attributes and latent attributes 

jointly, which can produce more descriptive and discriminative semantic 
embedding space. 

• Our proposed method improves the generalization capacity of semantic em-
bedding space by adversarial learning with autoencoders. 

• Our proposed method extracts interpretable and explanatory semantic pat-
terns based on explanatory graphs in an organized way, which can reduce the 
influence of rotation, zoom, background noise, and so on. 

• Our proposed method integrates the multi-scale explanatory reconstruction 
network into the classification network and optimizes the overall framework 
in an alternative way, which combines advantages of RIS, RULE and mul-
ti-scale reconstruction at the same time. 
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2. Related Works 

Existing zero-shot learning (ZSL) tasks can be mainly divided into three types: 
conventional ZSL, Generalised ZSL (GZSL), and Transductive ZSL (TZSL), 
which are summarized in Figure 2. In the task of conventional ZSL, the training 
set consists of seen classes and the test set is assumed only from unseen classes. 
In the task of GZSL, the training set and the test set are the same as conventional 
ZSL, but GZSL requires recognizing both seen and unseen classes at the same 
time. In the task of TZSL, the unlabeled images in the test set are available in the 
training process, which reduces the challenge of zero-shot recognition signifi-
cantly. Obviously, GZSL is the most difficult task among the three types. 

Existing work uses two strategies to obtain semantic embedded spaces, one is 
recognition using independent semantics (RIS) and the other is recognition us-
ing latent embeddings (RULE): 

RIS. This kind of method aims to learn an independent classifier for per se-
mantic attribute [3] [4] [5] [16]. RIS provides supervision for per semantic attributes 
but cannot model the dependencies between different semantic attributes, which 
is hard to guarantee reliable mappings from visual feature vector to semantic 
embedding space. 

RULE. Such methods directly map images to their classes label [6] [7] [8] [17] 
[18] [19] [20] [21] by compatibility functions, which learn all semantic features 
at the same time. Palatucci et al. in [17] learned a linear mapping relationship 
between fMRI-based image space and the semantic space. In [18], a skip-gram 
model trained on Wikipedia articles is used to produce label features [22]. [19] 
weighted a group of training label embeddings by using the probabilities of the 
classifier. [20] learned to justify that if an input image belongs to seen classes in 
the semantic word spaces by using an outlier detector. SJE [7] [21] and ALE [6] 
combined multiclass and weighted estimation ranking loss to learn a bilinear 
compatibility function. Xian et al. in [8] proposed to construct a nonlinear compa-
tibility learning model by learning several linear models. 

 

 
Figure 2. Comparison of existing three types of zero-shot learning tasks. 
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Although RULE methods model dependencies between different semantic 
attributes, they leave several semantic combinations unconstrained. To solve this 
problem, Chen et al. in [23] used a conditional random field to model depen-
dencies between semantic attributes to improve independent classifiers. Wang 
and Ji in [5] unified attribute extraction and object classification in a single 
probabilistic model. Morgado and Vasconcelos in [9] leveraged the advantages 
of both RIS and RULE to design a CNN framework and proposed using seman-
tics as constraints for recognition. Chen et al. in [13] proposed to reconstruction 
network to regularize the semantic embedding space of classification network, 
which makes embedding space more informative. Li et al. in [14] learned latent 
discriminative attributes to supplement unconstrained semantic space covered 
by user-defined attributes. Zhang and Koniusz in [24] proposed to use nonlinear 
kernels to learn relationships between visual features and attributes. Xian et al. in 
[25] proposed to generate features based on attributes of unseen categories and 
the generated features were added to the training set. We summarize existing 
ZSL frameworks of different tasks in Figure 1. 

3. The Proposed Approach 

In this section, we first perform adversarial learning between user-defined attributes 
and autoencoders and then perform adversarial learning between latent attributes 
and autoencoders. We extract the semantic patterns based on the explanatory 
graphs after training the overall architecture based on the original images. These 
semantic patterns are used to train the same architecture. The semantic embed-
ded spaces of different semantic patterns are connected to form a final semantic 
embedded space for zero-shot recognition. The overall framework of the pro-
posed method is illustrated in Figure 3. 

3.1. Adversarial Semantic Embedding Space Learning 

We construct a unified framework including the classification network and the 
reconstruction network. The classification network aims to optimize user-defined 
attributes and latent attributes jointly in adversarial manners. The reconstruc-
tion network takes autoencoder as the backbone. 

1) Classification network: The classification network aims to map visual fea-
tures space to semantic embedding space. In our method, we propose a novel 
classification optimization objective, which integrates the advantages of us-
er-defined attributes and latent attributes in augmented space. The augmented 
space contains two vectors, one is to utilize RIS to learn user-defined attributes, 
and the other is to utilize RULE to learn latent attributes. 

Given a training dataset ( ) ( ) ( )( )
1

, ,
Ni i i

i
D x s y

=
= , where ( ) ( ) ( )( )1 , ,i i i

Qs s s= �  
represent Q attributes, and visual feature extractor ( );xθ Θ  of parameters Θ , 
and kt  is independent classifier of attribute k, then user-defined attributes (UA) 
are optimized by minimizing: 

( )( ) ( )( )T ; , i
ua b k k

i k
L L t x sσ θ= Θ∑∑                   (1) 
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Figure 3. The framework of the proposed method. Color ‘blue’ represents the classifica-
tion network, color ‘green’ presents the reconstruction network, and color ‘orange’ 
represents adversarial learning component. Components filled with oblique lines represent 
parameters that need to be optimized. 

 
where ( )σ ⋅  is the sigmoid function and bL  is the cross-entropy loss function 
which is ( ) ( ) ( ) ( ), log 1 log 1bL v y y v y v= − − − − . 

Unlike user-defined attributes, latent attributes are learned automatically. 
Supposing the parameter matrix T maps visual features ( );xθ Θ  to latent 
attributes, the parameter matrix Φ  maps latent attributes to class labels, then 
latent attributes (LA) are optimized by minimizing: 

( ) ( )( )T T ; , i
la

i
L L T x yθ= Φ Θ∑                     (2) 

where L represents softmax loss function, and ( ) ( )1 , , Q CCφ φ ×Φ = ∈  � �  is 
calculated as: 

( )
1 if class contains attribute ,

1 if class does not contain attribute .k

c k
y

c k
φ


= −

          (3) 

In our method, the loss weight of latent attributes is equal to user-defined 
attributes. 

2) Reconstruction network: The reconstruction network includes the encoder 
network and the decoder network, and it is constructed based on autoencoders. 
Supposing the encoder is ( )E ⋅  and the decoder is ( )G ⋅ , then the reconstruc-
tion objective function [13] can be expressed as: 

rec feat pixelL L L= +                        (4) 

where ( )( )( ) ( )
2

2featL F G E x F x= −  is high-level feature loss and  

( )( ) 2

2pixelL G E x x= −  is pixel-wise loss. And the high-level feature extractor is 

( )F ⋅ . We take the output of conv5 layer of AlexNet [26] as the feature extractor, 
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which is suggested by [13]. 
3) Adversarial learning: The reconstruction network tries to regularize the 

semantic embedding space generated by the classification network to improve 
the generalization ability. To achieve this, the semantic embedding space should 
search for a solution on the manifold of encoded vectors produced by the recon-
structed network. This goal can be expressed by the adversarial learning loss 
function. Similar to the loss function of GAN [27], the adversarial learning loss 
function can be expressed as: 

( )( )( ) ( )( )( )log log 1adv x xL D E x D C x′  ′= + −             (5) 

where ( )E ⋅  denotes the encoder in the reconstruction network, ( )C ⋅  denotes 
the semantic embedding space output by the classification network, x and x' de-
note input features of the reconstruction network and the classification network. 
The classification network aims to minimize advL  while the discriminator D 
aims to maximize advL . In the process of adversarial learning, the manifold of 
the semantic embedding space becomes closer to the manifold of the recon-
structed network output. 

4) Zero-shot prediction: We train the overall framework with the full objective 
function ua la rec advL L L L L= + + + . After training, during the prediction process, 
for a test image x, assuming that the user-defined attribute vector is ( )ua xϕ , the 
predicted labels can be inferred as follows: 

( )ˆ arg max , c
c ua uay xϕ∈=


s                     (6) 

where c
uas  denotes the ground-truth user-defined attributes of unseen class c, 

  denotes the label set of unseen classes and ŷ  denotes the predicted label. 
In the latent attributes space, the ground-truth prototypes of unseen classes 

are unknown. Therefore, we need to estimate the prototypes of unseen classes.  

To achieve this, we first calculate prototypes of seen classes as ( )1c
la la

i
x

N
ϕ ϕ= ∑ , 

where x is the sample of class c, ( )laϕ ⋅  denotes latent attributes extractor for 
sample x, and N denotes the number of samples of class c. Then, we construct 
the relationships between unseen class u and seen class in the user-defined 
attributes space. These relationships can be modeled based on regression prob-
lem: 

2 2

2 2
arg min ,u u u c u

c c c cβ β λ β= − + ∈∑ s s               (7) 

The relationship between unseen class u and seen classes can be constructed 
by solving this regression problem. The prototype of class u in the latent attributes 
space can be calculated based on the constructed relationship as: 

,u u c
la c la cϕ β ϕ= ∈∑                         (8) 

After calculating the prototypes of unseen classes, given UA prototype u
uas  of 

unseen class u, the corresponding LA prototype u
las  can be obtained. Then the 

predicted label in the latent attributes space can be inferred as follows:.  
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( )ˆ arg max , u
u la lay xϕ∈=


s                      (9) 

To combine user-defined attributes and latent attributes, the predicted label in 
user-defined attributes space and latent attributes space can be inferred as fol-
lows:  

( ) ( )ˆ arg max ; , ;c c
c la ua la uay x xϕ ϕ∈=     

s s               (10) 

To combine different semantic scales, the concatenated multi-scale us-
er-defined attributes space is ( ) ( ) ( )1 2;s s

mulua ua uax x xϕ ϕ ϕ =   , and multi-scale la-
tent attributes space is 1 2;s s

mulla la la =  s s s , then the predicted label can be inferred 
as follows:  

( )ˆ arg max , c
c mulua mullay xϕ∈=


s                  (11) 

where 1s  and 2s  denote different input scales. 

3.2. Explanatory Multi-Scale Semantic Patterns 

Given a series of images and a pre-trained CNN model, the explanatory graph of 
these images can be constructed. As shown in Figure 4, the explanatory graph 
can grasp the comprehensive semantic information of deep networks. In deep 
CNNs, higher layers usually represent high-level semantic patterns, such as ob-
ject patterns, while lower layers describe simple shapes or edges. Therefore, the 
patterns of higher layers can grasp the main semantic information and filter out 
noises, and the patterns of lower layers can be considered as components of 
higher layers. 

We summarize the learning process of explanatory graphs in [15]. The expla-
natory graph should be constructed layer by layer from top to bottom. Let G de-
fine the explanatory graph to be constructed. Assuming that the Lth layer con-
volutional feature map of input image I is I

LC , the graph node set V in position 
I
LR  will be inferred. The graph nodes should have two constrains: one is that 

graph nodes should be well consistent with feature maps I
LC ; the other one is 

that graph nodes should keep consistent spatial relationship with upper layers 

1
I
LR + . These two constraints can be expressed by parameter Lθ . Then the objec-

tive function for learning Lth layer graph node set V is: 

( )1arg min | ,
L

I I
I L L LP X R

θ
θ∈ +Π I                      (12) 

The parameter Lθ  is used to infer graph nodes that satisfy these two con-
straints. The graph node set can be interpreted as a hybrid model: 

( ) ( ) ( )

( ) ( )
( )

1 1

1

| , | ,

| , ,

L

L

F x
L L L x X x L L

F x

x X x L L
V

P X R P p R

P V P p V R

θ θ

θ

+ ∈ +

∈ +

= Π

 = Π  
 
∑

       (13) 

where ( )P V  denotes a constant prior probability, and ( )F x  denotes the 
neural response of each unit I

Lx C∈ : 

( ) { }max ,0xF x fβ= ⋅                        (14) 
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Figure 4. Illustration of semantic patterns extracted from explanatory graphs. We can see that 
each graph node represents one meaningful semantic. Semantic patterns are much more robust 
to variations like zooming or rotating than original images. 

 
where xf  denotes the normalized response of unit x and β  denotes a constant. 
Since the relative displacements between V and its connected nodes VV E∈  in 
the upper layer are expected to change little among different images, the compa-
tibility between V and xP  is computed as: 

( ) ( )1| , , | ,
Vx L L x LV E VP p V R P p p λ

θ α θ+ ∈= Π               (15) 

where Vp  denotes the inferred positions of V , λ  denotes a normalization 
constant, and α  denotes a constant to guarantee uniform distribution. Sup-
posing the spatial relationship between V and V  follows a Gaussian distribu-
tion, then 

( ) ( )2| , | ,x L xV V V VP p p pθ µ σ→= N                  (16) 

where VV V V VPµ µ µ→ = − +  denotes the prior position of V based on V , and 
2
Vσ  denotes the variation. For each graph node V, the parameters Vµ  and vE  

will be iteratively learned by the Expectation-Maximization (EM) algorithm. The 
graph is learned layer by layer in a top-down manner [15]. 

Once the explanatory graph is constructed, corresponding semantic patterns 
of different graph nodes can be inferred. Each graph node corresponds to the 
same semantic patterns of different images. During graph building process, po-
sitions on convolutional feature maps of different semantic patterns were rec-
orded. Given positions of convolutional feature maps, corresponding positions 
on original images can be obtained by inverse convolutional operations. As-
suming that the position obtained on the input image is ( ),x y , the expected 
scale is λ , and the size of original image is o, then the size of the corresponding 
semantic pattern is calculated as follows: 

( ) ( )( ) ( )( )min min , 1, min , , 1 2x y o x yδ λ = − − −          (17) 

Given position ( ),x y  and crop size δ , the semantic pattern sI  is cropped 
as ( )  : , :sI I x delta x delta y delta y delta= − + − + . The obtained semantic pat-
terns can be used to train encoder-decoder to make learned semantic embedding 
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space generalized and discriminative. Some examples of semantic patterns are 
shown in Figure 5. 

Multiple semantic patterns can be merged to form a larger-scale semantic 
pattern. If a semantic pattern p is merged from s smaller-scale semantic patterns, 
we define the scale of semantic pattern p as s. Unlike the scale in [14], which is 
based on resolution, the scale in our method is based on the number of semantic 
patterns. 

3.3. Implementation Details 

The proposed framework should be optimized by four kind of optimizers. The 
optimization procedure can be concluded as: 

1) Building explanatory graphs. We construct an explanatory graph for each 
training class. We use VGG19 to extract explanatory graphs. The ninth, tenth, 
twelfth and thirteenth convolutional layers are selected to build a four-layer 
graph. 

2) Extracting semantic patterns. We set the number of graph nodes on each 
convolutional feature channel as 40. On each graph layer, top-20 activated graph 
nodes are selected to generate corresponding semantic patterns. Multiple graph 
nodes can be combined to form larger scale semantic pattern images. 

3) Training reconstruction network. We combine multi-scale semantic part 
images and original images to form new training dataset for the reconstruction 
network. We take caffenet as backbone. 

4) Training classification network. Based on the trained reconstruction net-
work, we train the classification network using the original training data set. For 
each batch, we first optimize user-defined attributes by loss uaL , then optimize 
latent attributes by loss laL , and finally optimize the discriminator by loss advL . 
We take Resnet101 [28] as backbone of classification network and Alexnet [26] 
as backbone of discriminator. 

To train our framework, data augmentation methods, including random 
cropping and mirroring are used to reduce overfitting in training. The crop size 
is 224 224 3× × . We used the center crop in test process. We used the center 
crop in the test process. All used architectures are pre-trained on Imagenet da-
taset. The overall network is trained by finetuning pre-trained CNNs. The 
adopted optimization method is stochastic gradient descent (SGD). We set the 
momentum as 0.9 and the weight decay as 0.0005. The learning rate is initialized 
as 0.0001 and is multiplied by 0.1 when the error is plateauing. Grid search is 
taken to select hyperparameters. 

4. Experiments 

In this section, we present the experimental results and compare them to exist-
ing state-of-the-art results. Our methods are evaluated on widely used bench-
marks for zero-shot learning: Animals with Attributes 2 [31] (AwA2) and Cal-
tech-UCSD Birds-200-2011 [30] (CUB-200-2011). 
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Figure 5. Some semantic pattern samples discovered by explanatory graphs on CUB da-
taset. From left to right represents semantic patterns of top 5 activated graph nodes. 

4.1. Baseline Methods 

To demonstrate the influence of different components, we design the following 
baseline methods for comparison: 

SS-UA (Single Scale and user-defined attributes optimization). This baseline 
only optimizes user-defined attributes in the classification network. 

SS-LA (Single Scale and latent attributes optimization). This baseline only op-
timizes latent attributes in the classification network. 

SS-UA&LA (Single Scale and user-defined attributes + latent attributes opti-
mization). This baseline optimizes user-defined and latent attributes at the same 
time in the classification network. 

SS-UA&LA-AL (Single Scale and user-defined attributes + latent attributes 
optimization & adversarial learning network). This method uses original images 
to optimize both classification and reconstruction network in adversarial man-
ner [13]. 

MS-UA&LA-AL (Multi-Scale and user-defined attributes + latent attributes 
optimization & adversarial learning network). This method uses multi-scale se-
mantic patterns to optimize both classification and reconstruction network in 
adversarial manner. 

4.2. Effect of Attributes Space 

In this section, the effect of different attributes space types is evaluated. In the 
classification network, user-defined attributes and latent attributes are contained 
in the final semantic embedding space. User-defined attributes are optimized by 
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RIS and latent attributes are optimized by RULE. These two kinds of attributes 
are connected to form the final augmented semantic embedding space. 

The experimental results are shown in Table 1. Since the experimental results 
of some settings like ‘SS-AE-Fixed’ and ‘MS-AE-Fixed’ are not reported in [14], 
we report results implemented by ourselves for fair comparison. It can be seen 
that the augmented semantic embedding space has higher accuracy than single 
user-defined attribute space or latent attribute space, because it improves the 
generalized capacity of user-defined attributes and discriminative capacity of la-
tent attributes. Compared with the triple loss in [14], the RULE optimizer for la-
tent attributes obtains higher accuracy, because latent attributes can learn fea-
tures more compatible to image classification by jointly optimizing semantic 
embedding space classifiers with semantic embedding space extractors. 

4.3. Effect of Adversarial Learning 

In this section, the influence of adversarial learning between the classification 
and reconstruction network is evaluated. The experimental results are presented 
in Table 2. It can be seen that adversarial learning can obviously improve the 
performance of classification networks. Furthermore, when we use multi-scale 
semantic patterns to train the reconstruction network, the accuracy is further 
improved because more semantic patterns can guide the reconstruction network 
to learn more meaningful semantic information. 

4.4. Effect of Semantic Scales 

The effect of semantic scales is shown in Table 3. It can be seen that a larger se-
mantic scale can obtain higher recognition accuracy. Since the semantic patterns 
in our method are used in an organized way, combining several semantic scales 
can achieve better performance than the method in [14]. 

4.5. Effect of Graph Nodes 

From section 3.2, we can know that in the explanatory graph, each graph node 
corresponds to a semantic pattern. More graph nodes will generate more seman-
tic patterns, which can provide more multi-scale training images for recon-
structing the network. Graph node number is determined by graph nodes num-
ber on each layer and graph layer number. Supposing a graph contains l layers, 
each layer contains c channels and each channel contains n graph nodes, then 
the total number of graph node is l c n× × . 

We first test the effect of graph nodes number n on each channel. All graph 
nodes on each channel are ranked by activations, and top-n nodes are selected. 
The experimental results are presented in Figure 6. It can be seen that the great-
er the value of graph nodes number n on each channel, the higher the recogni-
tion accuracy, because more graph nodes can generate more semantic patterns. 
When 40n > , the recognition accuracy rises slowly due to the limited number 
of meaningful semantic patterns. For example, sometimes the three semantic 
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patterns of the head, torso, and legs are sufficient to represent the most impor-
tant semantic information. 

We then test the effect of graph layer number l with AlexNet as backbone. The 
number of AlexNet’s convolutional layer is increased from 1 to 8, which will 
generate an 8-layer graph. The experimental results are presented in Figure 7. 
As you can see, more graph layers correspond to higher accuracy, because more 
layers contain more useful information and complex structures. However, more 
layers also require higher computational costs. Therefore, we should consider 
the balance between recognition accuracy and computational efficiency. 

 
Table 1. Influence of augmented semantic embedding space on zero-shot recognition 
accuracy (%) using Resnet101 and VGG19 (in brackets).  

Method AwA2 CUB 

SS-BE-Fixed [14] 

SS-AE-Fixed (UA) [14] 

SS-AE-Fixed (LA) [14] 

SS-AE-Fixed (UA&LA) [14] 

75.20 (73.70) 

76.97 (75.24) 

74.76 (73.75) 

77.36 (75.77) 

50.51 (50.31) 

54.17 (51.40) 

55.08 (58.11) 

57.99 (58.96) 

SS-UA (Ours) 

SS-LA (Ours) 

SS-UA&LA (Ours) 

76.23 (74.56) 

79.46 (75.87) 

80.92 (78.52) 

56.57 (53.43) 

57.73 (59.64) 

60.51 (59.33) 

 
Table 2. Influence of adversarial learning on zero-shot recognition accuracy (%). 

Method AwA2 CUB 

SS-UA&LA 80.92 (78.52) 60.51 (59.33) 

SS-UA-AL 

SS-LA-AL 

SS-UA&LA-AL 

82.20 (78.70) 

83.41 (81.82) 

83.92 (82.54) 

62.46 (61.53) 

63.69 (62.45) 

66.81 (66.79) 

MS-UA&LA-AL 84.62 (83.46) 67.32 (67.25) 

 
Table 3. Influence of different adversarial scales comparison with [14] on zero-shot rec-
ognition accuracy (%). 

Method AwA2 CUB 

MS-BE-Fixed (Scale 1) 

MS-BE-Fixed (Scale 2) 

MS-BE-Fixed (Scale 3) 

MS-BE-Fixed (All Scale) 

75.20 (72.68) 

75.87 (74.02) 

- (-) 

77.80 (75.31) 

51.88 (50.87) 

53.04 (53.81) 

54.04 (54.72) 

56.85 (56.39) 

MS-UA-AL (Scale 1) 

MS-UA-AL (Scale 2) 

MS-UA-AL (Scale 3) 

MS-UA-AL (All Scale) 

77.34 (74.34) 

77.61 (76.89) 

78.78 (77.24) 

79.53 (78.76) 

53.65 (52.43) 

55.32 (55.16) 

56.12 (56.46) 

58.67 (58.21) 
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Figure 6. Influence of graph node number on CUB dataset. The used classi-
fication network is ‘SS-UA’. 

 

 
Figure 7. Influence of graph layer number on CUB dataset. The used classi-
fication network is ‘SS-UA’. 

 
We present some semantic patterns corresponding to Top-k activated expla-

natory graph nodes on CUB dataset in Figure 8. It can be seen that graph nodes 
with higher activation values correspond to more detailed features. The semantic 
patterns in ‘head’ and ‘neck’ are much more than those in ‘leg’ and ‘foot’. 

4.6. Comparison with State-of-the-Art Methods 

As shown in Table 4, we compare our proposed method to the state-of-the-art 
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results on the AwA2 and CUB dataset. It can be seen that, in zero-shot recogni-
tion tasks, our method outperforms other methods. We compare our method 
with ‘MS-AE-Fixed’ setting in [14] instead of ‘MS-AE-Learned’ setting, because 
in our framework, backbone architecture parameters of classification network, 
encoder network and decoder network are fixed, and only parameters of ful-
ly-connected layers need to be optimized. Our proposed method outperforms 
f-CLSWGAN [25] above 10% on CUB dataset because our method directly re-
construct original images and combines advantages of user-defined attributes 
and latent attributes while [25] generates visual feature vectors based on only 
user-defined attributes. 

 

 
Figure 8. Some semantic patterns correspond to top-k explanatory graph nodes on CUB 
dataset. From left to right represents semantic patterns of top 1-top 10, top 11-top 20, top 
21-top 30, top 31-top 40 top 41-top 50 and top 51-top 60 activated graph nodes. 

 
Table 4. Accuracy comparison with other methods on unseen classes by zero-shot recogni-
tion methods. ‘SS’ represents standard splits and ‘PS’ represents splits proposed by [29]. 

Method 
AwA2 CUB 

SS PS SS PS 

DAP [31] 

ES-ZSL [7] 

Deep-SCoRe [9] 

SP-AEN [13] 

CONSE [19] 

SJE [21] 

MS-AE-Fixed [14] 

Kernel [24] 

f-CLSWGAN [25] 

SE-ZSL [32] 

59.5 

75.6 

82.8 

- 

67.9 

69.5 

81.4 

- 

- 

80.8 

- 

58.6 

- 

58.5 

44.5 

61.9 

- 

64.3 

68.2 

69.2 

41.7 

55.1 

59.5 

- 

36.7 

55.3 

63.37 

- 

- 

60.3 

- 

53.9 

- 

58.5 

34.3 

53.9 

- 

57.1 

57.3 

59.6 

MS-UA&LA-AL 84.62 69.73 68.55 67.32 
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5. Conclusion 

In this paper, we propose a novel zero-shot recognition framework, which im-
proves semantic embedding learning by reconstructing multi-scale explanatory 
semantic patterns. Semantic patterns are extracted from explanatory graphs. The 
classification network is trained jointly by two optimizers: RIS for semantic em-
bedding supervision and RULE for class-level supervision. Multi-scale semantic 
patterns are taken to optimize both classification and reconstruction network by 
adversarial learning. Extensive experiments demonstrate satisfactory perfor-
mance on zero-shot recognition tasks, which suggests that our method has good 
generalization capacity in visual recognition field. 
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