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Abstract 
The major concern of this work is to propose new prototypes of surface hy-
brid waves, in particular waves propagating without sprawl or deformation 
on the surface of a fluid. The model considered for this purpose is the mod-
ified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solu-
tions is that they form packages constituted by combinations of waves be-
longing to the two main families of well-known bright and dark solitary waves. 
This putting together creates competitions between the different components 
of the considered packages which, following the values assigned to the para-
meters of the considered system and in relation to those of the wave parame-
ters, generate hybrid or multi-form structures. The direct method of resolu-
tion which made possible the obtained results is that of Bogning-Djeumen 
Tchaho-Kofane extended to the new implicit Bogning functions. The exis-
tence conditions of some solutions are obtained. The numerical simulations 
carried out with a view to testing the observable and applicable characters of 
the obtained solutions revealed their stabilities over a relatively long time, and 
at the same time, confirmed the recommended theoretical forecasts. We are 
convinced that the solutions proposed as part of this work will make it possi-
ble to detect, understand and explain some physical phenomena linked to 
fluid molecular interactions, former or new, which constantly occur on the 
fluid surfaces, mainly at the shallow water surface. 
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1. Introduction 

Since its existence, the universe in all its extent and its diversity has made availa-
ble to human beings, a multitude of physical systems for the most part complex 
and dynamic, whose understanding of the behavior of these different systems, is 
more or less beneficial for our progress and our security. These systems in our 
conception are presented as a domain consisting of an interior environment and 
an exterior environment both separated by an interface. It, therefore, appears 
that these three regions are susceptible to many natural or induced phenomena 
[1]-[10] which in some cases can lead to disasters, thus endangering many lives. 
Many researchers across the globe have produced works in which several ma-
thematical models [11]-[20], in order to be able to analyze, understand and ex-
plain these different phenomena. In the context of this manuscript, we focus our 
attention on what is happening or could happen at the common border zone 
between the two domains. This zone is also called interface (or common surface 
between both domains). Among the different offered models, one of them has 
long attracted the attention of many researchers, who through multiple works 
produced, starting from the discovery made by naval engineer John Scott Russel 
on one day of the year 1834 during the supervision of the works on the Union 
canal and reported in Report on waves [21] (the solitary wave which he called 
“Wave of Translation”), passing through Boussinesq (1871), Rayleigh (1876), 
Kruskal and Zabusky (1965) [1] on the one hand; Gardner, Greene, Kruskal and 
Miura ([22] [23]) on the other hand and till this day. These works have shed 
light on the mystery which surrounded Russel’s discovery (the emergence of a 
lone wave in the canal following the abrupt stop of a horse-drawn boat). The 
said model is the Korteweg-de Vries equation (KdVE) [24] which under its sim-
ple form is written [22] [23] [25] [26] [27] [28] 

0,t x xxxu auu u+ + =                          (1) 

where a  is a constant, xuu  the Burgers-type nonlinearity term which de-
scribes the steepening of the wave, xxxu  the third-order dispersion term which 
accounts for the spreading or dispersion of the wave, and tu  characterizes the 
time evolution of the wave propagating in one direction. Equation (1) is a model 
which accounts for both dispersion and non-linearity to the lowest order. In this 
context, one shows that solitons can propagate without strain or sprawl. This 
equation can admit infinity of solutions of the soliton types [27]. The Korte-
weg-de Vries (KdV) equation enables to describe the long waves (of long wave-
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length and small amplitude) that propagate on the surface of shallow water, par-
ticularly in canals. For more than ten years, surface waves have aroused growing 
interest in the scientific community. This renewed interest in these waves can be 
seen through the recent development of metamaterials [29], thus opening up 
new avenues of application for them [30] [31]. Despite numerous attentions paid 
to the KdV equation and despite several numerical and analytical techniques 
which have made it possible to intensely study solitary waves solutions of this 
equation, the fact remains that a good number of physical phenomena, observa-
ble or not, which occur or could occur on the surface of shallow water, especially 
in canals, remain unknown and need to be necessarily spotted. Unfortunately, 
very few, if any, of these works have not alluded to hybrid or multi-form solitary 
waves that appear as new prototypes of solitary waves of the KdV equation. 
These solutions once unearthed, will translate new behaviors of the physical sys-
tems whose dynamics are described by dispersive and nonlinear equations of the 
KdV category. It is within this framework that this work falls in order to provide 
an adequate response to this shortcoming and to further enrich the literature. 

The aim of this work is therefore to use the Bogning-Djeumen Tchaho-Kofané 
method (BDKm) extended to the implicit Bogning functions (iB-functions) to 
construct new prototypes of hybrid solitary wave solutions of the modified Kor-
teweg de Vries equation (mKdVE). This is how, in Section 2, we give a brief 
presentation of the new iB-functions on which the BDKm theory is extended. 
Section 3 is devoted to the construction of the analytical solutions followed by a 
numerical study of their stabilities while Section 4 takes care of the useful and 
necessary discussions for the reader’s understanding. Section 5, for its part, con-
cludes this work while highlighting some perspectives.  

2. BDKm Theory 

The BDKm theory in its latest version is based on the use of iB-functions for the 
resolution of nonlinear partial differential equations. This use involves mastering 
the properties of the iB-function in the management and organization of calcu-
lations. The iB-functions are defined as [32] [33] [34]  

( )
( )
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The member on the left is the implicit form and the member on the right is 
the explicit form of the function, where ( ), 0;1;2; ;i i pα = �  are the parameters 
associated with the independent variables ( ), 0;1;2; ;ix i p= � , m is the power of 
the numerator, n that of the denominator. Thus, these functions are generally 
used in nonlinear (partial) differential equations of the form  

( )2 2, , , , , , 0,F ξ ξξφ φ φ φ φ φ =� �                  (3) 

where F is an arbitrary function which is very often polynomial, ( )φ ξ  the un-
known function to be determined and ( )0

p
kk x tξ η ν

=
= −∑  the independent 
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variable. The principle consists in building the solution in the form  

( ) ( ), ,ij i j
ij

Jφ ξ λ ηξ= ∑                         (4) 

where ijλ  are constant coefficients to be determined and η  a wave parameter. 
Then, taking into account Equation (4) in Equation (3) landed to the main equa-
tion of gamuts  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,0 ,1 ,0

,1 0,0

, , , , , ,

, , , , 0,

n ij n m ij m k ij k
ijn ijm ijk

l ij l ij
ijl ij

P J Q J R J

S J Y J

λ η ν ηξ λ η ν ηξ λ η ν ηξ

λ η ν ηξ λ η ν ηξ

−

−

+ +

+ + =

∑ ∑ ∑

∑ ∑
 (5) 

where , , ,i j k l  are positive natural integers and ,n m  the real numbers [32] [33] 
[34]. Equation (5) is the one from which all the possible analyzes result. The 
identification at zero of the different coefficients , , ,n m k lP Q R S  and Y gives rise 
to series of algebraic equations of unknowns ijλ  whose order of priority in the 
resolution is given to the gamut of equations derived from the term ( ),0nJ ηξ , 
then to those in the terms ( ) ( ) ( ),1 ,0 ,1, ,m k lJ J Jηξ ηξ ηξ− −  and ( )0,0J ηξ , re-
spectively. The order of precedence here relates to the degree of enrichment and 
relevance of the series of equations giving the expressions of the coefficients ijλ  
which best approximate the exact values. In the case of the approximate solu-
tions, the resolution of equations coming from the coefficient nP  gives satisfac-
tion. For more details, one can refer to the multiple works done in [32]-[51]. 

3. Results 

In this section, we first construct the surface hybrid analytical solitary waves, 
solutions of the modified KdV equation using the BDKm [32]-[51] extended to 
the new iB-functions. Then, a study of the numerical stability of certain solu-
tions is carried out in order to have a well-established idea of the observable and 
applicable character of the proposed solutions. 

3.1. Surface Analytical Hybrid Solitary Wave Solutions 

In 1895, the Dutch D. Korteweg and G. de Vries had proposed an equation 
translating nonlinearity and the dispersion phenomenon. This equation, pre-
sented in its simplest form by Equation (1) came to explain the existence of the 
solitary wave such as observed in 1834 by Russel. The KdV equation is very re-
levant in the shallow water theory. We consider the KdV equation in a modified 
form and which is written [24] [26] [27]:  

2
t xxx x xω ω γωω βω ω= + +                    (6) 

where γ  and β  are constant coefficients of the quadratic (the weak nonli-
nearity) and higher-order cubic nonlinear terms; xxxω  the dispersion effect 
term which makes the wave form spread. t and x are both independent temporal 
and spatial coordinates respectively. ( ),x tω  represents the water’s free surface 
in non-dimensional variables. The competition among the dispersion effect, 
quadratic and cubic nonlinearities constitute the main interest [52] [53]. For 
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some values of the coefficients γ  and β , Equation (6) is also called the stan-
dard Gardner equation, or the combined KdV-mKdV equation. Originally, the 
Gardner equation was derived rigorously within the asymptotic theory for long 
internal waves in a two-layer fluid with a density jump at the interface [54]. Eq-
uation (6) finds its relevance in various branches of physics, such as quantum 
field theory, fluid physics, plasma physics and so on. It is also used to model a 
variety of nonlinear phenomena and to describe internal solitary waves in shal-
low seas. When we set ( ) ( ),x tω φ ξ= , with x tξ ν= −  and where ν  is the 
wave speed, Equation (6) leads to the traveling wave equation below: 

2 0,ξ ξξξ ξ ξνφ φ γφφ βφ φ+ + + =                    (7) 

Since we are looking for hybrid surface solitary wave solutions, these can be 
chosen after an extension to the new iB-functions as the functions ( )φ ξ  of the 
form:  

( ) ( ) ( ) ( ) ( )2,0 1,1 3,0 2,2 ,aJ bJ cJ dJφ ξ ηξ ηξ ηξ ηξ= + + +         (8) 

where , ,a b c  and d  are real constants to be determined later, η , the inverse 
of the width at half-height of each component of the ansatz given by Equation 
(8). It is important to point out here that, Equation (8) is a kind of package [32] 
[33] [34] of solitons whose the first and the third term are bright solitons that dif-
fer by their clues and are represented by the iB-functions ( )2;0J ηξ  and ( )3;0J ηξ  
respectively; the second term is a kink soliton represented by the iB-function 

( )1;1J ηξ , while, the fourth term is a dark soliton and represented by the iB-function 

( )2;2J ηξ . To realize this, the reader can simply represent them. This bringing 
together of the different solitary waves gives a particular character to Equation (8) 
in the meaning that from their interactions new prototypes of solitary waves 
emerge that we qualify as hybrids or even multi-form. Let us point out that Equ-
ation (8) can be born by Equation (6) as solution. That being said, we continue 
our analyzes by taking into account Equation (8) in Equation (7). By applying 
the extended BDKm [32]-[51] to new iB-functions, we obtain the main equation 
to the coefficients made up of the first two ranges as being:  

( ) ( ) ( ) ( ),0 ,1, , , , , , , , , , , , , , 0,n n m m
n m

P a b c d J Q a b c d Jγ β η ν ηξ γ β η ν ηξ+ =∑ ∑  (9) 

where { }2;3;4;5;6;7;8n∈ ; { }3;4;5;6;7;8;9;10m∈ . So, Equation (9) has de-
livered in its formulation, two ranges of equations in the terms of ( ),0nJ ηξ , and 

( ),1mJ ηξ , thus constituting the most important ranges according to the BDKm 
theory. At the same time, this theory also suggests that, in the solving of the se-
ries of algebraic equations come from these two ranges, priority is given to the 
ranges of equations from the coefficients of the terms in ( ),0nJ ηξ  which, in 
most cases and according to their degree of enrichment in coherent information, 
suffices to obtain the expressions of the coefficients , ,a b c  and d  as function 
of parameters , ,γ β η  and ν . Further, the investigations carried out in the 
present case show that the series of equations outcome from the second term of 
Equation (9) provided only the irrelevant (trivial) results, this in comparison 
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with the results provided by equations of the first series (given by the first term 
of Equation (9). In this context, We should limit ourselves to solving only the 
equations outcome from terms in ( ),0nJ ηξ . So, the identification at zero, of the 
coefficients of the terms in ( ),0nJ ηξ , { }2;3;4;5;6;7;8n∈  results in the series 
of algebraic equations, with unknowns , ,a b c  and d  as follows 

The term in ( )8,0J ηξ , 
27 0,bcηβ =                        (10) 

The term in ( )7,0J ηξ ,  

12 0,abcηβ =                       (11) 

The term in ( )6,0J ηξ ,  

( )2 25 2 3 6 0,a ad d cd bηβ ηβ ηβ ηβ− − − =             (12) 

The term in ( )5,0J ηξ ,  

( )4 4 0,a bcηγ ηβ− =                    (13) 

The term in ( )4,0J ηξ ,  

( )2 2 2 36 3 2 2 3 4 6 0,ad a b d d a bηβ ηγ ηβ ηβ ηγ ηβ η+ − − − − − =    (14) 

The term in ( )3,0J ηξ ,  

( )3 6 0,d bcηγ ηβ− − =                   (15) 

The term in ( )2,0J ηξ ,  

( )3 2 24 3 2 5 4 0,d a b d ad bην η ηγ ηγ ηβ ηβ ηβ+ + − + + − =      (16) 

We shall not be able to pursue our analyzes without however emphasize the 
fact that, this series of equations going from Equations (10) to (16) constitutes 
the key points from which all future analyzes will be born. Thus, on observing 
the structure of this first series of equations (Equation (10) to Equation (16)), it 
becomes obvious that the second term of Equation (8) is the most disruptive 
element of the constituted package [32] [33] [34]. This is justified by the pres-
ence of its coefficient b in all the terms of each of the equations of this first series. 
It is undoubtedly this disturbance which gives rise to the most complex hybrid 
structures that form in propagation media (see paragraph 3.2. Below). The ob-
servation being made, it emerges from Equations (10) and (11) that:  

0 or 0b c= =                       (17) 

and  

0 or 0 or 0.a b c= = =                   (18) 

Equations (17) and (18) are those which will guide the choices of the different 
families of solutions to be constructed. We note in this context that when we set 
a condition, the major term changes. For example, if 0c = , Equations (10), (11), 
(13) and (15) are verify, only Equations (12), (14) and (16) are those to be con-
sidered. In the concern of obtaining non-trivial solutions, we shall retain only 
five families of solutions represented by the following five conditions:  
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0, 0, 0a b c≠ ≠ ≠ ; 0, 0, 0a b c≠ ≠ = ; 0, 0, 0a b c= ≠ = ; 0, 0, 0a b c≠ = =  and 
0, 0, 0a b c≠ = ≠ . 

3.1.1. First Family of Solutions: Case a b c0, 0, 0≠ ≠ ≠  
For 0, 0, 0a b c≠ ≠ ≠ ; one obtains from Equations (13) and (15), respectively:  

a γ
β

=                              (19) 

and  

.
2

d γ
β

= −                            (20) 

By substituting Equations (19) and (20) in Equation (12), One obtains:  

7 .
4

c γ
β

= −                            (21) 

We continue our investigations by taking into account Equations (19) and (20) 
into Equation (14), and we reach the results:  

2 2
2

2

3 6 ,
2

b γ βη
β
+

= −                        (22) 

with the first constraint  
2

2 .
2
γβ
η

−≺                          (23) 

The constraint given by Equation (23) shows that, this first family of hybrid 
solitary waves exists if and only if 0β ≺  (due to even powers of parameters γ  
and β ). So, it is the appearance of the cubic nonlinearity in the propagation 
medium that is at the origin of the existence of this first new prototype of hybrid 
solitary waves of the modified KdV equation. One more time, taking into ac-
count Equations (19) and (20) in Equation (16), leads respectively to:  

2 2
2

2

16 4 ,
4

b γ βη βν
β

− −
= −                  (24) 

and the second constraint:  
2

2 .
16 4

γβ
η ν+

≺                       (25) 

Taking into account Equation (23) in Equation (25) imposes choosing the 
wave speed according to the third constraint below:  

24 .ν η−≺                         (26) 

It follows from Equation (26) that, the wave speed must remain a lower bound 
of the singleton { }24η− . So, we can control the speed of the wave from the op-
posite of the square of the inverse of the width at half-height of each component 
of the ansatz given by Equation (8), and vice versa. Besides, Equations (23) and 
(24) must be identical, thus giving rise to the equality: 2 2b b= . Therefore, we 
derive from this equality, the constraint giving the expression of the parameter 
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β  depending on the parameters ,γ η  and ν  as being:  
2

2

7 ,
4 4

γβ
η ν

=
+

                         (27) 

with the aid of Equation (23): 2ν η−≺ . In the end, the combination of the con-
straints given by Equations (23), (25), (26) and (27) imposes the choice of the 
wave speed ν  such that:  

2 29 ; 4 .
2

ν η η ∈ − −  
                       (28) 

Equation (22) or Equation (24), taking into account Equation (27) gives, suc-
cessively:  

4 2 2
2

2

108 132 24
49

b η η ν ν
γ

+ +
= −                   (29) 

and 
4 2 2

2

108 132 24 .
49

b η η ν ν
γ

+ +
= ± −                  (30) 

Thus, from Equation (8), we obtain the first family of solutions in the form:  

( ) ( ) ( )

( ) ( )

4 2 2

2,0 1,12

3,0 2,2

108 132 24
49

7 ,
4 2

J J

J J

γ η η ν νφ ξ ηξ ηξ
β γ

γ γηξ ηξ
β β

+ +
= ± −

− −

       (31) 

with the constraints given by Equations (23), (25), (26), (27) and (28), respec-
tively. It is sound to point out here that, Equation (31) is the main new prototype 
of the hybrid solitary wave solutions of Equation (6) which is proposed in this 
work. This new prototype is a package [32] [33] [34] that contain within it sev-
eral sub-packages within it, notably, the sub-package formed of the first and the 
second term (consisting of a bright and a kink); the sub-package formed by the 
second and fourth term (made up of a kink and a dark), the sub-package formed 
by the first, second and fourth term (made up of a bright, a kink and a dark), just 
to name a few. It is in this mixing which, during their interactions and according 
to the taken values by the coefficients and parameters , , , ,a b c d ν  and η  of the 
wave and those of the parameters ,γ β  of the considered system, generate new 
hybrid or multi-form structures. It also emerges from Equation (31) that the 
amplitudes , ,a c d  of the first, third and fourth term of these wave components  

are directly proportional to the ratio X γ
β

= , which, in their turns means that  

the taller these wave components the greater the coupled effects of the quadratic 
and cubic nonlinearity. 

3.1.2. Second Family of Solutions: Case a b c0, 0, 0≠ ≠ =  
When One sets 0c = , it follows that Equations (10), (11), (13) and (15) are sa-
tisfied, while, Equations (12), (14) and (16) are reduced, successively to:  
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2 25 2 3 0,a ad d− − =                        (32) 
2 2 2 26 3 2 2 3 4 6 0,ad a b d d aβ γ β β γ β η+ − − − − − =          (33) 

2 2 24 3 2 5 4 0.d a b d adν η γ γ β β β+ + − + + − =             (34) 

From these three equations, it clearly emerges that Equation (32) is verified if 
the following condition is satisfied: a d= . As a consequence, Equation (33) 
gives respectively:  

2
2 3b η

β
= −                            (35) 

and  

3 ,b η
β

= ± −                          (36) 

with the constraint:  

0.β ≺                             (37) 

Moreover, Equation (34) taking into account Equation (35), leads to the qua-
dratic equation in unknown coefficient a below:  

2 2 0.a aβ γ ν η+ + + =                     (38) 

Equation (38) has for discriminant:  

( )2 24 .γ β ν η∆ = − +                      (39) 

For 0∆ ≥ , Equation (38) admits as solution  

( )2 24
,

2
a

γ γ β ν η

β

− ± − +
=                  (40) 

with 2ν η≤ − . It is necessary to point out here that, the case 0∆ ≺  is not ne-
cessary because it leads to the complex values of the coefficient a, since we are 
looking for the real solutions. Thus, the second family of solutions of Equation 
(6), given that: ( ) ( )2 2cosh sinh 1ηξ ηξ− = , are the functions ( )φ ξ  of the form:  

( )
( )

( )
2 2

1,1

4 3 ,
2

J
γ γ β ν η

φ ξ η ηξ
β β

− ± − +
= ± −         (41) 

with the constraints given by Equation (37) and 2ν η≤ − . Equation (41) is a 
prototype that, in its constitution within Equation (8), appeared a priori to be a 
hybrid structure. But, during the resolution it is formally established that, for 
this prototype to be a solution of the mKdV equation considered here, in addi-
tion to the fact that 0c = , it is also necessary that a d= . As a consequence, we 
obtain the solution given by Equation (41) which is a sum of two terms, the first 
of which is a constant and the second a kink. It becomes easy to note that this 
second family of solutions can mainly generate only kink and anti-kink struc-
tures according to the values taken by the different parameters present in this 
expression. 
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3.1.3. Third Family of Solutions: Case a b c0, 0, 0= ≠ =  
Under this condition, Equations (10), (11), (13) and (15) are verified. Further-
more, Equation (12) leads to 0β = , while, Equation (14) delivers d in the form  

22 .d η
γ

= −                            (42) 

The combination of Equations (16) and (42) permits to obtain de following 
constraint:  

22 ,ν η=                            (43) 

for all values of b such as *b∈ℜ . So, the third family of the solutions of Equa-
tion (6) is written:  

( ) ( ) ( )
2

1,1 2,2
2 ,bJ Jηφ ξ ηξ ηξ
γ

= −                 (44) 

with Equation (43) as constraint, for 0β =  and *b∈ℜ . Equation (44) is a 
sub-package derived from the large package given by Equation (8). It is a hybrid 
prototype that highlights two solitons well-known in the literature, namely the 
kink represented here by the first and the dark represented by the second term of 
Equation (44). These two solitons in their interactions give rise to hybrid struc-
tures which can be either with strong kink or anti-kink tendencies, or with 
strong dark or bright tendencies depending on the values taken by the coeffi-
cients and parameters , ,b d ν  and η  of the wave, as well as those taken by the 
parameters γ  of the system whose dynamics are governed by Equation (6). 
Equation (44) also highlights the opposition of signs between the amplitude d 
and the quadratic nonlinearity parameter γ  as well as the inversely propor-
tional character of d and γ  for a given value of η  of the second term of this 
equation. This means that, the smaller γ , the larger d and vice versa. This ob-
servation also reflects the antagonistic effect between the two: the taller the wave 
formed by the second term of Equation (44), the weaker the effect of quadratic 
nonlinearity and vice versa. This compared to the values taken by b justifies the 
different hybrid structures formation which appears for 0β = . Thus, this third 
family of solutions reflects behavior of the considered system and is described by 
Equation (6) with respect to the phenomena induced by the cubic nonlinearity. 

3.1.4. Fourth Family of Solutions: Case a b c0, 0, 0≠ = =  
For 0, 0a b≠ =  and 0c = , all equations of the first range are verified (from 
Equation (10) to Equation (16)). The second range leads to a trivial solution 
which is not important. Thus, according to the implementation of the BDKm, 
the equations of the first range are the best enriched, thereupon. This makes it 
possible to extract and retain the approximate solution resulting from this first 
range for all the values of a and d belonging to the set of non-zero real numbers. 
We, therefore, obtain the fourth family of solutions of Equation (6) under the 
form:  
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( ) ( ) ( )2,0 2,2 ,aJ dJφ ξ ηξ ηξ= +                    (45) 

where *a∈ℜ  and *d ∈ℜ . Let us note that the sub-package formed by Equa-
tion (45) is a hybrid prototype at least under its mathematical form. The struc-
tures likely to form oscillate between the bright and the dark solitons depending 
on the values taken by the various characteristic parameters of the wave and 
those of parameters that characterize the system whose dynamics are described 
by Equation (6). 

3.1.5. Fifth Family of Solutions: Case a b c0, 0, 0≠ = ≠  
In this context, all equations from (10) to (16) are verified, while, the second 
range of equations leads to a trivial solution which is not important. So, accord-
ing to the implementation of the BDKm, the equations of the first range are the 
best enriched on this subject. This permits to unearth and retain the approx-
imate solution resulting from this first range for all the values of a, c and d be-
longing to the set of non-zero real numbers. We therefore display the fifth family 
of solutions of Equation (6) as being:  

( ) ( ) ( ) ( )2,0 3,0 2,2 ,aJ cJ dJφ ξ ηξ ηξ ηξ= + +             (46) 

where *a∈ℜ , *c∈ℜ  and *d ∈ℜ . This fifth family of solutions is a sub-package 
of which the first two terms are bright solitons and the third term is a dark soli-
ton. Equation (46) is also a hybrid prototype in its mathematical form. Depend-
ing on the values taken by parameters of the wave and those of the system whose 
dynamics is described by Equation (6) mainly generates either bright structures 
or dark soliton structures. 

3.2. Numerical Simulations of the Obtained Solutions 

This subsection is devoted to numerical simulations aiming to reassure oneself 
of the observable and applicable characters of certain new hybrid solitary wave 
prototypes obtained in this work. This should allow laboratories specializing in 
propagation tests to have the matter to exercise in order to reveal, understand 
and explain certain new phenomena or behaviors developed by systems whose 
dynamics are governed by Equation (6). To achieve this, we used certain digital 
tools, in particular, the MATLAB toolbox pdepe [55] which solves initial-boundary 
value problems for parabolic-elliptic PDEs in 1-D, with zero flux boundary con-
ditions . We have also used spatially extended grids in others to minimize boun-
dary reflections that could induce spurious effects. It is also necessary to point 
out here that, these boundary conditions are appropriate to the profiles of the 
solutions studied in this work, instead of the periodic boundary conditions 
which require that when a wave passes from one end (of the computational spa-
tial grid) to the other which is opposite to it, it should keep the same properties. 

In order to allow a better understand how the above profiles (from Figures 
1-3) are obtained, one can illustrate this through an example. Thus, in the case 
of Figure 1(d): when we set 0.00054a = ; 0.0009b = ; 0.0042c = ; 0.004d = ; 

0.02η = , One obtains 105.8201β = − ; 0.0017ν = −  and 0.2804γ = −  from  
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Figure 1. Robust dynamics of hybrid structures given by Equation (31): (a): Antikink-Bright dynamics: 0.00054a = − ; 

0.0009b = − ; 0.0042c = − ; 0.004d = − ; 0.02η = ; 0.0017ν = − ; 105.8201β = − ; 0.2804γ = − . (b): Bright-Kink dynamics: 
0.00054a = − ; 0.0009b = ; 0.0042c = − ; 0.004d = − ; 0.02η = ; 0.0017ν = − ; 105.8201β = − ; 0.2804γ = − . (c): 

Dark-Antikink dynamics: 0.00054a = ; 0.0009b = − ; 0.0042c = ; 0.004d = ; 0.02η = ; 0.0017ν = − ; 105.8201β = − ; 
0.2804γ = − . (d): Kink-Dark dynamics: 0.00054a = ; 0.0009b = ; 0.0042c = ; 0.004d = ; 0.02η = ; 0.0017ν = − ; 
105.8201β = − ; 0.2804γ = − . 

 
Equations (38); (39) and (40), respectively. For more details on the proceedings 
for obtaining the profiles displayed in the various figures, one can refer to [55]. 
At the end of the numerical simulations, it appears that Subsection 3.2. has 
therefore just unveiled some new wave structures likely to appear in physical 
systems whose dynamics are described by Equation (6). At the same time, they 
confirmed the made surmises and bearing on the hybrid characters of the wave 
package [32] [33] [34] represented by Equation (8), thus giving a wider field to 
the discussions which will follow. 
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Figure 2. Robust dynamics of multi-form solitary waves given by Equation (31): (a): Bright-Antikink dynamics: 0.00431a = − ; 
0.00292b = − ; 0.0321c = − ; 0.0432d = − ; 0.02η = ; 0.0171ν = − ; 9.0475β = − ; 0.0823γ = − . (b): Kink-Bright dynamics: 
0.00431a = − ; 0.00292b = ; 0.0321c = − ; 0.0432d = − ; 0.02η = ; 0.0171ν = − ; 9.0475β = − ; 0.0823γ = − . (c): Anti-

kink-dark evolution: 0.02η = ; 0.0017ν = − ; 0.01γ = ; 0.0743a = − ; 0.0252b = − ; 0.13c = ; 0.06d = ; 0.1346β = − . (d): 
Dark-kink evolution: 0.02η = ; 0.0017ν = − ; 0.01γ = ; 0.0743a = − ; 0.0252b = ; 0.13c = ; 0.06d = ; 0.1346β = − . 

4. Discussions 

In this part of manuscript, one engages some detailed discussions which help the 
reader to better appropriate the new ideas offered by the new prototypes of soli-
tary waves obtained and which are the solutions of Equation (6). 

Figure 1 shows hybrid prototypes of solitary waves given by Equation (31). 
The hybridisms displayed here are formal because each of the four profiles inte-
grates undulatory structures of different natures within it. Thus, according to 
their natures and starting from left to right, we saw fit to name them: (a): Anti-
kink-Bright, (b): Bright-Kink, (c): Dark-Antikink, (d): Dark-Kink, respectively. 

A thorough observation of these four profiles reveals at least as regards of 
their natures, that, Figure 1(a) is the image of Figure 1(c) by a rotation of ±π  
with respect to an axis parallel to the time axis t and contained in a plane parallel  
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Figure 3. Stable spatiotemporal evolutions of solitary waves (with some dominant trends) given by Equations (41) and (44): (a): 
Antikink evolution 0.1β = − ; 0.02γ = ; 0c = ; 0.02η = ; 0.0005ν = − ; 0.0051a d= = ; 0.1095b = − . (b); Kink evolution: 

0.1β = − ; 0.02γ = ; 0c = ; 0.02η = ; 0.0005ν = − ; 0.0051a d= = ; 0.1095b = . (c): Antikink-Dark evolution: 0a c= = ; 
0.0132b = − ; 0.03γ = − ; 0β = ; 0.02η = ; 0.0008ν = ; 0.0267d = . (d): Kink-Bright evolution: 0a c= = ; 0.005b = ; 
0.0315γ = − ; 0β = ; 0.02η = ; 0.0008ν = ; 0.0254d = − . 

 
to the ( ),x t  plane and vice versa. 

It is the same between Figure 1(b) and Figure 1(d). This transformation will 
allow a gain in experimentation time during propagation tests with a view to 
understanding and explaining new phenomena which are direct consequences of 
the behaviors (translated by these hybrid prototypes of the obtained solitary 
waves) developed by physical systems whose dynamics are governed by Equation 
(6). 

Moreover, Figure 2 just like Figure 1, displays four formal hybrid profiles 
which are new solitary wave prototypes obtained. Let us point out here that, the 
descriptions made in the case of Figure 1 remain valid and should allow the 
reader to better understand at will the different names attributed to the profiles 
which Figure 2 emerges. 
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Figure 3 depicts on the top row two solitary wave profiles of the same nature: 
(a) which is an anti-kink and (b) which is a kink, both given by Equation (41). 
These two profiles thus confirm the a priori ideas made in the case of the second 
family of solutions of Equation (6). However, the profiles seen on the bottom 
row are two almost formal hybrid prototypes of solitary waves as one of the 
structures is predominant. In other words, Figure 3(c) is a hybrid prototype 
which integrates an antikink and a dark, in which the antikink structure is pre-
dominant, while Figure 3(d) is also, an almost formal hybrid prototype of soli-
tary wave which also integrate within it a kink and a bright in which the bright 
structure is predominant. In this context, we estimated the Anti-kink-Dark de-
nomination for (c) and the Kink-Bright denomination for (d). It is important to 
point out here that the profiles (c) and (d) made it possible to validate the theo-
retical predictions made as to the predominance of one of the structures which 
constitute the hybrid prototypes of solitary waves belonging to the third family 
of solutions of Equation (6) and represented by Equation (44). 

After all these discussions, it is clear that numerical simulations revealed many 
hybrid or multi-form characters of certain obtained solutions, thus, corroborat-
ing the theoretical forecasts made on this subject. These results thus confirm the 
hybrid and novel character, in all its forms (package, sub-packages, and so on.), 
of the chosen ansatz and represented by Equation (8). Compared to the results 
obtained in [25] [27] [28], Equation (8) is a new prototype of solitary wave solu-
tions of Equation (6), at least in its analytical form (see Equation (31)), as well as 
its various new hybrid profiles displayed by Figure 1 and Figure 2. 

5. Conclusion 

We come to propose at the end of this study, some hybrid prototypes of solitary 
waves (as well as their existence conditions) of the modified KdV equation de-
picted by Equation (6). This is made possible thanks to the BDKm extended to 
the iB-functions, which is very relevant in the resolution of certain types of dif-
ferential equations which involve dispersive terms and nonlinear terms. The 
surmises issued on the basic mathematical form (see Equation (8)) from which 
all the families of the obtained solutions come were validated by numerical si-
mulations carried out with good accuracy [55]. It, therefore, follows that some 
solitary wave solutions proposed are new and display multi-form characters, in 
some cases presenting possibilities of rotation which transforms one figure into 
another (see Figure 1 and Figure 2) and in other cases a predominance of struc-
ture (see Figure 3(c) and Figure 3(d)). We believe that a good understanding of 
the properties of the solutions obtained in the context of this work will allow us 
to explain certain phenomena that take place on the surface of the domains, in 
particular on shallow waters surface, at the interface of the two homogeneous 
fluid media, and so on. More precisely and beyond the mathematical calcula-
tions, the choices made on the forms of the constructed solutions are not ha-
zardous. We start from the fact that on the surface of the sea, for example, the 

https://doi.org/10.4236/ojapps.2022.122014


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/ojapps.2022.122014 211 Open Journal of Applied Sciences 
 

waves which form and propagate there result from the dynamics of several inte-
racting phenomena. If we remain on the phenomena of collisions, a wave of par-
ticular shape observed can be the result of the collision of waves of different na-
tures. Since the main solitary waves that we know are of pulse and kink type, 
then our approach is clear to know to build hybrid waves resulting from the col-
lision or junction of solitary waves of pulse and kink nature. The objective is to 
have a fairly robust prototype capable of withstanding even longer instabilities 
and various fluctuations on the sea surface. This reflection not being isolated can 
be extended to the case of solid waveguides to also build prototype waves capa-
ble of propagating at long distances without amplification. We understand that 
this study may also be of great interest in information and telecommunications 
engineering. However, more emphasis should be placed on the permanent spot-
ting of these types of solutions that could help in controlling future phenomena 
that will take place on the surface of certain physical domains and at the same 
time will help will help the devise of fluid media whose surface has an improved 
structure. 
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