
Open Journal of Applied Sciences, 2021, 11, 1240-1255
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2021.1111094 Nov. 30, 2021 1240 Open Journal of Applied Sciences

Optimal Flame Detection of Fires in
Videos Based on Deep Learning and
the Use of Various Optimizers

Tidiane Fofana1,2, Sié Ouattara1,2,3*, Alain Clement4

1Laboratoire des Sciences et Technologies de la Communication et de l’Information (LSTCI), Yamoussoukro, Côte d’Ivoire
2Institut National Polytechnique Houphouët Boigny (INPHB), Yamoussoukro, Côte d’Ivoire
3Ecole Supérieure des Technologies de l’Information et de la Communication (ESATIC), Abidjan, Côte d’Ivoire
4LARIS, SFR MATHSTIC, Université d’Angers, Angers, France

Abstract
Deep learning has recently attracted a lot of attention with the aim of devel-
oping a fast, automatic and accurate system for image identification and clas-
sification. In this work, the focus was on transfer learning and evaluation of
state-of-the-art VGG16 and 19 deep convolutional neural networks for fire
image classification from fire images. In this study, five different approaches
(Adagrad, Adam, AdaMax, Nadam and Rmsprop) based on the gradient des-
cent methods used in parameter updating were studied. By selecting specific
learning rates, training image base proportions, number of recursion (epochs),
the advantages and disadvantages of each approach are compared with each
other in order to achieve the minimum cost function. The results of the com-
parison are presented in the tables. In our experiment, Adam optimizers with
the VGG16 architecture with 300 and 500 epochs tend to steadily improve
their accuracy with increasing number of epochs without deteriorating per-
formance. The optimizers were evaluated on the basis of their AUC of the
ROC curve. It achieves a test accuracy of 96%, which puts it ahead of other
architectures.

Keywords
Image Classification, Optimizers, Transfer Learning, VGG16, VGG19

1. Introduction

The increasing prevalence of surveillance of industry, public spaces and the en-
vironment in general with the help of video surveillance systems is necessary for

How to cite this paper: Fofana, T., Ouattara,
S. and Clement, A. (2021) Optimal Flame
Detection of Fires in Videos Based on Deep
Learning and the Use of Various Optimizers.
Open Journal of Applied Sciences, 11, 1240-
1255.
https://doi.org/10.4236/ojapps.2021.1111094

Received: October 14, 2021
Accepted: November 27, 2021
Published: November 30, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2021.1111094
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2021.1111094
http://creativecommons.org/licenses/by/4.0/

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1241 Open Journal of Applied Sciences

the security of goods, pollution, fires etc. Indeed, in recent years, many works
related to fire detection by analysis and processing of video images have flooded
the literature. However, the fire detection problem does not seem to have a uni-
versal answer as evidenced by some work [1]-[6]. The major difficulty in our
sense of the detection of fires is related to different factors; it is for example the
detection of smoke often confused with clouds and fog, the detection of flames
confused with tricolor lights, vehicle lights as well as fireworks and fluorescence
phenomena. The work of [7], a direct precursor to this study, explored fire de-
tection and localization based on both full-format binary fire detection and su-
perpixels based on similar experimentally defined CNN architectural variants
derived from inceptionV1 [8] and AlexNet architectures [9]. InceptionV1-On
Fire achieved 89% detection accuracy for superpixel-based detection, while Fire-
Net achieved 93% for full frame binary fire detection [7]. In this paper, we show
that it is possible to obtain fire detection results comparable to recent work on
time dependence [10] [11] [12], by moving beyond the earlier non-temporal ap-
proach of Chenebert et al. [6] and using a CNN model. The main objective of
this work is to implement a classification method to detect the presence of a fire
(or presence of fire) in order to avoid damage caused by fires on a large scale and
with precision. Thus, in this work, we implemented a classification method based
on convolutional neural networks which are VGGnet (VGG16 and 19) using
transfer learning. We have classified our image learning base into two classes,
namely the fire and non-fire class. For this purpose, different parameters of
convolutional neural networks have been dynamically explored in order to op-
timize the classification or detection of fire. These include the learning rate, the
proportions of the training image base, the number of recursions (epochs) and
the optimization algorithms (Adagrad, Adam, Adamax, Nadam and RMSProp).
We used the AUC of the ROC curve to evaluate our classification methods
which resulted in a better classification rate of 96%.

2. Methodology
2.1. Dataset and Operating Protocol

The work of this paper being based on fire detection we have set up a database of
images divided into three parts (train, test, validation). The image base used for
our study consists of 20,000 images; the image base contains 10,000 fire images
and 10,000 non-fire images. Our images have dimensions of 150 × 150 pixels for
VGGnet networks. Data normalization is performed by dividing all pixel values
by 255 to make them compatible with the initial network values. The percentag-
es used in this work are 60% and 40%; 70% and 30%; 80% and 20%. The choice
of split ratio is based on previous work: 60% and 40% [13], 70% and 30% [14]
[15] [16] and 80% and 20% [17].

The dataset (Figure 1) was tested on VGG networks with five gradient des-
cent optimizers. The VGG16 and VGG19 networks have been used in many re-
search works [18] [19] [20] [21] and have given excellent results. Several works

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1242 Open Journal of Applied Sciences

Figure 1. Example of images available in the dataset.

have been devoted to the study of different optimizers [22] [23] to evaluate the
performance and convergence of the models created. In the following sections
we will explain the different architectures of VGGnet networks and how the dif-
ferent optimizers used work.

2.2. VGGnet Model

The VGG network architecture was initially proposed by Simonyan and Zisser-
man [24]. The 16-layer (VGG16) and 19-layer (VGG19) VGG architecture served
as the basis for their submission to the ImageNet Challenge 2014, where the
Visual Geometry Group (VGG) team secured first and second place in the loca-
tion and identification tests.

2.2.1. VGG 16
VGG16 consists of five convolution blocks, where the first block contains two
convolution layers, stacked together with 64 filters. The second block consists of
two convolution layers stacked with 128 filters, where the second convolution
block is separated from the first block by a max pooling layer. The third block
consists of three convolution layers, stacked together with 256 filters and sepa-
rated from the second block by another pool max layer. The fourth and fifth lay-
ers have the same architecture, but have 512 filters. The convolution filter used
in this network is of size 3 × 3 and stride 1. Then, a flattening layer is added be-
tween the convolution blocks and the dense layers, converting the 3D vector into
a 1D vector. The last block consists of three dense layers, each with 4096 neu-
rons, to classify each image. The last layer is a softmax layer, which is used to
ensure that the sum of the probabilities of the output is equal to one. ReLU was
used as an activation layer throughout the network.

2.2.2. VGG19
The VGG19 architecture is structured starting with five blocks of convolutional
layers followed by three fully connected layers. Convolutional layers use 3 × 3

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1243 Open Journal of Applied Sciences

cores with a stride of 1 and a fill of 1 to ensure that each activation map main-
tains the same spatial dimensions as the previous layer. An activation by a recti-
fied linear unit (ReLU) [25] is performed immediately after each convolution
and a max pooling operation is sometimes used to reduce the spatial dimension.
Max pooling layers use 2 × 2 cores with a stride of 2 and no fill to ensure that
each spatial dimension of the previous layer’s activation map is divided by two.
Two fully connected layers with 4096 ReLU enabled units are then used before
the final layer of 1000 fully connected softmax layers. Convolutional blocks can
be considered as feature extraction layers. The activation maps generated by
these layers are called bottleneck features.

2.3. Optimizers

The model learns (trains) on a dataset by comparing the actual label of the input
(available in the training set) to the predicted label, thus minimizing the cost
function. Hypothetically, if the cost function is zero, the model has learned the
dataset correctly. However, an optimization algorithm is needed to reach the
minimum of a cost function. The following section discusses the different opti-
mization algorithms introduced in the literature to minimize the cost function.

2.3.1. Adaptive Gradient Descent Optimizers (AdaGrad)
To scale the learning rate of each weight, the AdaGrad optimization algorithm
[26] was introduced to set different updates for the different weights. It performs
smaller updates for settings associated with features that occur frequently, and
larger updates for settings associated with features that occur seldom. For brevi-
ty, we use gt to denote the gradient at time step t. ,t ig is then the partial deriva-
tive of the objective function with respect to the parameter iθ at time step t, η
is the learning rate, and θ∇ is the partial derivative of the loss function ()iJ θ .

(),t i ig Jθ θ= ∇

In its update rule, AdaGrad changes the general learning rate η at each time
step t for each parameter iθ based on past gradients for iθ :

1, , ,
,

t i t i t i
t i

g
G
ηθ θ

ε+ = −
+

where Gt is the sum of the squares of the previous gradients with respect to all
parameter θ.

2.3.2 Adaptive Moment Estimation (Adam)
Adam can be considered as a combination of RMSprop and stochastic gradient
descent with momentum. Adam calculates the adaptive learning rates for each
parameter. In addition to storing an exponentially decaying average of past
square gradients vt like Adadelta and RMSprop, Adam also maintains an expo-
nentially decaying average of past gradients mt, similar to momentum.

The hyperparameters []1 2, 0,1β β ∈ control the exponential decay rates of
these moving averages. We compute the decaying averages of the past squared

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1244 Open Journal of Applied Sciences

gradients, mt and vt respectively as follows:

()1 1 11t t tm m gβ β−= + −

()12 2
21 tt tv v gβ β−= + −

mt and vt are estimates of the first moment (the mean) and the second mo-
ment (the uncentered variance) of the gradients respectively, hence the name of
the method. The author found that the first- and second-order momentum is
very small during the initial training, close to 0, because the β value is large, so
the author recalculates a deviation to correct for it:

1

ˆ
1

t
t t

m
m

β
=

−

2

ˆ
1

t
t t

v
v

β
=

−

where t represents its t-th power, so at the beginning of training, the learning
rate can be corrected by dividing by (1 − β). When training for several rounds,
the denominator part is also close to 1. Back to the original equation, so the final
equation for updating the total gradient is:

()1 1 11t t tm m gβ β−= + −

()12 2
21 tt tv v gβ β−= + −

1

ˆ
1

t
t t

m
m

β
=

−

2

ˆ
1

t
t t

v
v

β
=

−

1
ˆ

ˆ
t

t
t

t
m

v
ηθ

ε
θ+ = −

+

The default value of β1 is 0.9, the default value of β2 is 0.999, and ε is 10−8. Ex-
perience shows that Adam performs very well in practice. It has more advantag-
es than other adaptive learning algorithms [27].

2.3.3. Adaptive Moment Estimation Extension (AdaMax)
The AdaMax algorithm [28] is an extension of the Adam algorithm based on an
infinite norm. In Adam’s algorithm, the factor vt in the update rule scales the
gradient inversely to the l2 norm of the past gradients (1tv −) and the current gra-
dient 2

tg .

() 2
2 1 21t t tv v gβ β− + −←

The generalization of the l2 standard to the lp standard provides:

()2 1 21 PP P
t t tv v gβ β− + −←

The authors of AdaMax [29] prove that vt with l∞ converges to a more stable
value.

To avoid confusion with Adam, ut is used to denote the vt norm at infinity:

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1245 Open Journal of Applied Sciences

()2 1 21t t tu v gβ β ∞∞ ∞
− + −←

()2 1max ,t t tu v gβ −⋅←

The resulting AdaMax update rule is as follows:

1 ˆt t t
t

m
u
ηθ θ+ −←

We see that u will not be 0, so there is no need to add an ε to the denominator
as Adam. Usually, the default parameter size is:

1 20.002, 0.9, 0.999η β β= = =

2.3.4. Nesterov-Accelerated Adaptive Moment (Nadam)
Nadam [30] is an extension of Adam’s algorithm by combining it with Neste-
rov’s momentum gradient descent. The Nadam gradient update equation is fi-
nally obtained as follows:

()
()t

t

Loss
g

θ
∂

=
∂

()1 1 11t t tm m gβ β−= + −

1

ˆ
1

t
t t

m
m

β
=

−

()1
1 1

1

11 ˆ
1ˆ

t
t t t t

t

g
m

v
β

θ θ η β
βε+

−
= − +

−+

where η is the hyperparameter of the learning rate. While, iβ is used to select
the amount of information needed from the previous update, where []0,1iβ ∈ ,
mt is the first moment.

2.3.5. Root Mean Square Propagation Algorithm (RMSProp)
The main drawback of AdaGrad is that the learning rate decreases monotonical-
ly because each added term is positive. After many epochs, the learning rate is so
low that it stops updating the weights. RMSProp was introduced to solve the
problem of monotonic learning rate decay [31].

()2 2 2
1 1 tt

E g E g t gγ γ− = + −

1
2

t t t

t

g
E g

ηθ θ
ε

+ = −
 +

RMSprop also divides the learning rate by an exponentially decreasing average
of the gradients squared. Hinton suggests γ should be set to 0.9, while a good
default value for the learning rate η is 0.001.

2.4. Overcoming Overfitting

Overfitting usually involves storing the training dataset and usually results in
poor performance on the test dataset. This means that the performance on the
training set can be excellent, but the performance on the test dataset is quite

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1246 Open Journal of Applied Sciences

poor. The loss of network generalization capability can be due to many factors,
such as the capacity of the network or the nature of the training dataset itself.
Techniques have been introduced in the literature to overcome overfitting
(Dropout, Image Augmentation…).

2.5. Fire Detection Using a Reformed VGGNet Model

This paper uses a fire detection method based on a deep learning convolutional
neural network model by proposing a reformed VGG model. The transfer learning
method, the pre-trained model parameters optimize the convolution layer model
parameters and solve the fire presence classification problem. Therefore, it is
proposed to use the GlobalAveragePooling function which is a methodology
used for a better representation of our vector instead of the Flatten layer func-
tion.

Our model mainly uses transfer learning to transfer the parameters of the
VGG-16 and VGG-19 pre-trained models to the convolution layer, pooling
layer, and fully connected layer of the fire detection model, and replaces the
original with a 2-label Softmax classification layer, and fits a classification model
with good accuracy, as shown in Figure 2.

The main operating process is as follows:
1) Enter an example of a fire image. The images are extracted from the fire

positive and negative image base as a training sample set for input.
2) Pre-processing: All fire and non-fire images were collected in a dataset and

loaded to be scaled to a fixed resolution size of 150 × 150 pixels, to be suitable
for further processing in the deep learning pipeline.

3) Build new improved models: using the VGGNet model (VGG16 and
VGG19), the FC layers are optimized with reduced parameters, replaced the Soft-
max classification layer of the original model with a two labels Softmax classifier.

Figure 2. The proposed method.

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1247 Open Journal of Applied Sciences

4) Transfer learning: Using the parameters of the 13 (VGG16) and 16
(VGG19) convolutional layers and pooling layers of the VGGNet pre-trained
model, the parameters of the detection model were optimized with transfer
learning.

5) Model training: In order to start the training phase of one of the two se-
lected and/or tuned deep learning models, the preprocessed dataset is divided
into 60% - 40%, 70% - 30% and 80% - 20%. This means that 40%, 30% and 20%
of dataset will be used for the test phase. To train and optimize the parameters of
the pooling layers and Softmax layers, it is necessary to freeze the parameters of
the convolutional layers and their pooling layers and to initialize the parameters
of the model using an elaborate approach, to define the different optimizers
chosen, the learning rate, the number of epochs in order to obtain a good accu-
racy with the taking into account of the overfitting.

6) Classification: In the last step of the proposed model, the test data is fed to
the deep learning classifier set to classify all image patches into one of two
classes: presence of fire or no fire, as shown in Figure 2. At the end of the workflow,
the overall performance analysis for each deep learning classifier will be eva-
luated based on the metrics described in the following section.

2.6. Model Evaluation Criteria

The evaluation of the fire detection model can be assessed from the effect and
reliability. These two indicators are generally precision and time to test, while
the former includes three indicators: precision, recall rate and error rate. Among
them, precision is defined as (1), and recall is defined as (2). The error rate is
defined as (3).

TP
TP FP

P =
+

 (1)

TPrecall
TP FN

=
+

 (2)

FP FNError rate 1 recall
TP TN FP FN

+
= = −

+ + +
 (3)

Among them, TP is the number of positive samples determined by the model
to be positive, TN is the number of negative samples determined by the model to
be truly negative, and FP is the number of positive samples determined by the
model. However, the actual number of negative samples is FN, which is the
number of negative samples determined by the model but actually positive, as
shown in Table 1.

Table 1. Definition of the parameters TP, TN, FP and FN.

 Positive Negative

True TP TN

False FP FN

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1248 Open Journal of Applied Sciences

3. Experimentation and Results of the Proposed Approach

The following section details the results obtained when training the two network
architectures using five optimizers selected with three learning rates, namely
10−3, 10−4 and 10−5. Many experiments have been carried out on datasets, in order
to determine the behavior of each optimizer with each network architecture to de-
termine the best possible combination. The performances of each optimizer with
the VGG16 architecture are presented in Table 2, Table 4 and those of VGG19
in Table 3, Table 5. The percentages used for the training and validation data
are 60% - 40%, 70% - 30% and 80% - 20% respectively. The AUC of the ROC
curve measures performance. Optimizers are ranked on the basis of their valida-
tion AUC. Images were held constant at 150 × 150; a batch size of 32 images was
used, and with a number of epochs between 300 and 500.

3.1. Result of the VGG16 Architecture for 300 Epochs

Table 2 shows the results of the VGG16 architecture for 300 epochs and taking
into account the partition of the different datasets (60%/40%, 70%/30% and
80%/20%), we note that the highest AUC is 96%, was obtained by the Adam op-
timizer with a ratio of 60%/40% for the highest learning rate 10−3, to achieve
convergence. At the same time, the lowest AUC 49.81% was obtained by the
AdaGrad optimizer which did not converge at all with the 80%/20% ratio. For
the average learning rate 10−4, the RMSprop optimizer obtained the highest AUC
with a value of 94.67% with the ratio 60%/40% and the other ratios obtained

Table 2. Results obtained with the VGG16 architecture for 300 epochs, where LR represents
the learning rate and the training datasets have the following percentages: 60%/40%,
70%/30% and 80%/20% to train and validate the dataset.

OPTIMIZERS LR = 10−3 LR = 10−4 LR = 10−5

AdaGrad_60_40 85.71% 56.38% 51.21%

Adam_60_40 96.00% 93.38% 89.21%

Adamax_60_40 95.58% 91.92% 82.67%

Nadam_60_40 94.50% 93.46% 89.21%

RMSprop_60_40 95.25% 94.67% 87.92%

AdaGrad_70_30 87.39% 59.57% 50.50%

Adam_70_30 95.71% 93.89% 87.96%

Adamax_70_30 94.93% 92.39% 85.39%

Nadam_70_30 95.11% 93.93% 89.29%

RMSprop_70_30 95.50% 93.57% 88.21%

AdaGrad_80_20 49.81% 55.56% 50.44%

Adam_80_20 95.69% 94.47% 89.22%

Adamax_80_20 94.94% 93.72% 85.09%

Nadam_80_20 95.38% 94.59% 88.88%

RMSprop_80_20 94.72% 93.75% 89.00%

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1249 Open Journal of Applied Sciences

Table 3. Results obtained with the VGG19 architecture for 300 epochs, where LR represents
the learning rate and the training datasets have the following percentages: 60%/40%,
70%/30% and 80%/20% to train and validate the dataset.

OPTIMIZERS LR = 10−3 LR = 10−4 LR = 10−5

AdaGrad_60_40 87.12% 57.21% 50.75%

Adam_60 95.13% 94.04% 89.88%

Adamax_60 95.21% 92.25% 86.29%

Nadam_60 95.58% 94.25% 89.04%

RMSprop_60 94.88% 93.25% 89.38%

AdaGrad_70 88.50% 59.68% 51.82%

Adam_70 94.00% 93.93% 90.36%

Adamax_70 94.93% 91.93% 86.25%

Nadam_70 95.39% 93.54% 89.29%

RMSprop_70 94.36% 94.29% 90.50%

AdaGrad_80 88.03% 63.63% 57.13%

Adam_80 94.97% 93.81% 89.78%

Adamax_80 94.22% 92.56% 87.81%

Nadam_80 95.44% 94.69% 90.19%

RMSprop_80 94.91% 94.28% 89.00%

lower values. The AdaGrad optimizer obtained the lowest AUC with a value of
55.56%. For the lowest learning rate 10−5, the Nadam optimizer with the ratio
70%/30% obtained the highest AUC value 89.29% and the AdaGrad optimizer
obtained the lowest AUC 50.44%. Overall, the highest learning rate 10−3 gave the
best results, followed by the medium learning rate 10−4. Throughout our experi-
ments the AdaGrad optimizer achieved the lowest AUC value for all learning
rates and ratios used.

3.2. Result of the VGG16 Architecture for 500 Epochs

Table 4 shows the results of the VGG16 architecture for 500 epochs and taking
into account the partition of the different datasets (60% - 40%, 70% - 30% and
80% - 20%). For the highest learning rate 10−3, it shows that the highest AUC
value is 95.43% was obtained by the Adam optimizer with a ratio of 70%/30%.
At the same time, the lowest AUC value of 51.14% was obtained by the AdaGrad
optimizer which did not converge at all with the 70%/30% ratio for the learning
rate of 10−5. For the average learning rate 10−4, the Nadam optimizer obtained
the highest AUC value of 95.04% with the ratio 70%/30%. The AdaGrad opti-
mizer obtained the lowest AUC value 59.25%. For the lowest learning rate 10−5,
the Adam optimizer with the 80%/20% ratio obtained the highest AUC 91.44%.
Overall, the highest learning rate 10−3 gave the best results, followed by the me-
dium learning rate 10−4 and the lowest values were obtained with the learning
rate 10−5. Throughout our experiments the AdaGrad optimizer achieved the
lowest AUC value for all learning rates and ratios used.

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1250 Open Journal of Applied Sciences

Table 4. Results obtained with the VGG16 architecture for 500 epochs, where LR represents
the learning rate and the training datasets have the following percentages: 60% - 40%,
70% - 30% and 80% - 20% to train and validate the dataset.

OPTIMIZERS LR = 10−3 LR = 10−4 LR = 10−5

AdaGrad_60 86.83% 66.71% 53.83%

Adam_60 94.83% 94.96% 89.33%

Adamax_60 94.75% 94.00% 85.62%

Nadam_60 94.67% 93.88% 89.33%

RMSprop_60 94.33% 94.08% 89.33%

AdaGrad_70 85.39% 59.25% 51.14%

Adam_70 95.43% 94.07% 90.43%

Adamax_70 95.32% 92.86% 87.25%

Nadam_70 94.32% 95.04% 90.21%

RMSprop_70 94.93% 94.79% 90.29%

AdaGrad_80 87.63% 65.31% 56.03%

Adam_80 94.88% 94.47% 91.44%

Adamax_80 94.41% 92.72% 87.53%

Nadam_80 95.19% 94.84% 91.16%

RMSprop_80 95.34% 94.34% 91.28%

3.3. Result of the VGG19 Architecture for 300 Epochs

Table 3 shows the results of the VGG19 architecture for 300 epochs and taking
into account the partition of the different datasets (60%/40%, 70%/30% and
80%/20%), we note that the highest AUC value is 95.58% was obtained by the
Nadam optimizer with the ratio of 60%/40% with the highest learning rate 10−3.
Jointly, the lowest AUC value is 50.75% was obtained by the AdaGrad optimizer
which did not converge at all with the 60%/40% ratio with the lowest learning
rate 10−5. For the average learning rate 10−4, the Nadam optimizer obtained the
highest AUC value 94.69% with the ratio 80%/20%. The Adagrad optimizer ob-
tained the lowest AUC 57.21%. For the lowest learning rate 10−5, the RMSprop
optimizer obtained the highest AUC value 90.50% for the ratio 70% - 30%.
Overall, the highest learning rate 10−3 gave the best results, followed by the me-
dium learning rate 10−4. Nadam optimizers gave the highest values with learning
rate 10−3 for the three ratios in our work. For the 10−4 learning rate, the Nadam
optimizers obtained the highest AUC values for the 60% - 40% and 80% - 20%
partitions. The RMSprop optimizer obtained the high value for the 70% - 30%
partition. Throughout our experiments the AdaGrad optimizer obtained the
lowest AUC value for all learning rates and ratios used.

3.4. Result of the VGG19 Architecture for 500 Epochs

Table 5 shows the results of the VGG19 architecture for 500 epochs, which
shows that the highest AUC value is 95.61% which was obtained by the Nadam

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1251 Open Journal of Applied Sciences

Table 5. Results obtained with the VGG19 architecture for 500 epochs, where LR represents
the learning rate and the training data sets have the following percentages: 60%/40%,
70%/30% and 80%/20% to train and validate the dataset.

OPTIMIZERS LR = 10−3 LR = 10−4 LR = 10−5

AdaGrad_60 88.21% 63.88% 48.96%

Adam_60 94.79% 93.50% 91.12%

Adamax_60 89.38% 93.50% 86.71%

Nadam_60 94.79% 93.50% 90.75%

RMSprop_60 94.63% 93.54% 90.25%

AdaGrad_70 88.50% 62.50% 50.25%

Adam_70 94.86% 94.18% 90.79%

Adamax_70 94.08% 92.89% 88.64%

Nadam_70 95.61% 95.11% 90.39%

RMSprop_70 95.18% 94.00% 91.68%

AdaGrad_80 88.25% 65.75% 49.59%

Adam_80 95.11% 94.34% 91.31%

Adamax_80 94.16% 93.09% 89.22%

Nadam_80 94.34% 94.81% 91.53%

RMSprop_80 94.84% 93.78% 90.25%

optimizer with a ratio of 70% - 30% with the highest learning rate 10−3. At the
same time, the lowest AUC value 48.96% was obtained by the AdaGrad optimiz-
er which did not converge at all with the 60% - 40% ratio for the lowest learning
rate 10−5. For the average learning rate 10−4, the Nadam optimizer obtained the
highest AUC value of 95.11% with the ratio 70% - 30%. The AdaGrad optimizer
obtained the lowest AUC 62.50% with the ratio 70% - 30%. For the lowest
learning rate 10−5, the RMSprop optimizer achieved the highest AUC 91.68% for
the ratio 70%/30%. Overall, the highest learning rate 10−3 gave the best results,
followed by the medium learning rate 10−4. Throughout our experiments the
AdaGrad optimizer achieved the lowest AUC value for all learning rates and ra-
tios used.

3.5. Discussion

At the end of our experimental approach and the results obtained, it is possible
to draw some interesting analyses on the behavior of the CNNs, the number of
epochs and the optimizers studied in this work. Taking into account the choice
of optimizer, the number of epochs, the ratios used and the relationship with the
learning rate, the experimental results confirm that the choice of learning rate
and the ratios used can lead to an unstable behavior of the training process. This
is particularly evident, for some of the networks and optimizers considered,
when considering the smallest learning rate used in the experiments. As we can
see, when LR = 10−5, the learning process of the VGG16 and VGG19 networks

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1252 Open Journal of Applied Sciences

gave low performance value with the optimizers and the ratios studied to see a
poor performance of the model. However, when we use a high learning rate, i.e.
LR = 10−3, we obtain the highest values of our experiment whatever the CNNs
used. For the average learning rate LR = 10−4, we obtain lower values and some
close to those obtained with the learning rate LR = 10−3. As explained in the pre-
vious sections, this can be motivated by the fact that the weights of the network
change abruptly from one epoch to another. The transition to higher LR values
allows the convergence of the formation process in all studied configurations.
Overall, the results do not match the theoretical expectations: a lower LR value
allows a smoother convergence, but it requires more time compared to a higher
LR value. Another interesting observation concerns the importance of hyperpa-
rameters. While this is a topic of fundamental importance in the field of deep
learning, it is particularly evident in the results of the experimental phase. In
particular, all studied architectures produced comparable performance when the
best configuration between the learning rate and the optimizer (which is differ-
ent for each architecture type) was considered. In other words, it seems that the
choice of hyperparameters not only plays a critical role in determining the per-
formance of the model, but the examined CNNs are indistinguishable in terms
of performance. Our results confirm those of Sharma and Venugopalan [32]. We
think this is an interesting observation that should further emphasize the im-
portance of hyperparameter setting.

Focusing on the optimizers and the different percentages used (60%/40%,
70%/30% and 80%/20%), the Adam optimizer produced the best performance
with the 10−3 learning rate for VGG16 and Nadam produced also the best per-
formance for VGG19. Conversely, Adam, Nadam and RMSprop obtained the
best performance on the considered CNNs when LR = 10−5 (except Nadam and
RMSprop on the VGG19 architecture, where the best performance is obtained
with LR = 10−4). Overall, the best result on the considered dataset was obtained
by the Adam optimizer and the VGG16 network. However, the differences in
performance between the best configurations of each network are not statistically
significant. Overall, each optimizer behaved differently depending on the archi-
tecture considered. For example, for VGG16 architectures, Adam outperformed
Nadam and RMSprop. For VGG19 architectures, Nadam outperformed Adam
and RMSprop.

Given a specific network, each optimizer requires a different time to converge
(i.e. to conclude the defined number of epochs). In particular, Adam was the op-
timizer that gave the highest AUC value for VGG16 and Nadam also gave a high
value for VGG19, whether we use VGG16 or VGG19, the AdaGrad optimizer gave
poor convergence results. This result is consistent with that proposed by Lydia
and Francis [33], in which the authors studied some alternatives and hyperpa-
rameters to improve the performance of Gradient Descent algorithms. The au-
thors explained that good performance can be achieved with optimizers if they
are trained on different image data sets. The best performing network obtained
with transfer learning (VGG16 architecture, with the Adam optimizer, 60% -

https://doi.org/10.4236/ojapps.2021.1111094

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1253 Open Journal of Applied Sciences

40% ratio and a learning rate of 10−3) was able to obtain an AUC value of 96%.

4. Conclusion

In this paper, a comparative effect of five optimization algorithms on three pro-
portions of image classification datasets and three learning rates using two con-
volutional neural network architectures (VGG16 and VGG19) has been per-
formed. Our results reveal that the performance of each optimizer varies with
each proportion of the dataset used, the learning rate, and the number of recur-
sions (epochs), confirming the effect of hyperparameters on the performance of
different optimizers. Based on several experiments conducted, our results show
that Adam exhibited superior and robust performance on VGG16 networks for
300 epochs compared to other optimization algorithms. Similarly, Nadam also
showed superior performance for VGG19 for 300 epochs. This same result was
observed with VGG16 for 500 epochs and VGG19 for 500 epochs. These results
show that the Adam and Nadam optimizers are apparently suitable for the dif-
ferent dataset and models examined in this study. In this study, two neural net-
work models and three percentages of image classification data were used to
perform all our experiments. It will be interesting to use more than three pro-
portions of data in different domains and experiment with the comparative ef-
fects of these optimizers on a number of different CNN architectural designs and
deep learning models in order to achieve better generalization. This could be the
subject of future projects.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Healey, G., Slater, D., Lin, T., Drda, B. and Goedeke, A. (1993) A System for

Real-Time Fire Detection. Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, New York, 15-17 June 1993, 605-606.
https://doi.org/10.1109/CVPR.1993.341064

[2] Phillips, W., Shah, M. and da Vitoria Lobo, N. (2002) Flame Recognition in Video.
Pattern Recognition Letters, 23, 319-327.
https://doi.org/10.1016/S0167-8655(01)00135-0

[3] Liu, C. and Ahuja, N. (2004) Vision Based Fire Detection. Proceedings of Internation-
al Conference on Pattern Recognition, Vol. 4, Cambridge, 26 August 2004, 134-137.
https://doi.org/10.1109/ICPR.2004.1333722

[4] Toreyin, B., Dedeoglu, Y. and Cetin, A. (2005) Flame Detection in Video Using Hid-
den Markov Models. IEEE International Conference on Image Processing 2005,
Genova, 14 September 2005, II-1230. https://doi.org/10.1109/ICIP.2005.1530284

[5] Ko, B.C., Cheong, K.H. and Nam, J.Y. (2009) Fire Detection Based on Vision Sensor
and Support Vector Machines. Fire Safety Journal, 44, 322-329.
https://doi.org/10.1016/j.firesaf.2008.07.006

[6] Chenebert, A., Breckon, T.P. and Gaszczak, A. (2011) A Non-Temporal Texture

https://doi.org/10.4236/ojapps.2021.1111094
https://doi.org/10.1109/CVPR.1993.341064
https://doi.org/10.1016/S0167-8655(01)00135-0
https://doi.org/10.1109/ICPR.2004.1333722
https://doi.org/10.1109/ICIP.2005.1530284
https://doi.org/10.1016/j.firesaf.2008.07.006

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1254 Open Journal of Applied Sciences

Driven Approach to Real-Time Fire Detection. 2011 18th IEEE International Confe-
rence on Image Processing, Brussels, 11-14 September 2011, 1741-1744.
https://doi.org/10.1109/ICIP.2011.6115796

[7] Dunnings, A.J. and Breckon, T.P. (2018) Experimentally Defined Convolutional
Neural Network Architecture Variants for Non-Temporal Real-Time Fire Detection.
2018 25th IEEE International Conference on Image Processing (ICIP), Athens, 7-10
October 2018, 1558-1562. https://doi.org/10.1109/ICIP.2018.8451657

[8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V. and Rabinovich, A. (2015) Going Deeper with Convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June
2015, 1-9. https://doi.org/10.1109/CVPR.2015.7298594

[9] Krizhevsky, A., Sutskever, I. and Hinton, G. (2012) ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L. and
Weinberger, K.Q., Eds., Advances in Neural Information Processing Systems, Vol.
25, Curran Associates, Inc., Red Hook, 1097-1105.

[10] Bohush, R. and Brouka, N. (2013) Smoke and Flame Detection in Video Sequences
Based on Static and Dynamic Features. 2013 Signal Processing: Algorithms, Architec-
tures, Arrangements, and Applications (SPA), Poznan, 26-28 September 2013, 20-25.

[11] Morerio, P., Marcenaro, L., Regazzoni, C.S. and Gera, G. (2012) Early Fire and
Smoke Detection Based on Colour Features and Motion Analysis. 2012 19th IEEE
International Conference on Image Processing, Orlando, 30 September-3 October
2012, 1041-1044. https://doi.org/10.1109/ICIP.2012.6467041

[12] Luo, Y., Zhao, L., Liu, P. and Huang, D. (2017) Fire Smoke Detection Algorithm
Based on Motion Characteristic and Convolutional Neural Networks. Multimedia
Tools and Applications, 77, 15075-15092.
https://doi.org/10.1007/s11042-017-5090-2

[13] Anjli, N. and Varun, J. (2016) A First Attempt to Develop a Diabetes Prediction
Method Based on Different Global Datasets. 2016 4th International Conference on
Parallel, Distributed and Grid Computing (PDGC), Waknaghat, 22-24 December
2016, 237-241. https://doi.org/10.1109/PDGC.2016.7913152

[14] Abien, F.M.A. (2018) On Breast Cancer Detection: An Application of Machine
Learning Algorithms on the Wisconsin Diagnostic Dataset. Proceedings of the 2nd
International Conference on Machine Learning and Soft Computing, Phu Quoc
Island, 2-4 February 2018, 5-9. https://doi.org/10.1145/3184066.3184080

[15] Vaishali, R., Sasikala, R., Ramasubbareddy, S., Remya, S. and Sravani, N. (2017)
Genetic Algorithm Based Feature Selection and MOE Fuzzy Classification Algorithm
on Pima Indians Diabetes Dataset. 2017 International Conference on Computing
Networking and Informatics (ICCNI), Lagos, 29-31 October 2017, 1-5.
https://doi.org/10.1109/ICCNI.2017.8123815

[16] Binh, T.P., Dieu, T.B., Hamid, R.P., Prakash, I. and Dholakia, M.B. (2015) Landslide
Susceptibility Assesssment in the Uttarakhand Area (India) Using GIS: A Compar-
ison Study of Prediction Capability of Naïve Bayes, Multilayer Perceptron Neural
Networks, and Functional Trees Methods. Theoretical and Applied Climatology,
128, 255-273. https://doi.org/10.1007/s00704-015-1702-9

[17] Ibrahem, K., Mauro, C. and Aleš, P. (2020) Comparative Study of First Order Opti-
mizers for Image Classification Using Convolutional Neural Networks on Histopa-
thology Images. Journal of Imaging, 6, Article No. 92.
https://doi.org/10.3390/jimaging6090092

[18] Manali, S. and Meenakshi, P. (2018) Transfer Learning for Image Classification.

https://doi.org/10.4236/ojapps.2021.1111094
https://doi.org/10.1109/ICIP.2011.6115796
https://doi.org/10.1109/ICIP.2018.8451657
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICIP.2012.6467041
https://doi.org/10.1007/s11042-017-5090-2
https://doi.org/10.1109/PDGC.2016.7913152
https://doi.org/10.1145/3184066.3184080
https://doi.org/10.1109/ICCNI.2017.8123815
https://doi.org/10.1007/s00704-015-1702-9
https://doi.org/10.3390/jimaging6090092

T. Fofana et al.

DOI: 10.4236/ojapps.2021.1111094 1255 Open Journal of Applied Sciences

Proceedings of the 2nd International Conference on Electronics, Communication
and Aerospace Technology (ICECA 2018), Coimbatore, 29-31 March 2018, 656-660.
https://doi.org/10.1109/ICECA.2018.8474802

[19] Xiao, J., Wang, J., Cao, S. and Li, B. (2020) Application of a Novel and Improved
VGG-19 Network in the Detection of Workers Wearing Masks. Journal of Physics:
Conference Series, 1518, Article ID: 012041.
https://doi.org/10.1088/1742-6596/1518/1/012041

[20] Srikanth, T. (2019) Transfer Learning Using VGG-16 with Deep Convolutional
Neural Network for Classifying Images. International Journal of Scientific and Re-
search Publications, 9, 143-150.

[21] Manuel, L. and Elena, G. (2017) Transfer Learning for Illustration Classification.
Spanish Computer Graphics Conference (CEIG), Sevilla, 28-30 June 2017, 1-9.

[22] Saad, H.H. and Adnan, M.A. (2021) Comparison of Optimization Techniques Based
on Gradient Descent Algorithm: A Review. Palarch’s Journal of Archaeology of
Egypt/Egyptology, 18, 2715-2743.

[23] Ersan, Y. and Fatih, T. (2017) Comparison of the Stochastic Gradient Descent Based
Optimization Techniques. International Artificial Intelligence and Data Processing
Symposium (IDAP), Malatya, 16-17 September 2017, 1-5.

[24] Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556.

[25] Nair, V. and Hinton, G.E. (2010) Rectified Linear Units Improve Restricted Boltzmann
Machines. Proceedings of the 27th International Conference on Machine Learning
(ICML-10), Haifa, 21-24 June 2010, 807-814.

[26] Duchi, J.C., Hazan, E. and Singer, Y. (2011) Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization. Journal of Machine Learning Research, 12,
2121-2159.

[27] Kingma, D.P. and Ba, J. (2017) Adam: A Method for Stochastic Optimization. ar-
Xiv:1412.6980v9.

[28] Kingma, D.P. and Ba, J. (2001) Adam: A Method for Stochastic Optimization. ar-
Xiv:1412.6980. https://arxiv.org/abs/1412.6980

[29] Kingma, D.P. and Ba, J. L. (2015) Adam: A Method for Stochastic Optimization. 3rd
International Conference on Learning Representations, San Diego, 7-9 May 2015,
1-13.

[30] Dozat, T. (2016) Incorporating Nesterov Momentum into Adam. Proceedings of the
4th International Conference on Learning Representations, Workshop Track, San
Juan, Puerto Rico, 2-4 May 2016, 1-4.

[31] Hinton, G., Srivastava, N. and Swersky, K. (2020) Neural Networks for Machine
Learning, Lecture 6a Overview of Mini-Batch Gradient Descent.

[32] Sharma, B. and Venugopalan, K. (2014) Comparison of Neural Network Training
Functions for Hematoma Classification in Brain CT Images. OSR Journal of Comput-
er Engineering, 16, 31-35.

[33] Lydia, A. and Francis, S. (2019) Adagrad—An Optimizer for Stochastic Gradient
Descent. International Journal of Information and Computing Science, 6, 566-568.

https://doi.org/10.4236/ojapps.2021.1111094
https://doi.org/10.1109/ICECA.2018.8474802
https://doi.org/10.1088/1742-6596/1518/1/012041
https://arxiv.org/abs/1412.6980

	Optimal Flame Detection of Fires in Videos Based on Deep Learning and the Use of Various Optimizers
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Dataset and Operating Protocol
	2.2. VGGnet Model
	2.2.1. VGG 16
	2.2.2. VGG19

	2.3. Optimizers
	2.3.1. Adaptive Gradient Descent Optimizers (AdaGrad)
	2.3.2 Adaptive Moment Estimation (Adam)
	2.3.3. Adaptive Moment Estimation Extension (AdaMax)
	2.3.4. Nesterov-Accelerated Adaptive Moment (Nadam)
	2.3.5. Root Mean Square Propagation Algorithm (RMSProp)

	2.4. Overcoming Overfitting
	2.5. Fire Detection Using a Reformed VGGNet Model
	2.6. Model Evaluation Criteria

	3. Experimentation and Results of the Proposed Approach
	3.1. Result of the VGG16 Architecture for 300 Epochs
	3.2. Result of the VGG16 Architecture for 500 Epochs
	3.3. Result of the VGG19 Architecture for 300 Epochs
	3.4. Result of the VGG19 Architecture for 500 Epochs
	3.5. Discussion

	4. Conclusion
	Conflicts of Interest
	References

