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Abstract

In this paper, the full-discrete approximation scheme of the lumped mass
nonconforming finite element method for BBM equation is discussed. With-
out the Riesz projection used in the traditional finite element analysis, the op-
timal error estimations are derived based on interpolation technique and spe-
cial properties of element.
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1. Introduction

The lumped mass finite element method is a kind of modified finite element
method. It has the same convergence and error estimation as the traditional fi-
nite element method, but it has a smaller amount of calculation. Therefore, the
lumped mass finite element method is favored by scholars at home and abroad.
It is also one of the hot topics being studied [1]-[10]. It is known that equations
of this type arise in many areas of mathematical physics and fluid mechanics. It
has been studied extensively by Benjamin and others, as a model for unidirec-
tional, long, dispersive waves. It has been widely used in linear optics,
iso-particle physics, etc. The numerical solution of problem has been studied in
[11] [12] [13] [14], among them, the standard Galerkin method, the finite dif-
ference method and the general method are applied to this equation. Feng Minfu
et al. proposed a Crank-Nicolson difference method to discretize the equation in
[11]. Khaled Omrani made a detailed analysis of the standard Galerkin method
of this equation in [14]: the space is discretized by the standard Galerkin, and the

time discretization is in the Crank-Nicolson format, the convergence of the me-
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thod is proved.

Tan Yanmei et al applied the mixed finite element method to this equation in
[15], established semi-discretization and full discretization finite element format,
the existence and uniqueness of the finite element solution is proved, and an er-
ror analysis is given. However, the research on the lumped mass finite element
method of nonlinear BBM equations has not been reported.

The main purpose of this article is to study the lumped mass finite element
method for the BBM equation, and approximation using non-conforming trian-
gle elements. Through the particularity of unit construction and interpolation
techniques, the optimal error estimate is obtained without the need for tradi-
tional Reiz projection. In this paper, C denotes generic positive constant inde-

pendent of step sizes and not necessarily the same at each occurrence.

2. Lumped Mass Nonconforming Fully Discrete
Crank-Nicolson Scheme of BBM Equation

We will consider the following nonlinear BBM equation:

u, —Au, = Vf (u), V(X,t)eQx(0,T],
u(X,t)=0, v(X,t)eaQx(0,T], (1)
u(X,0)=u, (X), VX eQ.

where Qc R’ is a bounded domain with smooth boundary 0Q, 0<T <0,
and f (u)=—(%u2 +uj, X=(xy).

For a nonnegative integer m, let H™(Q) denote the usual Sobolev space of
real-valued functions defined on Q.

. PEV
H (Q):{V, Z J‘QW

0<|a]<m

dxdy < oo},

0
Further, let
Hg (Q)={ve H'(Q),v=00noQ}.

The norm of this space is the usual Sobolev H™ -norm and it will be denoted
by [

Ay ’ 2
= — | dxdy | ,
=] 3 Ly o
and semi-norm
1
dly ’ z
|V|m = ‘a‘gm.[g axalayaz dXdy 1

where, « =(0!1,0!2), o, and a, are two non-negative integers |a| = ta,,
specially, let 1 =0, m=0, denoted as L2 (Q) =H° (Q) , (0,0) denote the inner
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productin L*(Q).
We introduce the weak formulation of (1). Let u, =Q by Ve H, (Q) and

use the Green formula.

(U v)+a(Q.v)=(Vf (u).v),
(U v) =(Q.v), )
u(X,0)=u,(X).

where a(Q,v)=(VQ,Vv)=| VQVvdX .

Proposition 1. Let u be the solution of (2). Then, the following conservation

of energy holds.
Ju()[, =|lu(0),. vt>o. 3)
Proof. Setting v=u in (2), we get
dul®  dvul’
%[_Uj“t" +—"dt“” ]: [, uvt (u)dx. (4)

Noting that
uvf (u) :V( f (u)u)—V(<p(u)), Vu e Hg (Q)
where ¢'(u)=f(u).Since u=0,0on Q and ¢(0)=0,then
Juv(f(u))dx =] v(f(u)u)dx =0, (5)
Form (4) and (5). It follows that,

d
Sl =o. (6)

Integrating (6) with respect to ¢, to complete the rest of the proof.
Let QcR® be a polygon on (Xl, Xz) plane with boundaries parallel to the

axes. T, be an triangle subdivision of Q. Q= |J K, which does not need to
KeTy

satisfy the regularity assumption or quasi-uniform assumption [6]. For a give
K €T, , the three vertices of K are a =(0,0),a, =(h,,0),a, :(O, hy). Let K

be the reference element on (5,77) plane, the three vertices of K are
4,=(0.0).4,=(10).4,=(01). A

Forall Ve Hl(K),we define the finite element (K,P,Z) on K as follows
[16]

S = {V,,9,,0,}, P= span{l,&,n}

where V, =ﬁj}_ Vd§, i=1,2,3, |; represent the edge of K .

It can be easily checked that interpolation defined above is well-posed and the

interpolation function [V can be expressed as

ﬁ:ﬁjﬂ(wﬁv)dézo, i=12,3. 7)
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then
[19 = (0, +9, =¥, ) +2(9, =0, ) £+ 2(¥, =¥, ) 7. (8)
Define the affine mapping K — K by Fy x=h&y=hmn.

Forall K eT,, then we define the associated finite element space V, and bi-

linear form a(-,-) as
V, ={vI¥=v|, oF eP-[[v]ds =0, < K},

a, (u,v):ZIK VuvvdX =(V,u,V,v). ®
K

where [V] stands for the jump of vacross the edge / if /is an internal edge and
it is equal to vitself if | = 0Q.

For K eT, theassociated finite element interpolation is
[1, :H (Q) -V,

I, V|K =l:[\70 Fgl.

2
For veV,, we define ||V||1h =[ > _[K VVVVdXdy] . It is easy to see that |+
KeT,

is anorm over V, .

Now we consider the following numerical integration format
1 3
Qu (v):gmeas(K)-JZ:;v(aj‘k)zJ'dexdy, (10)

where a;, (j=1,2,3) is the three vertices of K.
According to the Bramble-Hilbert lemma [2] and (10) is exactly true for the

linear polynomial, we get

2 a
‘QK,h (v)—_[dexdy‘£Ch %:ZHD Yz (11)
Definition
(uv), = 32 Qea(w). Jul} = (wu),. 12)
€Ty

From (11), we know ||| and |||,

exist two constants C, and C,, independent of 4 and ksuch that

are equivalent in space V, , then there

M, <M, <Ce by ey, 1)

T
For any given positive integer N, let k = N denote the size of the time dis-

cretization and 0=t <t <---<ty =T, At=t , -t , n=012,---,N-1. The

n)
linear function determined by the values of two nodes uh(X,tn) and
u"(X,t,,,) is an approximate solution of U(X,t), then lumped mass noncon-
forming fully discrete Crank-Nicolson scheme of (2) lets veV,, to find
(uf.1,Qf.; ) such that

n+1r <n+l
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u:+l - U: Q:+l + Q:
( At ’ij{ 2 "’j’ (14)

where Ug is an appropriate approximation to UO(X) , U =U(X,tn) R

ur=u"(X.t,), QF=Q"(X.t,), u", =%(U:+U:+1)’

n+=
2

1
an% :E(Vf (u,)+Vf (u,,,)).

According to the theoretical knowledge of the numerical solution of partial

differential equations that problem (14) has a unique solution (U:m Q" )

n+1
3. Error Estimates

For simplicity, let U, =U(X,'[n) , Q, =Q(X,tn) , gh(u,v):(u,v)h—(u,v) ,
I’n :Qr:]_Hh Qn)

h
Pn :Qn_HhQn > gn :un _Hhun’ UM :un _Hhun’
Mo = Pl = £l =11l =0-
Lemma 3.1, There exists a constant C >0 such that forall u,veV,,

[ (u,v)| < ©0* ul, V],

Proof. Vu,veV,, uand vare linear functions on the unit K, from (11), we

have

‘Qk,h (uv)-|, uvdxdy‘ < Chz“z |
=2

D (uv)

) <O Vulagy (V¥ -

L2(k
summing k and using Cauchy-Schwarz inequality, we get
[ (usv)] < €0 ul, M, -

Lemma 3.2. [16] Suppose Ue H, (Q)NH 2 (Q), then, under the anisotropic

meshes, there holds

au
; ak%v'nds < Ch"uulh "V"1h , eV,

where n= (nx, ny) is the outward unit vector of 0K, let

E, (V)= [L:"”(f -f dt,VvJ—amh [I:H[Q_lejdt’v]

_ J':nnu r, (le,vj dt+ &, (Up, — Uy, V),
2
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ou
h ry(u,v)= —vds .
where T, (u,v) Zk:akanvs

Lemma 3.3. For all veV,, the solution U(X ,t),Q(X ,t) of (2), then

(un+1—un,v)h+alh[Q 1,v]At:(f 1,VvJAHEn(v), (15)
+E n-¢-E
where
2 \p >\ |
) R PR O T o] R G PR
|En(V)|SC ['Ln 1 atZ dt} +{"“n 1 atZ dt] (At)z ||V||1h
0 1
_ (16)
1
tha 2 % 1 2 thi1 6U § 2 1
con{ 1ot (an)e b, +on| |20 o (o),
1
Proof. From (2), forall veV,,
(u,v)=(Au,,v)=(VF (u),v),
Then using Green’s formula we have
(U, v)+(VQ, V) =(Vf (u),v)+T,(Q.v), (17)

from Lemma 3.2, for all veV,, then
I, (Qv) <Ch|], vl
from (17), integral on both sides for t, <t <t ,, such that

(U U, V) +ay, (J':nl th,v) :( :n"” Vfdt,v)+ :n"“l“h (Q.v)dt,

thus

(un+1 —U, ’V)+a1,h (Q 1 ,VJAI
nes

:(vf l,vJAH[J':"”(f ~f 1Jdt,VvJ—a1h [f"“(Q—Q Jdt,v}
n+E n n+5 n n+E
+J-ttn+11'*h (Q l,VJdt-;-gh (Un+1_unvv)'

n ﬂ+§

and then

l,vJAt:(f 1,Vv]AHEn (v),

2 2

(un+1 —u, ’V)h +ay, [Q

n+

%f(x,tn),wehave

n n n+l

:n"”Pl(t)dt :j‘"“ fodt.

tn n+>=
2

let Pl(t):t (Xt )+

n+.

from (16), for all veV,, then ||V||0 SC”V"lh.
According to the one-dimensional linear interpolation theory and the

Cauchy-Schwarz inequality, we get
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<C

{.[t"*{f — f let,ij
th >

(

sc[j:“

a, {J-ttnu(Q_Q 1Jdt,vj < C{
n n+>

s thy:
' 1F(Q,v)dt‘ <on(f

2
j:n"“aat—zf(m)2 dt, Wj

ot
ot?

2 2 5
dq(MVWM-
0

there holds

oqf

1
tha E E
158 @ 0l

1 1
Ql; ot (av)2 [,

1
2
ou

2 1
2 o a0 b,

ku%ﬂ—ww»sufwm—mmwm£cw[ﬁ“

t

which completes the proof.

Lemma 3.4. There exists a constant r, At<r <1, forall Z,and 1<L<N (L
is a positive integer), then there holds
2
]dt] (at)*
' (18)

2
T
e +Ive ] < C[fo [
Proof. Subtracting (15) from the first formula of (14), for all v eV, , we have

2 2

o f
ot

u
ot?

2
+7Q

2
ot? +6Q

ot?

0 1 1

a_uZ

+Ch? [ Q| dt+ch [ ), o

(u:ﬂ —Un —(U: —U, )’V)+ a:I_h (Q:+1 _Qn+1,VJAt = _En (V), (19)

2

according to the definition of ¢,,r , and 7,, from (19), we obtain
n+

2
(gn+l —Sn,V)h +(77n+1 —Th ’V)h + a’lh [rn+1’VJAt
2

-ay, (le _Hh Qn+l’VjAt = —En (V),
2 2
by the characteristics of the unit of C-R, then

alh[Q 1_nhQ 1:V]:0,
n+y n+s
further, using the second formula of (14), we get

n+1 —%n _ r‘n+1 - rn n 1_[h (un+1 _un ) _ 1_[h (Qn+l _Qn)

2 At At 2 '

let v=g,,+¢,, substitute the above formula in (19), then
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-l v 2000

|8n+1
2
:_E ( n+1 )+(77n+1_77n'gn+1+5n) (20)
Q.-Q, u,,+u j
_ 2 n n _“n n | AL,
aih(rm; I, (B2t

Now we shall respectively estimate the terms at the right end of the Equation

(20), from Lemma 3.3 and Young inequality, we get

wal |2 F]" ol |6%Q[ [o%u
et ([ o[22 fee] Jo o
n+l thi1 au
+Chzj Q||2dt+Ch4j alh dt+= ||gn+l+g||hAt

Above the second item, we obtain

au

that

dt += | g+ AL

|(77n+l Mhrép T &, |<Chj

From |r ,| <C , the third item is estimated as follows

n+—
21lo

vr o,

n+=
21lo

Q 1_Q u 1+U
r ,2 n+ n _ n+ n At
il s H“( At 2

At

<2|Vr ,

VH[le_Qn _un+1+unj

At 2
<clvr | v j:“ (%—uml}dt
2o 2

1 th.
< §(||Vrn+1||z +vr ;) at+c [L l

0

0

@Zdt (at)*
ot |,

Substitute the above estimation results in (20), furthermore, from

1
Slena 2l <lenall +lelh

We have
(=8 (fenall + sl )~ @+ A0 (e + ) < 6, (21)
where
2¢|? 201 2 2 2
6, =c| [ |EL |28 +122f 4 j2u dt( ty'
th o, fet|, [ot" 0
thi1 2 that au :
+Cn? [ [Qf dt+Ch* ! EldtJrCh“At.
For 0< <1, so that
1+ At
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R e+
14+ A\

n+l

)= (lealk +1n ) <@,

1-AtY
(1 N Atj multiplied with both sides, then summing up from n=0 to

L-1, we get
1+ At
e v <[220 S, @)
for
L N N N 2T
(1+Atj S(1+Atj =(1+ 2Atj <(1+£j ceir 23)
1- At 1-At 1-At 1-r
then
azf2 ol |o%al" [o%o] ]
6, <C dt |(At
Z I[at EdNE= +6t21 (at)

(24)
2 (T 11AIR
+ch [l

Finally, use (23) and (24) to complete the rest of the proof.
Theorem 3.1. let U (X ,t) and Q(X ,t) be the solutions of (2), suppose
f (u) is sufficiently smooth, then there holds

+|v(er-a)

-

1<n<N

}<C(h2+(At)4). (25)
Proof. Using the definition of ¢,,7,,r,,p, and the triangle inequality, we get
vl <C (el + b l5) < S (leall + 1)

Fle-a)

h_
n no

u

<|vr s +Ivenls.

then using Lemma 3.4 and the interpolation theorem, the proof is completed.
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