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Abstract 
In this paper, the full-discrete approximation scheme of the lumped mass 
nonconforming finite element method for BBM equation is discussed. With-
out the Riesz projection used in the traditional finite element analysis, the op-
timal error estimations are derived based on interpolation technique and spe-
cial properties of element. 
 

Keywords 
Lumped Mass, BBM Equation, Crank-Nicolson Scheme, Nonconforming  
Finite Element 

 

1. Introduction 

The lumped mass finite element method is a kind of modified finite element 
method. It has the same convergence and error estimation as the traditional fi-
nite element method, but it has a smaller amount of calculation. Therefore, the 
lumped mass finite element method is favored by scholars at home and abroad. 
It is also one of the hot topics being studied [1]-[10]. It is known that equations 
of this type arise in many areas of mathematical physics and fluid mechanics. It 
has been studied extensively by Benjamin and others, as a model for unidirec-
tional, long, dispersive waves. It has been widely used in linear optics, 
iso-particle physics, etc. The numerical solution of problem has been studied in 
[11] [12] [13] [14], among them, the standard Galerkin method, the finite dif-
ference method and the general method are applied to this equation. Feng Minfu 
et al. proposed a Crank-Nicolson difference method to discretize the equation in 
[11]. Khaled Omrani made a detailed analysis of the standard Galerkin method 
of this equation in [14]: the space is discretized by the standard Galerkin, and the 
time discretization is in the Crank-Nicolson format, the convergence of the me-
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thod is proved. 
Tan Yanmei et al. applied the mixed finite element method to this equation in 

[15], established semi-discretization and full discretization finite element format, 
the existence and uniqueness of the finite element solution is proved, and an er-
ror analysis is given. However, the research on the lumped mass finite element 
method of nonlinear BBM equations has not been reported. 

The main purpose of this article is to study the lumped mass finite element 
method for the BBM equation, and approximation using non-conforming trian-
gle elements. Through the particularity of unit construction and interpolation 
techniques, the optimal error estimate is obtained without the need for tradi-
tional Reiz projection. In this paper, C denotes generic positive constant inde-
pendent of step sizes and not necessarily the same at each occurrence. 

2. Lumped Mass Nonconforming Fully Discrete 
Crank-Nicolson Scheme of BBM Equation 

We will consider the following nonlinear BBM equation: 

( ) ( ) ( ]
( ) ( ) ( ]
( ) ( )0

, , 0, ,

, 0, , 0, ,

,0 , .

t tu u f u X t T

u X t X t T

u X u X X

 − ∆ = ∇ ∀ ∈Ω×


= ∀ ∈∂Ω×
 = ∀ ∈Ω

           (1) 

where 2RΩ ⊂  is a bounded domain with smooth boundary ∂Ω , 0 T< < ∞ , 

and ( ) 21
2

f u u u = − + 
 

, ( ),X x y= . 

For a nonnegative integer m, let ( )mH Ω  denote the usual Sobolev space of 
real-valued functions defined on Ω . 

( )
1 2

2

0 0

; d d ,m

m

vH v x y
x y

α

α α
α

Ω
≤ ≤

 ∂ Ω = < ∞ 
∂ ∂  

∑ ∫
 

Further, let 

( ) ( ){ }1 1
0 , 0 on .H v H vΩ = ∈ Ω = ∂Ω  

The norm of this space is the usual Sobolev mH -norm and it will be denoted 
by . m , 

1 2

1
2 2

0 0

d d ,m
m

vv x y
x y

α

α α
α

Ω
≤ ≤

 ∂ =
 ∂ ∂
 
∑ ∫

 

and semi-norm 

1 2

1
2 2

d d ,m
m

vv x y
x y

α

α α
α

Ω
=

 ∂ =
 ∂ ∂
 
∑ ∫

 
where, ( )1 2,α α α= , 1α  and 2α  are two non-negative integers 1 2α α α= + , 
specially, let 0, 0l m= = , denoted as ( ) ( )2 0L HΩ = Ω , ( ),i i  denote the inner 
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product in ( )2L Ω . 
We introduce the weak formulation of (1). Let tu Q=  by ( )1

0v H∈ Ω  and 
use the Green formula. 

( ) ( ) ( )( )
( ) ( )
( ) ( )0

, , , ,

, , ,

,0 .

t

t

u v a Q v f u v

u v Q v

u X u X

 + = ∇
 =
 =

                  (2) 

where ( ) ( ), , da Q v Q v Q v X
Ω

= ∇ ∇ = ∇ ∇∫ . 

Proposition 1. Let u be the solution of (2). Then, the following conservation 
of energy holds. 

( ) ( )
1 1

0 , 0.u t u t= ∀ >                     (3) 

Proof. Setting v u=  in (2), we get 

( )
2 2d d1 d .

2 d d
u u

u f u X
t t Ω

 ∇
 + = ∇
 
 

∫                 (4) 

Noting that 

( ) ( )( ) ( )( ) ( )1
0,u f u f u u u u Hϕ∇ = ∇ −∇ ∀ ∈ Ω  

where ( ) ( )u f uϕ′ = . Since 0u = , on ∂Ω  and ( )0 0ϕ = , then 

( )( ) ( )( )d d 0,u f u X f u u X
Ω Ω
∇ = ∇ =∫ ∫               (5) 

Form (4) and (5). It follows that, 

2

1

d 0,
d

u
t

=                           (6) 

Integrating (6) with respect to t, to complete the rest of the proof. 
Let 2RΩ ⊂  be a polygon on ( )1 2,x x  plane with boundaries parallel to the 

axes. hT  be an triangle subdivision of Ω . 
hK T

K
∈

Ω = ∪ , which does not need to  

satisfy the regularity assumption or quasi-uniform assumption [6]. For a give 

hK T∈ , the three vertices of K are ( ) ( ) ( )1 2 30,0 , ,0 , 0,x ya a h a h= = = . Let K̂  
be the reference element on ( ),ξ η  plane, the three vertices of K̂  are 

( ) ( ) ( )1 2 3ˆ ˆ ˆ0,0 , 1,0 , 0,1a a a= = = . 
For all ( )1 ˆv̂ H K∈ , we define the finite element ( )ˆˆ ˆ, ,K P ∑  on K̂  as follows 

[16] 

{ } { }1 2 3
ˆ ˆˆ ˆ ˆ, , , 1, ,v v v P span ξ η∑ = =  

where ˆ
1ˆ ˆ ˆd
ˆ i

i l
i

v v s
l

= ∫ , 1,2,3i = , îl  represent the edge of K̂ . 

It can be easily checked that interpolation defined above is well-posed and the 
interpolation function ˆ v̂∏  can be expressed as 

( )ˆ
1ˆ ˆˆ ˆ ˆ: d 0, 1,2,3.
ˆ il
i

v v s i
l

∏ −∏ = =∫                 (7) 

https://doi.org/10.4236/ojapps.2021.119075


H. Y. Si 
 

 

DOI: 10.4236/ojapps.2021.119075 1031 Open Journal of Applied Sciences 
 

then 

( ) ( ) ( )3 1 2 2 3 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 .v v v v v v v vξ η∏ = + − + − + −             (8) 

Define the affine mapping K̂ K→  by : ,K x yF x h y hξ η= = . 
For all hK T∈ , then we define the associated finite element space hV  and bi-

linear form ( ),a i i  as 

[ ]{ }
( ) ( )1

ˆˆ| d 0, ,

, d , .

h kK l

h h hK
K

V v v v F P v s l K

a u v u v X u v

 = = ∈ ⋅ = ⊂ ∂


= ∇ ∇ = ∇ ∇


∫
∑∫

�
            (9) 

where [ ]v  stands for the jump of v across the edge l, if l is an internal edge and 
it is equal to v itself if l ⊂ ∂Ω . 

For hK T∈  the associated finite element interpolation is 

( )1: ,h hH V∏ Ω →  
1ˆ ˆ .h KKv v F −∏ = ∏ �  

For hv V∈ , we define 

1
2

1 d d
h

h K
K T

v v v x y
∈

 
= ∇ ∇ 
 
∑ ∫ . It is easy to see that 1hi  

is a norm over hV . 

Now we consider the following numerical integration format 

( ) ( ) ( )
3

, ,
1

1 d d ,
3K h j k K

j
Q v meas K v a v x y

=

= ⋅ ≈∑ ∫             (10) 

where ( ), 1, 2,3j ka j =  is the three vertices of K. 
According to the Bramble-Hilbert lemma [2] and (10) is exactly true for the 

linear polynomial, we get 

( )
( )2

2
,

2
d d .K h K L K

Q v v x y Ch D vα

α =

− ≤ ∑∫              (11) 

Definition 

( ) ( ) ( )2
,, , , .

h
K hh hh

K T
u v Q uv u u u

∈

= =∑              (12) 

From (11), we know hi  and 0i  are equivalent in space hV , then there 
exist two constants 1C  and 2C , independent of h and k such that 

1 20 0 , .hhC v v C v v V≤ ≤ ∀ ∈                 (13) 

For any given positive integer N, let 
Tk
N

=  denote the size of the time dis-

cretization and 0 10 Nt t t T= < < < =� , 1n nt t t+∆ = − , 0,1,2, , 1n N= −� . The 

linear function determined by the values of two nodes ( ),h
nu X t  and 

( )1,h
nu X t +  is an approximate solution of ( ),u X t , then lumped mass noncon-

forming fully discrete Crank-Nicolson scheme of (2) lets hv V∈ , to find 

( )1 1,h h
n nu Q+ + , such that 
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( )

( )
( )

1 1 1 1
2 2

1 1

0 0

0

, , , ,

, , ,
2

, 0,

, 0,

h h h
n n hh n n

h h h h
n n n n

h
h

h
h

u u v a Q v t f v t

u u Q Q
v v

t

u u v

Q vϕ

+
+ +

+ +

    
− + ∆ = ∇ ∆           

   − + =    ∆   
 −∏ =

 −∏ =

          (14) 

where 0
hu  is an appropriate approximation to ( )0u X , ( ),n nu u X t= , 

( ),h h
n nu u X t= , ( ),h h

n nQ Q X t= , ( )1 1
2

1
2

h h h
n nn

u u u +
+

= + ,  

( ) ( )( )1 1
2

1
2 n nn

f f u f u +
+

∇ = ∇ +∇ . 

According to the theoretical knowledge of the numerical solution of partial 
differential equations that problem (14) has a unique solution ( )1 1,h h

n nu Q+ + . 

3. Error Estimates 

For simplicity, let ( ),n nu u X t= , ( ),n nQ Q X t= , ( ) ( ) ( ), , ,h hu v u v u vε = − , 
h

n n h nr Q Q= −∏ , 

n n h nQ Qρ = −∏ , h
n n h nu uε = −∏ , n n h nu uη = −∏ , 

0 0 0 0 0t t t tr ρ ε η
= = = =
= = = = . 

Lemma 3.1. There exists a constant 0C >  such that for all , hu v V∈ , 

( ) 2
1 1, .h h hu v Ch u vε ≤  

Proof. , hu v V∀ ∈ , u and v are linear functions on the unit K, from (11), we 
have 

( ) ( )
( ) ( ) ( )2 22

2 2
,

2
, d d .k h L K L Kk L K

Q u v uv x y Ch D uv Ch u vα

α =

− ≤ ≤ ∇ ∇∑∫
 

summing k and using Cauchy-Schwarz inequality, we get 

( ) 2
1 1, .h h hu v Ch u vε ≤  

Lemma 3.2. [16] Suppose ( ) ( )1 2
0u H H∈ Ω Ω∩ , then, under the anisotropic 

meshes, there holds 

1 1d , .hh hk
k

u v n s Ch u v v V
n∂

∂
⋅ ≤ ∀ ∈

∂∑∫  

where ( ),x yn n n=  is the outward unit vector of K∂ , let 

( )

( )

1 1

1

1 1, 1
2 2

1 1
2

d , d ,

, d , ,

n n

n n

n

n

t t
n ht tn n

t
h h n nt n

E v f f t v a Q Q t v

Q v t u u vε

+ +

+

+ +

+
+

      
= − ∇ − −                  

 
− Γ + −  

 

∫ ∫

∫
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where ( ), dh k
k

uu v v s
n∂

∂
Γ =

∂∑∫ . 

Lemma 3.3. For all hv V∈ , the solution ( ) ( ), , ,u X t Q X t  of (2), then 

( ) ( )1 1 1 1
2 2

, , , ,n n h nh n n
u u v a Q v t f v t E v+

+ +

   
− + ∆ = ∇ ∆ +      

   
       (15) 

where 

( )

( ) ( ) ( )

1 1

1 1

1 1
2 22 22 2 5

2
2 2 1

0 1

1
1 2 21 12 2 22 2

2 1 1
1

( ) d d

d d .

n n

n n

n n

n n

t t
n ht t

t t

h ht t

f QE v C t t t v
t t

uCh Q t t v Ch t t v
t

+ +

+ +

 
    ∂ ∂   ≤ + ∆    ∂ ∂    
 

 ∂
+ ∆ + ∆  ∂ 

∫ ∫

∫ ∫

  (16) 

Proof. From (2), for all hv V∈ , 

( ) ( ) ( )( ), , , ,t tu v u v f u v− ∆ = ∇  
Then using Green’s formula we have 

( ) ( ) ( )( ) ( ), , , , ,t hu v Q v f u v Q v+ ∇ ∇ = ∇ +Γ             (17) 

from Lemma 3.2, for all hv V∈ , then 

( ) 2 1, .h hQ v Ch Q vΓ ≤
 

from (17), integral on both sides for 1n nt t t +≤ ≤ , such that 

( ) ( ) ( ) ( )1 1 1
1 1,, d , d , , d ,n n n

n n n

t t t
n n h ht t t

u u v a Q t v f t v Q v t+ + +

+ − + = ∇ + Γ∫ ∫ ∫
 

thus 

( )

( )

1 1

1

1 1, 1
2

1 1 1 1
2 2 2

1 1
2

, ,

, d , d ,

, d , .

n n

n n

n

n

n n h n

t t
ht tn n n

t
h h n nt n

u u v a Q v t

f v t f f t v a Q Q t v

Q v t u u vε

+ +

+

+
+

+ + +

+
+

 
− + ∆  

 
        

= ∇ ∆ + − ∇ − −                        
 

+ Γ + −  
 

∫ ∫

∫
 

and then 

( ) ( )1 1 1 1
2 2

, , , ,n n h nh n n
u u v a Q v t f v t E v+

+ +

   
− + ∆ = ∇ ∆ +      

     

let ( ) ( ) ( )1
1 1

1 1

, ,n n
n n

n n n n

t t t t
P t f X t f X t

t t t t
+

+
+ +

− −
= +

− −
, we have 

( )1 1
1 1

2

d dn n

n n

t t

t t n
P t t f t+ +

+
=∫ ∫ . 

from (16), for all hv V∈ , then 0 1hv C v≤ . 
According to the one-dimensional linear interpolation theory and the 

Cauchy-Schwarz inequality, we get 
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( )

( )

1 1

1

2
2

1 2
2

1
2 22 5

2
2 1

0

d , d ,

d .

n n

n n

n

n

t t

t tn

t

ht

ff f t v C t t v
t

fC t t v
t

+ +

+

+

    ∂
− ∇ ≤ ∆ ∇       ∂   

 ∂ ≤ ∆
 ∂ 

∫ ∫

∫
 

there holds 

( )1 1

1
2 22 5

21 1 2 1
2 1

d , d ,n n

n n

t t
h ht tn

Qa Q Q t v C t t v
t

+ +

+

    ∂ − ≤ ∆      ∂    
∫ ∫

 

( ) ( ) ( )1 1
1 12 2 2

2 1, d d ,n n

n n

t t

ht t
Q v t Ch Q t t v+ +Γ ≤ ∆∫ ∫

 

( ) ( )1

1
2 2 1

2 2 21 1 1 11
1

, d ,n

n

t
h n n n n h ht

uu u v Ch u u v Ch t t v
t

ε +

+ +

 ∂
− ≤ − ≤ ∆  ∂ 

∫
 

which completes the proof. 
Lemma 3.4. There exists a constant r, 1t r∆ < < , for all L, and 1 L N≤ ≤  (L 

is a positive integer), then there holds 

( )
2 2 2 22 2 2 2

2 2 4
2 2 2 20 0

0 1 1 1

2
22 4
20 0

1

d

d d .

T
L Lh

T T

f u Q Qr C t t
t t t t

uCh Q t Ch t
t

ε
  ∂ ∂ ∂ ∂  + ∇ ≤ + + + ∆

 ∂ ∂ ∂ ∂   

∂
+ +

∂

∫

∫ ∫

   (18) 

Proof. Subtracting (15) from the first formula of (14), for all hv V∈ , we have 

( )( ) ( )1 1 1 1 1
2 2

, , ,h h h
n n n n h nn n

u u u u v a Q Q v t E v+ +
+ +

 
− − − + − ∆ = −  

 
     (19) 

according to the definition of 1
2

,n n
rε
+

 and nη , from (19), we obtain 

( ) ( )

( )

1 1 1 1
2

1 1 1
2 2

, , ,

, ,

n n n n hh h n

h h nn n

v v a r v t

a Q Q v t E v

ε ε η η+ +
+

+ +

 
− + − + ∆  

 
 

− −∏ ∆ = −  
 

 

by the characteristics of the unit of C-R, then 

1 1 1
2 2

, 0,h hn n
a Q Q v

+ +

 
−∏ =  

   
further, using the second formula of (14), we get 

( ) ( )1 11 1 ,
2 2

h n n h n nn n n n u u Q Qr r
t t

ε ε + ++ + ∏ − ∏ −− −
= + −

∆ ∆  

let 1n nv ε ε+= + , substitute the above formula in (19), then 
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( )

( ) ( )

2 2
1 1 1 1

2

1 1 1

1 1
1 1

2

, 2

,

, 2 ,
2

n n h n nh h n

n n n n n n n

n n n n
h hn

a r r r

E

Q Q u u
a r t

t

ε ε

ε ε η η ε ε

+ +
+

+ + +

+ +

+

 
− + −  

 
= − + + − +

 − + − ∏ − ∆   ∆  

           (20) 

Now we shall respectively estimate the terms at the right end of the Equation 
(20), from Lemma 3.3 and Young inequality, we get 

( ) ( )1

1 1

2 2 2 22 2 2 2
4

1 2 2 2 2
0 1 1 0

2
222 4

12
1

d

1d d .
4

n

n

n n

n n

t
n n n t

t t
n n ht t

f u Q uE C t t
t t t t

uCh Q t Ch t t
t

ε ε

ε ε

+

+ +

+

+

  ∂ ∂ ∂ ∂  + ≤ + + + ∆
 ∂ ∂ ∂ ∂   

∂
+ + + + ∆

∂

∫

∫ ∫
 

Above the second item, we obtain 

( ) 1
2

22
1 1 1

1

1, d .
4

n

n

t
n n n n n n hh t

uCh t t
t

η η ε ε ε ε+

+ + +
∂

− + ≤ + + ∆
∂∫

 

From 1 1
2 20 0

n n
r C r
+ +

≤ ∇ , the third item is estimated as follows 

( ) ( )

1

1

0

1 1
1 1

2

1 1
1
2 00

1 1
2 20 0

22
2 2 4

1 20
1

, 2
2

2
2

d

1 d ,
2

n

n

n

n

n n n n
h hn

n n n n

n

t

tn n

t
n n t

Q Q u u
a r t

t

Q Q u u
r t

t

QC r u t
t

ur r t C t t
t

+

+

+ +

+

+ +

+

+ +

+

 − + ∏ − ∆   ∆  

− + ≤ ∇ ∇∏ − ∆ ∆ 

 ∂
≤ ∇ ∇ −  ∂ 

 ∂ ≤ ∇ + ∇ ∆ + ∆
 ∂ 

∫

∫
 

Substitute the above estimation results in (20), furthermore, from 

2 2 2
1 1

1 ,
2 n n n nh h hε ε ε ε+ ++ ≤ +

 
We have 

( )( ) ( )( )2 2 2 2
1 11 1 ,n n n n nh h h ht r t rε ε θ+ +− ∆ + − + ∆ + ≤         (21) 

where 

( )1

1 1

2 2 2 22 2 2 2
4

2 2 2 2
0 1 1 0

2
22 4 4
2

1

d

d d .

n

n

n n

n n

t
n t

t t

t t

f u Q uC t t
t t t t

uCh Q t Ch t Ch t
t

θ +

+ +

  ∂ ∂ ∂ ∂  = + + + ∆
 ∂ ∂ ∂ ∂   

∂
+ + + ∆

∂

∫

∫ ∫
 

For 
10 1

1 t
< <

+ ∆
, so that 
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( ) ( )2 2 2 2
1 1

1 ,
1 n n n n nh h h h

t r r
t

ε ε θ+ +
− ∆

+ − + ≤
+ ∆  

1
1

nt
t

− ∆ 
 + ∆ 

 multiplied with both sides, then summing up from 0n =  to 

1L − , we get 

12 2

0
0

1 ,
1

L N

L L nh
n

tr
t

ε θ
−

=

+ ∆ + ∇ ≤  − ∆ 
∑                  (22) 

for 
2
11 1 2 21 1 e ,

1 1 1 1

L N N N T
rt t t t

t t t r
−+ ∆ + ∆ ∆ ∆       ≤ = + < + ≤       − ∆ − ∆ −∆ −       

      (23) 

then 

( )
2 2 2 22 2 2 21 4

2 2 2 20
0 0 1 1 1

2
22 4
20 0

1

d

d d ,

N T
n

n

T T

f u Q QC t t
t t t t

uCh Q t Ch t
t

θ
−

=

  ∂ ∂ ∂ ∂  ≤ + + + ∆
 ∂ ∂ ∂ ∂   

∂
+ +

∂

∑ ∫

∫ ∫

      (24) 

Finally, use (23) and (24) to complete the rest of the proof. 
Theorem 3.1. let ( ),u X t  and ( ),Q X t  be the solutions of (2), suppose 
( )f u  is sufficiently smooth, then there holds 

( ){ } ( )( )22 42

01 0
max .h h

n n n nn N
u u Q Q C h t

≤ ≤
− + ∇ − ≤ + ∆          (25) 

Proof. Using the definition of , , ,n n n nrε η ρ  and the triangle inequality, we get 

( ) ( )2 2 2 2 2 2

0 0 00
,h

n n n n n n n nh hu u C Cε η ε η ε η− = − ≤ + ≤ +
 

( ) 2 2 2

0 00
,h

n n n nQ Q r ρ∇ − ≤ ∇ + ∇
 

then using Lemma 3.4 and the interpolation theorem, the proof is completed. 
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