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Abstract 
Over the past year, approximately 10,000 Americans have died by psychosti-
mulant overdose, and over 50% of these deaths were caused by prescription 
stimulant misuse. A comprehensive approach to detect a drug overdose in the 
environment where it occurs is imperative to reduce the number of prescrip-
tion stimulant overdose-related deaths. Teenagers are at the highest risk for 
prescription stimulant overdose, so this study proposes a multi-factor over-
dose detection system named Hero which is designed to noninvasively oper-
ate within the context of a teen’s life. Hero monitors five factors that indicate 
stimulant abuse: extreme mood swings, presence of amphetamine metabolite 
in sweat excreted from the fingertip, heart rate, blood pressure, and respira-
tion rate. An algorithm to detect extreme mood swings in a teen’s outgoing 
SMS messages was developed by collecting over 3.6 million tweets, creating 
groups of tweets for euphoria and melancholy using guidelines adapted from 
DSM-5 criteria, and training six Artificial Intelligence models. These models 
were used to create a dual-model-based extreme mood swing detection algo-
rithm that was accurate 96% of the time. A biochemical strip, which consisted 
of a diagnostic measure that changes color when in contact with ampheta-
mine metabolite and a control measure that changes color when the appro-
priate volume of sweat is excreted, was created. A gold nanoparticle-based 
diagnostic measure and pH-based control measure were evaluated indivi-
dually and on the overall strip. The diagnostic measure had an accuracy of 
90.62% while the control measure had 84.38% accuracy. Lastly, a vital sign 
measurement algorithm was built by applying photoplethysmography image 
processing techniques. A regression model with height, age, and gender fea-
tures was created to convert heart rate to blood pressure, and the final algo-
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rithm had an accuracy of 97.86%. All five of these factors work together to 
create an accurate and easily integrable system to detect overdoses in 
real-time and prevent prescription stimulant abuse-related deaths. 
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1. Introduction 

Prescription stimulants are drugs intended to treat attention deficit hyperactivity 
disorder (ADHD) and narcolepsy by increasing dopamine and norepinephrine 
activity [1]. According to a survey conducted in 2020 by the National Institute 
on Drug Abuse, 6 percent of U.S. high school seniors reported nonmedical use 
of Adderall, the most common brand-name of prescription stimulants [2]. Al-
though prescription stimulant misuse is a problem that can affect individuals of 
all demographics, adolescents and young adults are at the highest risk [3]. While 
prescription stimulants have been coined as “party” drugs and “weight loss” 
drugs, adolescents most commonly abuse it as a “cognitive steroid” [4]. Students 
are able to study for long hours, retain more information, and focus more atten-
tively with the help of spiked norepinephrine levels [1]. If used when medically 
necessary at the correct dosage, prescription stimulants are inherently safe me-
dications, but the line between intended use and abuse can often be blurred. 
These drugs are highly addictive and can lead to substance use disorder (SUD) 
and overdose [1]. According to the 2018 CDC Annual Surveillance Report of 
drug-related risks and outcomes, approximately 10,000 Americans died by psy-
chostimulant overdose in past years and over 50% were caused by prescription 
stimulant misuse [5]. The relative ease with which these medications can be ob-
tained on school campuses contributes to the increasing number of overdose 
cases among young people [6].  

Looking at prescription drug overdose prevention more broadly, current re-
search involves development of overdose-reversal therapies and drug antagon-
ist-based therapeutics [7] [8]. However, administering an overdose-reversal 
therapy hinges on the teen being at a medical facility at the right time. One of 
the most common locations where drug misuse occurs, especially adolescent 
drug abuse, is in a bedroom alone [9]. Therefore, it may take hours before the 
situation is found by another individual, the overdose patient is taken to a med-
ical facility, and appropriate intervention begins. The critical actions that must 
be taken after an overdose occurs, which includes administering CPR if neces-
sary and calling first responders, may not occur until the situation has escalated 
beyond the scope of medical treatment. A real-time, non-invasive, and accurate 
framework to detect a drug overdose in the environment where it occurs is im-
perative to reducing the number of prescription stimulant overdose-related 
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deaths in teens. 
This study focuses on the development of a system to detect dangerous, over-

dose-nearing consumption of Adderall and similar prescription amphetamines. 
The system was designed for prescription amphetamines rather than illicit drugs 
or opioids because cocaine, heroin, opioids, and similar drugs are often taken for 
the purpose of achieving a “high”. It is unlikely that a user of illicit drugs or 
opioids would willingly use an overdose detection system. However, the purpose 
of prescription amphetamines is to increase attentiveness rather than to reach 
dangerous consumption levels. It is more likely that an adolescent or young 
adult who consumes prescription amphetamines would use a real-time overdose 
detection system as a safety-net. Currently, few real-time detection systems exist, 
and these frameworks rely on single-factor analysis. The most promising results 
show that based on active sonar monitoring utilizing signals emitted by a 
smartphone, an individual’s respiration rate can be determined, and abnormal 
respiration rate values indicate an overdose [10]. While this prior work is im-
portant in its demonstration of real-time monitoring, overdoses are extremely 
complex and analyzing just one physical manifestation compromises accuracy. A 
multi-factor approach taking emotional, biochemical, and physical signs of pre-
scription amphetamine abuse into account is necessary to create an effective 
system. The factors chosen for examination in this study are extreme mood 
swings, presence of amphetamine metabolite in sweat excreted from the finger-
tip, and vital signs. 

The following rationale supports the selection of these factors to detect a pre-
scription amphetamine overdose. Prior literature shows that administration of 
high amphetamine dosages induces elation and euphoria followed by melancho-
ly and anger [11] [12]. This extreme mood swing consists of the drug’s colloquial 
“high,” and the subsequent comedown which brings dysphoria [13]. While sev-
eral drug classes have been shown to cause this emotional fluctuation, stimulant 
abusers are most subject to extreme mood swings [14]. This study proposes se-
cure monitoring of a teen’s outgoing text messages to detect an extreme mood 
swing and establish emotional indication of prescription stimulant abuse. Pre-
vious studies describe an algorithm that scores English phrases using one unsu-
pervised machine learning model which is trained to detect polarity of emotional 
sentiment and calculate deviations [15]. However, prior algorithms were de-
signed to detect routine mood fluctuations that teenagers commonly display. A 
framework that can distinguish between normal mood swings and an extreme 
mood swing has not been designed, partly because clinical guidelines have not 
been applied to capture emotional intensity in model training data. Additionally, 
the use of just one model in prior literature indicates a multiclass classifier with 
the ability to distinguish between positive, neutral, and negative sentiment. 
However, the creation of two separate binary classification models, one to dis-
tinguish between positive and neutral sentiment and another to distinguish be-
tween negative and neutral sentiment, was hypothesized to display higher accu-
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racy for the following reasons: relevant features can be selected separately for 
each classifier, the training groups will have balanced counts, and the optimal 
complexity can be selected for each classifier. This algorithm design consisting of 
two binary classification models is hereby referred to as a dual-model-based 
method. Hence, the first research question asks can a dual-model-based mood 
swing detection algorithm perform with higher accuracy than existing sin-
gle-model-based algorithms? The independent variable was algorithm design 
and the dependent variable was accuracy. 

The second factor chosen to detect a prescription amphetamine overdose was 
presence of amphetamine metabolite in sweat excreted from the fingertip. Fin-
gertip sweat was selected for analysis rather than urine or blood because the 
overdose detection system being developed is intended to run noninvasively in 
real-time. Testing urine or blood would require a teen to deviate from daily rou-
tine while fingertip sweat analysis can be automated. Prior fingertip sweat-based 
drug screening protocols include lateral flow competition assays for presence of 
amphetamine [16]. However, by detecting amphetamine rather than ampheta-
mine metabolite, false positives may result from touching the drug rather than 
testing for drug consumption. This study proposes detection of benzoic acid be-
cause in humans, 21% of the consumed amphetamine’s mass is excreted as ben-
zoic acid [17]. This amphetamine metabolite is detectable in sweat approximate-
ly two-hours after drug intake, and since peak drug effectiveness typically occurs 
three-hours after intake, detection of stimulant metabolite can be an effective 
preliminary indication to begin emotional and physical monitoring [18] [19]. 
One challenge that arises when detecting metabolite rather than the parent drug 
is that amphetamine metabolite is present at very low concentrations in sweat 
excreted from the fingertip [20]. An accurate metabolite detection method must 
be extremely sensitive, and therefore, this study investigated the use of gold na-
noparticles (AuNPs) as a colorimetric probe. Large-sized AuNPs with strong 
color intensity improve biosensing capabilities, so the AuNPs served as the di-
agnostic measure on a biochemical test strip intended to analyze sweat excreted 
from the fingertip [21]. Additionally, a control measure was designed to ensure 
that an adequate volume of sweat was being analyzed. Based on prior literature, 
an average of 10 μl of fingertip sweat is adequate for effective analysis, and this 
volume of fingertip sweat is excreted in approximately 1 minute [22] [23]. This 
study investigates the plausibility of a pH-based test that displays a color change 
when a minimum of 10 μl of sweat comes into contact with the biochemical 
strip, regardless of sweat composition. One research question investigated in this 
portion of the study was can an AuNP-based test display a significant difference 
in color when in contact with simulated metabolite-containing sweat versus si-
mulated normal sweat? The second research question asks can the overall strip 
display a red-to-purple change when in contact with at least 10 μl of metabo-
lite-containing sweat? The independent variables were composition of sweat and 
volume of sweat, and the dependent variable was measurement of the color 
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change. 
Finally, increased heart rate, blood pressure, and respiration rate are common 

signs of prescription stimulant overdose [24]. One noninvasive method for con-
tinuous monitoring of these vital signs is photoplethysmography (PPG) imaging 
[25]. PPG works by emitting a light source onto a tissue, measuring the reflected 
light, and calculating the proportional blood volume variations [26]. Periodically 
reflecting light onto a user’s fingertip using the phone’s back camera and calcu-
lating vital signs whenever the user picks up their phone serves as an efficient 
real-time monitoring process for physical signs of overdose. However, existing 
PPG-based algorithms extrapolate blood pressure from heart rate using a stan-
dardized linear model [27]. This ignores variations due to gender, age, or height 
and may compromise vital sign estimation accuracy. Therefore, this study asks 
can a personalized PPG-based vital sign measurement algorithm perform with a 
higher accuracy than existing PPG-based algorithms? The independent variable 
was integration of personalized features and the dependent variable was accura-
cy. 

The Hero system and paired mobile app incorporates all five of the factors as 
shown in Figure 1 for constant background monitoring of emotional, biochem-
ical, and physical signs of overdose in a teen’s day-to-day life. The purpose of 
this research is to implement novel detection methods into an efficient frame-
work integrated that can be integrated into a teen or young adult’s life. 

 

 
Figure 1. Hero integrates five factors to detect a drug overdose. The biochemical test 
strip is integrated onto a laptop mouse, and an Arduino color sensor monitors the strip 
for a color change. When a color change is detected for both the diagnostic and control 
measures, the Hero system begins monitoring the physical and emotional factors 
through the mobile app. This includes estimating vital signs using the personalized 
PPG-based algorithm and monitoring outgoing text messages for an extreme mood 
swing using the Artificial-Intelligence enabled dual-model-based algorithm. 
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2. Methods 
2.1. Mood Swing Detection Algorithm 

A Python script using Tweepy, an open-source library used to access the Twitter 
API, was run for seven days. 3.6 million tweets and their corresponding twitter 
handles were gathered, and all tweets that were below a minimum of 100 cha-
racters, a retweet, or tweeted by a company/automated account were dropped. 
Each remaining tweet was then classified into one of the following groups: me-
lancholic, euphoric, control, or irrelevant. The group classification criteria for 
melancholy were adapted from the DSM-5 Criteria for Major Depressive Dis-
order as shown in Table 1. Each guideline was adapted for single-tweet analysis, 
and if a tweet met three of the criteria, it was classified into the melancholy group. 

Likewise, the classification guidelines for the euphoria group were adapted 
from the DSM-5 Criteria for a Bipolar I Disorder Manic Episode as shown in 
Table 2. If a tweet met three guidelines, it was classified as euphoric. 

If a tweet met less than three criteria for either melancholy or euphoria, it was 
deemed irrelevant and dropped from the dataset. A tweet that met none of the 
criteria for melancholy or euphoria was classified into the control group. This 
clinical-based classification system was applied to ensure that the groups reflect  
 
Table 1. The DSM-5 Criteria for Major Depressive Disorder was adapted to create guide-
lines appropriate for single-tweet analysis. If a tweet meets three of the six guidelines, it is 
classified into the melancholy group. This clinical-based classification system was applied 
to ensure that the groups reflect the intensity of emotion associated with a mood swing 
caused by high stimulant dosage. 

DSM-5 Criteria for Major  
Depressive Disorder 

Adapted Guidelines for Single-Tweet Analysis: 
Melancholy Group 

Depressed mood most of the day, nearly every 
day. 

Tweet expresses sad, hopeless, or pessimistic 
sentiment. 

Markedly diminished interest or pleasure in all, 
or almost all, activities most of the day, nearly 
every day. 

Tweet expresses lack of interest in activities. 

Significant weight loss when not dieting or 
weight gain, or decrease or increase in appetite 
nearly every day. 

Cannot interpret in a tweet. 

A slowing down of thought and a reduction of 
physical movement (observable by others, not 
merely subjective feelings of restlessness or being 
slowed down). 

Cannot interpret in a tweet. 

Fatigue or loss of energy nearly every day. Tweet expresses fatigue. 

Feelings of worthlessness or excessive or  
inappropriate guilt nearly every day. 

Tweet expresses worthless/guilty sentiment. 

Diminished ability to think or concentrate, or 
indecisiveness, nearly every day. 

Tweet expresses diminished ability to 
think/concentrate or indecisive sentiments 

Recurrent thoughts of death, recurrent suicidal 
ideation without a specific plan, or a suicide 
attempt or a specific plan for committing  
suicide. 

Tweet expresses suicidal intention or outlines a 
specific plan for committing suicide. 

https://doi.org/10.4236/ojapps.2020.1012056


D. Nori 
 

 

DOI: 10.4236/ojapps.2020.1012056 797 Open Journal of Applied Sciences 
 

Table 2. The DSM-5 Criteria for a Bipolar I Disorder Manic Episode was adapted to 
create guidelines appropriate for single-tweet analysis. If a tweet meets three of the six 
guidelines, it is classified into the euphoria group. This clinical-based classification system 
was applied to ensure that the groups reflect the intensity of emotion associated with a 
mood swing caused by high stimulant dosage. 

DSM-5 Criteria for Bipolar I Disorder Manic 
Episode 

Adapted Guidelines for Single-Tweet Analysis: 
Euphoria Group 

Inflated self-esteem or grandiosity Tweet expresses inflated self-esteem or grandiosity. 

Decreased need for sleep (e.g., feels rested after 
only 3 hours of sleep) 

Cannot interpret in a tweet. 

More talkative than usual or pressure to keep 
talking 

Cannot interpret in a tweet. 

Flight of ideas or subjective experience that 
thoughts are racing 

Cannot interpret in a tweet. 

Distractibility (i.e., attention too easily drawn 
to unimportant or irrelevant external stimuli), 
as reported or observed. 

Tweet lacks a central focus or describes several 
unrelated topics. 

Increase in goal-directed activity (either  
socially, at work or school, or sexually) or 
psychomotor agitation 

Tweet expresses indication of goal-directed  
activity. 

Excessive involvement in activities that have a 
high potential for painful consequences (e.g., 
engaging in unrestrained buying sprees, sexual 
indiscretions, or foolish business investments). 

Cannot interpret in a tweet. 

During the period of mood disturbance and increased energy or activity, three (or more) of the 
following symptoms have persisted (four if the mood is only irritable) are present to a significant 
degree and represent a noticeable change from usual behavior: 

A distinct period of abnormally and  
persistently elevated, expansive, or irritable 
mood and abnormally and persistently 
goal-directed behavior or energy, lasting at 
least 1 week and present most of the day,  
nearly every day (or any duration if  
hospitalization is necessary). 

Tweet expresses abnormally elevated mood or 
indication of goal-directed activity. 

The mood disturbance is sufficiently severe to 
cause impairment in social or occupational  
functioning or to necessitate hospitalization to 
prevent harm to self/others, or there are  
psychotic features. 

Cannot interpret in a tweet. 

The episode is not attributable to the direct  
physiological effects of a substance (e.g., a drug 
of abuse, a medication, or other treatment) or 
another medical condition. 

Cannot interpret in a tweet. 

 
the intensity of emotion associated with a mood swing caused by high stimulant 
dosage. The final ground truth dataset, consisting of the two emotion groups 
and the control set, contained approximately 720,000 tweets. This data was read 
into the Python program for pre-processing which included replacing all Un-
icode characters and emoticons with an empty string to ensure that these special 
characters did not contribute to model training. Each group was then split into 
train (80%) and test (20%) groups, and the training group was split into 4 folds 
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which supported cross-validation in model training. Each tweet in the training 
set was then split into unigrams (single words) and bigrams (sets of two words), 
and these n-grams were stored in a vocabulary vector. Elements in the vocabu-
lary vector that were present in at least 0.1% of tweets were considered features 
in model building. Once pre-processing was complete, two training matrices 
(one for melancholy and one for euphoria) with rows corresponding to tweets 
and columns corresponding to n-gram features was created. A test matrix was 
also created following the same format. If the n-gram was present in the tweet, a 
1 was placed in the cell. All other cells were set to 0 and stored in sparse matrix 
format. Finally, a dependent variable column was added containing the emotion 
classification of the tweet (0 for control; 1 for the matrix’s respective emotion). 
The training matrices were used to build six different Artificial Intelligence 
models in Python, three melancholy identification models and three euphoria 
identification models. The first model type built was the Generalized Linear 
Model from the H2O library which is a hyperplane-based approach. The least 
absolute shrinkage and selection operator (LASSO) was used to create a parsi-
monious model and prevent overfitting. The next model type was the Gradient 
Boosting Machine which is a tree-based approach. Lastly, a Multilayer Percep-
tron which is a deep learning-based approach was built. After the models were 
created, the test matrix was used to calculate model metrics such as AUC and 
accuracy, sensitivity, specificity, and F1-Score for different thresholds. These 
model metrics were analyzed to identify a score threshold and design a 
dual-model-based mood swing detection algorithm. The algorithm monitors a 
teen’s outgoing SMS messages, scores each one with both the euphoria and me-
lancholy models, and uses these scores to detect an extreme mood swing. This 
dual-model-based algorithm was tested by simulating mood swings using mes-
sages from the euphoria and melancholy groups, and the number of true posi-
tives, true negatives, false positives, and false negatives were recorded. 

2.2. Biochemical Test Strip 

Biochemical strip design began by creating a 0.0010 M stock solution of gold (III) 
ions from 1.0 gram of Hydrogen Tetrachloroaurate (III) Trihydrate. 20 mL of this 
stock solution was heated on a stirring hotplate until bubbles formed. After 
creating a 1% Trisodium Citrate Dihydrate solution separately, 2 mL of the citrate 
solution was added to the 20 mL stock solution on the hotplate. When the solu-
tion turned deep red (approximately ten minutes), it was removed from the hot-
plate and stored in a brown bottle because Hydrogen Tetrachloroaurate (III) Tri-
hydrate is hygroscopic and reacts in visible light. Citrate synthesis was applied to 
create AuNPs because this synthesis procedure creates larger particles, and 
AuNPs with larger diameters are more sensitive [28]. Simulated metabo-
lite-containing sweat was created by adding 0.5 g NaCl (mimics natural salts in 
sweat) and 5 μl of benzoic acid (metabolite) to 10 mL of distilled water. The same 
procedure was followed to create normal sweat, but benzoic acid was not added. 
The AuNP diagnostic measure was then evaluated in isolation using a spectro-
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photometer to record absorbance for the original AuNP solution, AuNP solution 
with metabolite-containing sweat (16 trials), and AuNP solution containing nor-
mal sweat (16 trials). The spectrophotometer was set to the wavelength at which 
the original AuNP solution absorbed most strongly (500 nm). Measuring at this 
λmax value helped ensure that the absorbance readings would be sensitive to 
changes as the volume of metabolite-containing sweat was incremented. 

Next, the pH-based control measure was evaluated in isolation. Using a strong 
acid (HCl) and strong base (NaOH), solutions at integer pH values from 0 to 8 
were created using the serial dilution method. A pH probe was calibrated using 
buffers and utilized to finetune the pH of the created solutions. A few drops of 
anthocyanin indicator were transferred to each solution, resulting in a range of 
colored liquids. Using a spectrophotometer, two λmax values were selected (one 
where acidic solution with indicator absorbed strongly and one where basic so-
lution with indicator absorbed strongly), and absorbance at these two wave-
lengths was recorded for each colored solution. This data was used to determine 
the indicator’s pKa. This spectrophotometric procedure for a precise determina-
tion of pKa was used because the control measure must change color when in 
contact with just 10 μl of sweat. Since the strip must be sensitive to such small 
volumes, an exact determination of solution volumes that must be present on 
the original strip was necessary. The overall strip was then evaluated (32 trials), 
and the trials are broken down in Figure 2.  

 

 
Figure 2. The 32 total trials consisted of 16 trials with metabolite-containing sweat and 16 
trials with normal sweat. These groups were further divided based on volume of sweat 
(less than or more than 10 μl). The expected number of positives for both the diagnostic 
and control measure is 16, and the expected number of negatives for both measures is 16. 

2.3. Vital Sign Algorithm 

The vital sign algorithm was developed in Android Studio using the Java pro-
gramming language. First, a PPG-based algorithm was built, and the algorithm 
began by turning on the phone’s back camera with flash and taking a 5-second 
recording of the user’s illuminated fingertip. This recording was then parsed and 
processed to obtain the RGB intensities of each frame. This is because during the 
cardiac cycle, when the heart beats, a wave of blood reaches the capillaries at the 
end of the fingertip. When the capillary is full, the RGB values of the frame will 
differ from when the capillary is empty. Red and green intensities were then 
stored in an array, and the Fast Fourier Transform (Math package in Java) was 
applied to obtain a resultant array. After filtering out noise from the resultant 
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array, a peak detection algorithm was used to find all of the cardiac peaks in the 
signal. The R-R interval (time difference between peaks) was computed, and 
heart rate was then calculated by dividing this value by 60. Publicly available da-
ta from the National Heart, Lung, and Blood Institute was then used to develop a 
regression model in Python with the following features: heart rate, height, age, 
and gender. The output of the regression model was a blood pressure measure-
ment. Finally, the bandpass filter (from the Math package) was applied to the 
heart rate signal in order to reduce irregular sampling from the smart phone. 
The Fast Fourier Transform was re-applied to the modulated heart rate arrays 
and a clear peak was observed at each breath which allowed for calculation of 
respiration rate.  

The vital sign algorithm was evaluated through analysis of regression model 
metrics and manual comparison to an accurate measurement method. 21 trials 
were conducted in which the author modulated my respiration from 7 to 35 
breaths per minute. A program was written in Java to blink at a specific interval, 
keeping respiration rate constant. The number of actual breaths per minute was 
recorded, and for a 5-second interval during that minute, the photoplethysmo-
graphy algorithm was run. The results from the actual counting and the algo-
rithm were compared and statistical measures were computed. 

3. Results 
3.1. Mood Swing Detection Algorithm 

Figure 3 displays the distribution of scores returned by the Generalized Linear 
Model (GLM) and Gradient Boosting Machine (GBM) for euphoria when ana-
lyzing new messages (test matrix). For GLM, the mean score of the messages 
displaying euphoria was 0.57 and the standard deviation was 0.15, while the 
mean score of the control messages was 0.40 and the standard deviation was 
0.16. For GBM, the mean score of the messages displaying euphoria was 0.60 
and the standard deviation was 0.16, while the mean score of the control mes-
sages was 0.38 and the standard deviation was 0.16. The GBM resulted in a much 
more bimodal distribution, indicating that this tree-based approach performed 
better than the hyperplane-based approach for euphoria. 

Similarly, Figure 4 displays the distribution of scores returned by the Genera-
lized Linear Model (GLM) for melancholy and Gradient Boosting Machine 
(GBM) for melancholy when analyzing messages designated for testing. For 
GLM, the mean score of the melancholic messages was 0.55 and the standard 
deviation was 0.15, while the mean score of the control messages was 0.40 and 
the standard deviation was 0.13. For GBM, the mean score of the melancholic 
messages was 0.60 and the standard deviation was 0.18, while the mean score of 
the control messages was 0.36 and the standard deviation was 0.16. Again, the 
GBM resulted in a much more bimodal distribution, indicating that this 
tree-based approach performed better than the hyperplane-based approach for 
melancholy. 
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Figure 3. (a) The histogram shows the number of messages in each score bin by percentage of ob-
servations per class as scored by the GLM euphoria model. The number of messages in the eupho-
ria test group was 43,544 and the number of messages in the control test group was 46,845 (ran-
domly selected from a larger set to match number of euphoric messages). (b) The GBM resulted in 
a much more bimodal distribution in comparison to the GLM, indicating that this tree-based ap-
proach performed better than the hyperplane-based approach for euphoria. 
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Figure 4. (a) The histogram shows the number of messages in each score bin by percentage of ob-
servations per class as scored by the GLM melancholy model. The number of messages in the me-
lancholy test group was 4048 and the number of messages in the control test group was 4477 (ran-
domly selected from a larger set to match number of melancholic messages). (b) The GBM for me-
lancholy resulted in a much more bimodal distribution in comparison to the GLM, indicating that 
this tree-based approach performed better than the hyperplane-based approach for euphoria. 

 
Area Under the Curve (AUC) was compared between the Generalized Linear 

Model (GLM), Gradient Boosting Machine (GBM), and Multilayer Perceptron 
(MLP) for both emotions. The Receiver Operating Characteristic (ROC) curve 
plots the False Positive Rate against the True Positive Rate. As shown in Figure 
5, for euphoria, GLM testing had an AUC of 0.7852, GBM testing had an AUC 
of 0.8294, and MLP testing had an AUC of 0.8409 (5.57 percentage point in-
crease from GLM to MLP). For melancholy, GLM testing had an AUC of 0.7762, 
GBM testing had an AUC of 0.8384, and MLP testing had an AUC of 0.8618 
(8.56 percentage point increase from GLM to MLP). The precision recall (PR) 
curves show that for euphoria, the average precision increased by 6.59 percen-
tage points between GLM and MLP, and for melancholy, the increase was 8.10 
percentage points. For both emotions, the multilayer perceptron displayed the 
highest AUC and average precision. 
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Figure 5. (a) The ROC curve plots the False Positive Rate (1 – specificity) against the 
True Positive Rate (sensitivity). The euphoria model that performed best was the multi-
layer perceptron with a test AUC of 0.8409. The precision-recall curve plots recall (sensi-
tivity) against precision (positive predictive value). Of the euphoria models, the average 
precision was the highest for the multilayer perceptron. (b) The melancholy model with 
the highest AUC was the multilayer perceptron with a test AUC of 0.8618. Of the melan-
choly models, the average precision was the highest for the multilayer perceptron. 

 
To determine the optimal score threshold, the accuracy, sensitivity, and speci-

ficity of the GBM models across a range of possible thresholds was analyzed as 
shown in Figure 6. The score threshold is the value that differentiates between a 
message displaying the model’s respective emotion and a message that lacks 
emotional intensity. For euphoria, as shown in 6, 0.51 was the score threshold 
with maximum accuracy, and 0.49 was the score threshold where sensitivity, 
specificity, and accuracy intersected (optimal). For melancholy, 0.49 was the 
score threshold with maximum accuracy, and 0.48 was the score threshold where 
all three measures are optimal. 

The F1-Score is defined as the harmonic mean of a model’s sensitivity and 
positive predictive value. For both GBM models, the F1-Score is maximized at a 
score threshold of 0.5. Therefore, the final score threshold was selected as 0.5 for 
both euphoria and melancholy. If the euphoria model returns a score higher 
than 0.5 for a message, euphoric sentiment has been identified. Similarly, if the 
melancholy model returns a score higher than 0.5, melancholic sentiment has 
been identified. 
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Figure 6. (a) As shown by the black “X” mark, 0.51 is the score threshold at which accu-
racy is maximized for the GBM euphoria model. The pink circle shows that a score thre-
shold of 0.49, the sensitivity, specificity, and accuracy intersect. (b) As shown by the black 
“X” mark, 0.49 is the score threshold at which accuracy is maximized for the GBM me-
lancholy model. The pink circle shows that a score threshold of 0.48, the sensitivity, spe-
cificity, and accuracy intersect. 

 
Figure 7 shows the architecture of the multilayer perceptron (MLP). The 

structure of the MLP is similar to a biological neuron with model characteristics 
like node inputs, weight multiplication, and offset bias resembling dendrites, cell 
body processing, and synapse signal modulation. Since the MLP is architectural-
ly similar to the human brain, it may be able to model these psychological 
processes more effectively and thus displays higher accuracies in comparison to 
GLM and GBM [29]. 

 

 
Figure 7. The MLP contains an input layer, two hidden layers, and an output 
layer. The Rectified Linear Unit (ReLU) activation function is used for the 
hidden layers, and the Sigmoid activation function is used for the output layer. 

 
The final mood swing algorithm was evaluated with simulated extreme mood 

swings using messages from the emotion groups. Table 3 shows the number of true 
positives, false negatives, true negatives, and false positives. The dual-model-based 
algorithm’s sensitivity was 92.0%, specificity was 100.0%, and accuracy was 
96.0%. 
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Table 3. The mood swing detection algorithm returned 23 TP’s, 2 FP’s, 25 TN’s, and 0 
FN’s. The sensitivity was 92.0%, specificity was 100.0%, and accuracy was 96.0%. 

Result Counts 

True Positive (TP) 23 

False Negative (FP) 2 

True Negative (TN) 25 

False Positive (FN) 0 

Total Number of Simulated Mood Swings 50 

3.2. Biochemical Test Strip 

Table 4 displays the means and standard deviations of absorbance measure-
ments taken at 500 nm for the original AuNP solution as well as solutions con-
taining incremented amounts of metabolite-containing sweat combined with 
AuNP. The mean absorbance of the original AuNP solution was 0.24 at 500 nm, 
and as expected, absorbance decreased as metabolite-containing sweat was add-
ed. The ratio of AuNP solution to sweat required for the most significant color 
change was determined by running Independent Samples T-tests to compare the 
original AuNP solution’s absorbance to the experimental solutions’ absorbance. 
As shown in Figure 8, a visible color change occurred almost instantaneously 
and persisted for at least 20 minutes. 

 

 
Figure 8. The 1st, 3rd, 5th, and 7th cuvettes show the original 2 mL of AuNP 
solution, and these solutions are all fairly red in color. The 2nd cuvette displays 
the AuNP solution combined with 25 μl of metabolite-containing sweat, and 
the solution has a slightly purple tint. The 4th, 6th, and 8th cuvettes display 2 
mL AuNP solution combined with 50 μl, 75 μl, and 100 μl of simulated meta-
bolite-containing sweat respectively, and as more simulated sweat is added, the 
purple tint intensifies. The last cuvette (8th) is a deep purple color. 

 
Table 4. The mean absorbance across 4 trials at 500 nm of the original AuNP solution was 0.24. When 25 μl of simulated metabo-
lite-containing sweat was added, the mean absorbance was 0.21. For 50 μl, 75 μl, and 100 μl, the absorbance values were 0.19, 0.11, 
0.08 respectively. The largest absorbance difference was observed with 100 μl of sweat. 

Evaluation of AuNP Test  
with simulated  

metabolite-containing sweat 

Original AuNP 
Solution 

2 mL AuNP  
Solution + 25 μl  

sweat 

2 mL AuNP  
Solution + 50 μl  

sweat 

2 mL AuNP  
Solution + 75 μl  

sweat 

2 mL AuNP  
Solution + 100 μl 

sweat 

Mean Absorbance (at 500 nm) 0.24 0.21 0.19 0.11 0.08 

Standard Deviation of Absorbance 0.01 0.04 0.03 0.03 0.02 

t-test Value NA 1.46 3.16 8.22 14.3 
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Similarly, absorbance at 500 nm was recorded for solutions combining AuNP 
solution and incremented values of normal sweat to ensure that a significant 
color change did not occur. The means, standard deviations, and T-test values 
are shown in Table 5. The original AuNP solution had a mean absorbance of 
0.24, and when 100 μl of simulated normal sweat was added, the mean absor-
bance changed by only 0.01. 

 
Table 5. The mean absorbance across 4 trials at 500 nm of the original AuNP solution was 0.24. When 25 μl of simulated normal 
sweat was added, the mean absorbance was 0.24. For 50 μl, 75 μl, and 100 μl, the absorbance value was 0.23 for all three volumes. 

Color Change Evaluation  
of AuNP Test with normal 

sweat at 500 nm 

Original AuNP  
Solution (4 trials) 

2 mL AuNP Solution + 
25 μl simulated normal 

sweat (4 trials) 

2 mL AuNP Solution + 
50 μl simulated normal 

sweat (4 trials) 

2 mL AuNP Solution + 
75 μl simulated normal 

sweat (4 trials) 

2 mL AuNP Solution + 
100 μl simulated normal 

sweat (4 trials) 

Mean Absorbance  
(at 500 nm) 

0.24 0.24 0.23 0.23 0.23 

Standard Deviation of 
Absorbance 

0.01 0.02 0.02 0.01 0.01 

t-test Value NA 0 0.894 1.41 1.41 

 
To precisely determine anthocyanin pH indicator’s pKa and optimize the 

control measure, one wavelength where an acidic solution mixed with indicator 
absorbed strongly and another wavelength where basic solution mixed with in-
dicator absorbed strongly were identified. As shown in Figure 9, the two λmax 
values were 520 nm and 680 nm. 

 

 

 
Figure 9. (a) The absorbance spectrum at pH 1 shows a peak at λ = 520 nm, indi-
cating that acidic solutions mixed with anthocyanin indicator absorb most strongly 
at this wavelength. (b) The absorbance spectrum at pH 8 shows a peak at λ = 680 
nm, indicating that basic solutions mixed with anthocyanin indicator absorb most 
strongly at this wavelength. pH 8 was selected to test basic solutions as supposed to a 
higher pH value because sweat typically cannot go beyond a pH of 8. 
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These two wavelengths were then used to record absorbance for solutions 
with indicator across a range of pH values, and background signal was sub-
tracted. As shown in Figure 10, using these adjusted absorbance readings, the 
anthocyanin indicator’s pKa was calculated as 4.35. Based on the fact that an-
thocyanin indicator will change color at a pH of approximately 4.35, 2.88 μl of 
0.0002 M HCl must originally be present on the strip so that when 10 μl of sweat 
is excreted, the pH will surpass 4.35 and a red-to-purple change will occur. The 
2.88 μl HCl volume was rounded down to 2.75 μl to account for slightly acidic 
sweat, so for the control measure to display a distinct red to purple color change, 
2.75 μl of 0.0002 M HCl and a few drops of anthocyanin indicator must be on 
the strip originally. 

 

 
Figure 10. At 520 nm and 680 nm, absorbance readings for solutions across a range 
of pH values were recorded. After plotting these values, the pKa was calculated to be 
~4.35. The arrows drawn on the graph show how this pKa value was computed. 

 
Table 6 shows the true positive (TP), false positive (FP), true negative (TN), 

and false negative (FN) counts when the overall strip was evaluated. For the di-
agnostic measure, the sensitivity was 93.75%, specificity was 87.50%, and accu-
racy was 90.62%. For the control measure, the sensitivity was 87.50%, specificity 
was 86.67%, and accuracy was 84.38%. Example strips after contact with meta-
bolite-containing sweat and normal sweat are shown in Figure 11. 

 
Table 6. The diagnostic measure displayed 15 TP, 1 FN, 14 TN, and 2 FP results. There-
fore, the accuracy of the diagnostic measure was 90.62% across 32 trials. The control 
measure displayed 14 TP, 2 FN, 13 TN, and 3 FP results. The accuracy of the control 
measure was 84.38% across 32 trials. 

Result Counts (Diagnostic Measure) Counts (Control Measure) 

True Positive (TP) 15 14 

False Negative (FN) 1 2 

True Negative (TN) 14 13 

False Positive (FP) 2 3 

Total Number of Samples 32 32 
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Figure 11. The bottom panel on the strip is the pH-based control measure 
(changes color no matter the sweat composition) and the top panel is the 
AuNP-based diagnostic measure. The left-most strip is the original strip, the 
middle strip shows the color after contact with normal sweat, and the right-most 
strip shows the color after contact with metabolite-containing sweat. As expected, 
the control measure changed color regardless of sweat composition and the di-
agnostic measure changed color in the presence of amphetamine metabolite. 

 
In the Hero system, a color sensor monitors the biochemical strip for a color 

change. The strip is integrated onto a computer mouse. The sensor monitors the 
strip’s area on the mouse, and if a color change is detected, the remaining com-
ponents of the Hero system are activated. Two color sensor prototypes were 
built and tested as shown in Figure 12. Both prototypes contained an Arduino 
Uno board, bread board, photometric sensor, TFT display, WiFi module, and 
jumper wires.  

 

 
Figure 12. The first prototype (left) included a 3D-printed casing to host the TFT display 
and an opening through which the color can observe the mouse. The second prototype 
(right) included a method of controlling the angle at which the color sensor is positioned. 
This improves the sensor’s sensing ability. 

 
As shown in Table 7, the initial prototype was tested for percent error of 

sensing (average 6.2%) and time taken to begin monitoring (average 4.55 
seconds). A second prototype was created to increase the angle at which the 
sensor was positioned, and this helped increase sensing ability. The time im-
proved by 41.2% (average 2.675 seconds) and percent error decreased by 62.5% 
(average 2.325%). Testing was conducted using original chemical test strips 
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(red), and recording the actual and measured RGB values. It was then changed 
for a strip in contact with metabolite-containing sweat and then a strip in con-
tact with normal sweat. RGB values were measured again and average percent 
error was computed. 

 
Table 7. Prototype 1 had an average percent error of 6.2% while Prototype 2 had an av-
erage percent error of 2.3%, so the modification of sensor position improved sensing ac-
curacy by 3.9 percentage points (62.5 percent decrease). Prototype 1 had an average re-
sponse time of 4.55 seconds while Prototype 2 had an average response time of 2.675 
seconds. This is a 1.88 second difference (41.2 percent decrease). 

Prototype RGB Value Average Percent Error Time Taken to Begin Monitoring (seconds) 

1 6.4% 4.5 

1 6.5% 4.8 

1 6.1% 4.4 

1 5.8% 4.5 

2 2.2% 2.9 

2 2.4% 2.5 

2 2.3% 2.6 

2 2.4% 2.7 

3.3. Vital Sign Algorithm 

Table 8 shows the results from evaluating the respiration rate component of the 
vital sign algorithm. The average algorithm reading in breaths per minute is 
shown. The overall mean absolute percentage error was 2.14%, so the accuracy 
was 97.86%. This statistical measure was chosen as supposed to root means 
squared error because each observation is weighted equally.  
 
Table 8. The respiration rate component of the vital sign algorithm was evaluated by 
comparing algorithm readings to accurate respiration rate measurements. The mean ab-
solute percent error was 2.14%, so the accuracy was 97.86%. 

Actual Rate (Breaths per Minute) Average Algorithm Reading Percent Error 

7 - 11 (9) 9.25 +2.78% 

11 - 15 (13) 13.50 +3.85% 

15 - 19 (17) 16.75 -1.47% 

19 - 23 (21) 21.50 +2.38% 

23 - 27 (25) 25.75 +3.00% 

27 - 31 (29) 29.00 0.00% 

31 - 35 (33) 33.50 +1.52% 

 
The vital sign regression model’s coefficients are shown in Table 9. The heart 

rate feature had the largest coefficient of 4.065, followed by age, height, and 
gender. All of the coefficients are positive, indicating that heart rate, height, age, 
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and gender all have an effect on blood pressure. The model had an adjusted 
R-squared value of 0.987, and this measure is adjusted for the number of pre-
dictors in the model. 

 
Table 9. The coefficients returned by the regression model are all positive, meaning they 
all have an effect on blood pressure. The largest coefficient of 4.065 corresponds to heart 
rate. 

Coefficient Value 

Heart Rate 4.065 

Height 0.321 

Age 0.532 

Gender 0.112 

4. Discussion 

Based on the means and standard deviations of the scores returned by the Gene-
ralized Linear Model (GLM) for euphoria, the Independent Samples t-test value 
is 164.87. This value is greater than the critical value at a 0.1% significance level, 
indicating that the GLM euphoria model displays a significant difference in 
scores between euphoric messages and control messages. Similarly, for the eu-
phoria Gradient Boosting Machine (GBM), the t-test value is 206.56. This value 
is greater than the critical value, so the euphoria GBM displays a significant dif-
ference in scores and can identify euphoric sentiment. Because the GBM’s t-test 
value is greater and the score output from GBM is more bimodally distributed, 
GBM performed better than GLM for euphoria. For the GLM melancholy mod-
el, the t-test value is 49.01, exceeding the critical value at a significance level of 
0.1%. The scores returned by the GBM melancholy model result in a t-test value 
of 64.79. The GBM’s t-test value is greater than that of GLM, indicating that the 
GBM model performed better. Since the t-test value of both euphoria models are 
greater than the t-test value of the melancholy models, the euphoria models are 
likely able to differentiate euphoric sentiment from a normal message more 
clearly than the melancholy models. However, all GLM and GBM t-test values 
exceed the critical values, indicating that when integrated into the Hero system, 
the models can detect extreme emotional sentiment in a teens’ outgoing text 
messages. This is important for the dual-model-based algorithm because both 
models must be able to detect and quantify emotional polarity. Final mood 
swing detection algorithm testing resulted in an accuracy of 96.0% which ex-
ceeds the accuracies cited in prior literature by 4.3 percentage points [30]. 

The t-test value computed through comparison of the original AuNP solution 
and the AuNP solution combined with 25 μl of simulated metabolite-containing 
sweat is 1.46, and at a significance level of 5% and with 3 degrees of freedom, the 
color change is not significant. Similarly, the t-test values computed through 
comparison of the original AuNP solution and the AuNP solution combined 
with 50 μl of simulated metabolite-containing sweat is 3.16 does not exceed the 
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critical value. However, for the trials using 75 μl and 100 μl of metabo-
lite-containing sweat, the t-test values are higher than the critical value, indicat-
ing that the diagnostic measure’s color change is significant at these AuNP to 
sweat ratios. The change was most significant at a AuNP to sweat ratio of 20 to 
1. Therefore, assuming that 10 μl of sweat is excreted from the fingertip, 200 μl 
of AuNP solution should be placed on the original strip for optimal results. All 
of the t-test values computed for trials using normal sweat are below the critical 
value, indicating that a significant color change did not occur when metabolite 
was not present. Through these results, the diagnostic measure’s validity is dis-
played, illustrating that citrate-synthesized AuNPs are an effective colorimetric 
probe for amphetamine metabolite detection at microliter ranges. After deter-
mining the volumes of solutions that need to be placed on the original strip for 
optimal results (200 μl of AuNP solution for diagnostic measure and 2.75 μl of 
0.0002 M HCl + a few drops of anthocyanin indicator for control measure), 
these conclusions were applied to evaluate the overall strip. The control meas-
ure’s accuracy of 84.38% provides preliminary confirmation that a pH-based test 
can help avoid false positives and validate that an appropriate volume of sweat is 
being analyzed. The diagnostic measure’s accuracy of 90.62% is also promising 
and shows that this method can be used more widely in on-site drug testing. 

The final color sensor prototype had a 97.7% accuracy. One way that this val-
ue could be improved is by creating a field of detection as illustrated in Figure 
13.  

The vital sign algorithm had a 97.86% accuracy which is similar to other 
PPG-based algorithms designed to analyze a fingertip recording taken noninva-
sively. However, while this study is unable to confirm that the integration of 
personalized features improves PPG-based vital sign calculation, one hypothesis 
is that personalization would have a more beneficial impact for individuals who 
are below 18-years-old, above 65-years-old, below the 25th percentile in height, 
or above the 75th percentile in height. For these individuals who are not close to 
the median age/height, standardized heart rate to blood pressure conversions 
may be less accurate. Because the Hero system is targeted towards teens and 
young adults whose ages are below the median, a personalized vital sign algo-
rithm would likely be more accurate in comparison to existing algorithms. Addi-
tionally, the coefficients returned by the blood pressure regression model are all 
positive, indicating that height, age, and gender all have an impact on blood 
pressure. 

The Hero system integrates the dual-model-based mood swing detection algo-
rithm, biochemical strip, and the personalized PPG-based vital sign measure-
ment algorithm in the following way. The biochemical strip is placed on the 
button portions of a computer mouse, and the color sensor apparatus monitors 
this area for a color change from red to purple. While this prototype system is 
built with the strip on a computer mouse, the strip and color sensor could be 
placed in any area where the teen’s fingertip makes repeated contact. When the 
sensor detects a color change, physical and emotional monitoring begins. The 
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Hero app runs the vital sign measurement algorithm when the teen picks up 
their mobile device and saves heart rate, blood pressure, and respiration rate 
measurements. If these values are significantly higher than the teen’s baseline 
values which are saved in a health questionnaire upon app download, there is 
indication of stimulant abuse. The total overdose score which is saved in 
Google’s Firebase real-time database is updated appropriately. The app securely 
monitors the SMS messages that a teen’s sends, and if an extreme mood swing is 
detected, the overdose score is updated. When the overdose score exceeds a spe-
cific threshold (set by the parent), an alert will be sent. The Hero prototype sys-
tem is fully-functional, and sample app screens are shown in Figure 14. 

 

 
Figure 13. This schematic diagram, created using CAD software shows how sen-
sors could be arranged in a hardware apparatus to monitor the computer mouse. 
The sensors shown in green are implemented in the existing prototype. 

 

 
Figure 14. Screen 1 (left-most) shows a splash screen containing the Hero logo and 
Google sign-in functionality. When a parent or teen logs in, they are taken to Screen 2. 
Screen 2 (second from left) states Hero’s terms and conditions and allows users to agree. 
If the user is a teen, they are taken to the health information questionnaire shown on 
Screen 3 (middle). On this screen, they enter their resting heart rate, height, age, resting 
respiration rate, and gender. Once they fill out this survey, they are taken to Screen 4 
(second from right). They are assigned a random client ID and code which their parent 
can use to link their accounts. The parent is then given the opportunity to edit any of the 
health information inputted by the teen on Screen 5 (right-most). 

5. Conclusions 

The mood swing detection algorithm had a 96.0% accuracy which is higher than 
existing algorithms, indicating that the dual-model algorithm design may be 
more effective than a multiclass classification design. One limitation was lack of 
access to training data that consisted of messages sent during a prescription sti-
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mulant abuse episode. Access to data annotated with this information would 
improve algorithm performance. However, this problem was avoided to the ex-
tent possible by training the models using groups defined by guidelines adapted 
from DSM-5. This helped capture the extremity of emotion associated with pre-
scription stimulant abuse rather than routine emotional fluctuations. The mood 
swing detection algorithm is applied to detect overdoses in real-time by moni-
toring a teen’s outgoing SMS messages securely, scoring each one using both the 
euphoria and melancholy models, computing continuous score differences, and 
updating the total overdose score if an extreme mood swing is detected. 

The biochemical test strip’s diagnostic measure had a 90.62% accuracy, pro-
viding further evidence that an AuNP-based method is effective for real-time 
detection of amphetamine metabolite. The pH-based control measure had an 
accuracy of 84.38%, providing support for this technique as a method to ensure 
appropriate sweat volume. One limitation is the variability of sweat pH between 
individuals and the unpredictability of sweat excretion volume. Although slightly 
acidic sweat was accounted for and an average sweat excretion volume of 10 μl 
was used for optimization, more comprehensive testing is required to ensure 
that the strip performs accurately across a wider range of conditions. 

The vital sign measurement algorithm had an accuracy of 97.86% which is 
comparable to other PPG-based algorithms. Future testing with individuals 
across a wide range of ages and heights, with an emphasis on teens because they 
are the target demographic, is necessary to determine the efficacy of personaliza-
tion and optimize the algorithm for the Hero system. Within the Hero mobile 
app, the vital sign algorithm takes a 5-second recording of a user’s fingertip us-
ing the phone’s back camera, processes the recording, and extrapolates vital 
signs using height, age, and gender information. 

The mood swing detection algorithm, biochemical test strip, and vital sign 
measurement algorithm are integrated into a 5-factor system and Hero mobile 
app. One limiting factor was the inability to test under clinical conditions. While 
the simulated evaluations provide informative results, human testing is neces-
sary to account for variable environments, unpredicted conditions, and human 
error. The total cost of implementing all factors of the Hero system would be less 
than 30 dollars, assuming that the user already has the host devices (phone and 
laptop mouse), making Hero an economically feasible solution. Additionally, the 
ease with which each factor can be integrated into a teen’s daily life makes Hero 
a viable framework to detect stimulant abuse in real-time. The novelty of this 
study is in how emotional, biochemical, and physical factors are combined to 
comprehensively detect prescription amphetamine overdoses and prevent fatali-
ties amidst the growing stimulant epidemic. 

In the future, more twitter data could be gathered to create more robust Ar-
tificial Intelligence models for the mood swing detection algorithm. Additional-
ly, samples of human sweat could be collected to evaluate the biochemical test 
strip and multiple color sensors could be integrated to create a field of detection, 
potentially resulting in more accurate color readings and faster detection. The 
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Hero system could be modified for real-time detection of illicit drug or opioid 
misuse, and these modified frameworks may be useful in substance abuse treat-
ment center. 
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