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Abstract 
The objective of this work research is to investigate the potential of using 
metallic powder mixed with electrical discharge machining (EDM) dielectric 
when machining hard electrically conductive materials. Nowadays, the de-
velopment of industries requires hard materials for various applications. Ma-
chining the hard materials using the traditional processes lead to tool break 
and poor machined product. Even when the conventional EDM can machine 
hard material as long as it is electrically conductive materials, the machined 
parts still present drawbacks. Metallic powder mixed with EDM dielectric 
(PMEDM) was hypothesized to improve the machined part. The presence of 
metallic powder ensures uniform distribution of spark and the electrical den-
sity of the spark decreases which reduces craters, cracks and voids on ma-
chined surface. The transfer and deposit of alloying elements during powder 
mixed electrical discharge machining improve the machined surface proper-
ties particularly micro-hardness and fatigue. Discharge current (IP), gap vol-
tage (GapV), ON-time (ON) and aluminum powder are selected as machined 
variable parameters and the output responses are fatigue performance, mi-
cro-hardness and surface topography. The workpiece material selected is 
molybdenum high speed steel. Micro-hardness was determined using mi-
cro-hardness tester device. The fatigue performance was determined using 
empirical equation. Analysis of material transfer was done using energy dis-
persive spectroscopy (EDS) attached to FESEM. EDS analysis involves the 
generation of an X-ray spectrum from the entire scan area of the SEM. The 
use of PMEDM improved the fatigue, the micro-harness and the machined 
surface morphology as the above-mentioned parameters increased. 
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1. Introduction 

Metallic powder is added to dielectric fluid and it fills up the gap between the 
electrode and workpiece as shown in Figure 1. When potential difference is ap-
plied between the electrode and workpiece, an electric field between 105 - 107 
V/m will be generated. Metallic powder particles under machining zone get 
energized and form a bridge between the electrode and workpiece as shown in 
Figure 2. The energy of the conductive particle promotes the breakdown of di-
electric fluid and increases the gap with between the electrode and workpiece. 
Hence, early discharges start under the electrode area and create fast sparks 

 

 
Figure 1. Schematic diagram of PMEDM [1]. 

 

 
Figure 2. Comportment of metallic powder in the discharge [2]. 
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which erode the workpiece. The presence of metallic powder ensures uniform 
distribution of spark and the electrical density of the spark decreases which im-
proves the machined surface properties. 

Some researchers found that accumulation of sparks between two consecutive 
metallic powder particles in machining area results in series of discharges [3] [4] 
[5] [6] [7]. This increases the sparking intensity within discharges leading to 
faster erosion from the workpiece, and therefore increases MRR and the ma-
chined surface properties. 

The PMEDM process involves the use of different types of conductive or 
semi-conductive powders mixed with dielectric fluid in attempt to improve the 
EDM performance [8] [9]. Metallic powder suspended in EDM dielectric fluid is 
another means of improving the machined surface properties. PMEDM facili-
tates EDM ignition phases creating higher discharge leading to low dielectric 
fluid breakdown strength [10] [11]. 

The limitations of EDM include long lead time to design and fabricate the 
electrode; relative electrode wear, and undesirable cracks, craters and voids; dif-
ficulty in starting the process with very clean dielectric. 

Besides, excessive debris in the spark gap can result in arcing causing lack of a 
precise feeding mechanism and thus, leading to an unstable of EDM perfor-
mance. In spite of the advantages, PMEDM has certain limitations in production 
application and these include effective separation of debris from the powder 
mixed with working fluid; powder distribution requires more investigation; high 
powder concentration poses a concern. The research is still ongoing in order to 
overcome the drawbacks of PMDEM [12] [13] [14] [15] [16]. 

In this research work, discharge current (IP), gap voltage (GapV), ON-time 
(ON), aluminum powder is selected as machined variable parameters and the 
output responses are fatigue performance, micro-hardness and surface topogra-
phy when machining molybdenum high speed steel. 

2. Materials and Methods 

The following sections have presented the devices and machines used. 

2.1. Experiment Set-Up 

Molybdenum high speed steel specifically SKH51 according to Japanese indus-
trial Standards (JIS) designation is selected as the workpiece material. For the 
specimen preparation, CNC EDM Wire-cut machine FA10 brand was used to 
cut the raw material into block shape to the size of 9 mm × 11 mm × 5 mm re-
quired for clamping on EDM die sinker EA8. Table 1 presents the chemical 
compositions of molybdenum high speed steel materials and the work properties 
of the workpiece material are presented in Table 2. 

Copper-tungsten (W70Cu30) was used as electrode material with cross-section 
of 9 mm × 9 mm. The selection of copper-tungsten is due to good conductivity 
of copper and good melting point of tungsten. High electrical conductivity of 
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electrode promotes more electrons from electrode since electric current is the 
“cutting tool” and high melting point of electrode contribute low wear ratio 
since EDM is a thermal process. Combination of copper-tungsten gives optimal 
electrical and thermal conductivities to the electrode. Table 3 presents copper 
and copper-tungsten properties. 

Nano aluminum powder was selected and each is mixed separately with di-
electric fluid during PMEDM. The selection of nano aluminum metallic powder 
was done by considering the expected contribution of metallic powder to the 
PMEDM process in terms of electrical conductivity, thermal conductivity, den-
sity and melting point properties. The properties of nano aluminum powder are 
presented in Table 4. 

2.2. Fatigue Performance Measurement 

Fatigue is the progressive and localized structural damage that occurs when a 
material is subjected to cyclic loading. During EDM or PMEDM the repeated 
electric sparks causes fatigue damage [17]. Fatigue damage includes three stages 
such as crack initiation, crack propagation and final fracture. Fatigue of material 
can also be represented by hardness and some authors have established empiri-
cal correlation between hardness and fatigue and ultimate strength in steel as 
shown in Equation (1) and Equation (2) [18]. 

1.6HVwσ = ± .                        (1) 

 
Table 1. Composition of molybdenum high speed steel. 

Elements C Si Cr V W Mo Co Fe 

Weight (%) 0.83 0.35 3.75 1.18 1.75 8.70 - Balance 

 
Table 2. Properties of workpiece materials. 

Materials 
Melting 

Point (˚C) 
Density 
(g/cm3) 

Young 
modulus 

GPa 

Thermal 
conductivity 

W/m∙K 

Hardness 
(HB) 

Electrical 
resistivity × 

10−7 Ωm 

Molybdenum high 
speed steel 

1082.0 7.72 - 8 190 - 210 19.0 111.0 0.6 

 
Table 3. Copper-tungsten (W70Cu30) properties. 

Material 
Melting Point 

(˚C) 
Density 
(g/cm3) 

Young 
modulus 
(N/mm2) 

Hardness 
(HV) 

Thermal 
conductivity 

(W/mK) 

Electrical 
resistivity 
× 10−7 Ωm 

W70Cu30 3410 14.3 225 × 103 175 154 7.27 

 
Table 4. Properties of selected powders. 

Powder 
Melting Point 

˚C 
Density 
kg/m3 

Thermal 
conductivity 
(W∙m−1∙K−1) 

Electrical resistivity 
(10.E6 Siemens/m) 

Powder grain 
size (nm) 

Aluminum 660 2700 238 36.9 40 
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where σw is fatigue limit in MPa and HV is the Vickers hardness in kgf/mm2 

0.5w uσ σ=                           (2) 

where σu is the ultimate tensile strength of material. 
In thus study, Equation (1) was used to determine the fatigue of the specimen 

due to specimen shape and steel base material. The shape specimen limits the 
use of other fatigue testing standard like standard ASTM E606 E606M using ro-
tating cantilever bending fatigue test machine, constant deflection amplitude 
cantilever bending test machine. 

2.3. Micro-Hardness Measurement 

Hardness testing determines the mechanical property of machined component. 
Hardness is used to estimate the ductility and resistance to wear, fatigue and 
tensile strength properties. Hardness may also be shown to correlate to tensile 
strength and fatigue in many metals. Measurement of micro-hardness was done 
using micro-hardness tester. ASTM E 384 standard defines and specifies the mi-
cro-indentation hardness test method and parameters of materials [19]. Hard-
ness test uses forces in the 1 to 1000 gf. With the Vickers hardness test a di-
amond with top angle of 136˚ is used. Vickers hardness parameter is presented 
in this research project. Tarasov et al. [20] presented in their work, the details of 
hardness test procedure. 

2.4. Surface Morphology of Machined Surface Analysis 

EDM is an electro-thermal process which can result in rougher or smooth sur-
face machined surface according to machining parameters setting [21]. Surface 
roughness measurement using profile-meter is limited to quantify the surface in 
term of deviation from its original form [22]. It is important to study the surface 
morphology of machined surface to conform the result from profile-meter in 
term of image. From the surface morphology image, defects on machined sur-
face can be characterized in terms of cracks, voids, craters, phase modification 
which may either be acceptable or rejected depending on the application [23]. 
Examination of surface morphology of machined surfaces was done on speci-
mens machined at low and high machining parameters for each category of ex-
periments. FESEM Zeiss SUPRA 55VP was used to examine and analyze the 
machined surfaces. FESEM is a microscope that uses electrons to scan in details 
the machined surface as compared to optical microscopy which uses light. 

3. Results and Discussions 
3.1. Micro-Hardness of EDM on MHSS 

Figure 3 shows the trend of micro-hardness of molybdenum high speed steel af-
ter EDM process and measured using micro-hardness tester on three different 
locations on the machined surface. The micro-hardness of as received molybde-
num high speed steel is 316.7 HV. The micro-hardness of molybdenum high 
speed steel after EDM is higher than the micro-hardness of bulk material as. Mi-

https://doi.org/10.4236/ojapps.2020.1010043


A. M. Nanimina et al. 
 

 

DOI: 10.4236/ojapps.2020.1010043 618 Open Journal of Applied Sciences 
 

cro-hardness of molybdenum high speed steel after EDM can reach 458 HV 
which is increased about 44.9% from as received molybdenum high speed steel 
micro-hardness. 

This is due to the presence of alloying elements deposited, embedded and re-
cast layer on the machined surface. 

3.2. Fatigue Performance of EDM on MHSS 

Figure 4 shows the effect of EDM machining parameters on fatigue performance 
after EDM process. Fatigue performance of as received molybdenum high speed 
steel is about 505.60 MPa. 

 

 

Figure 3. Micro-hardness of EDM on MHSS. 
 

 
Figure 4. Fatigue of EDM on MHSS. 
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Using the Equation (1), a correlation between hardness in HV and fatigue in 
MPa stated earlier, it can be found that there is a significant improvement on fa-
tigue performance as compare to the fatigue of bulk molybdenum high speed 
material. Improvement of fatigue is due to the handing of the machined surface 
during EDM process. 

3.3. Micro-Hardness of Nano Aluminum PMEDM on MHSS 

Figure 5 shows the trend of micro-hardness of molybdenum high speed steel af-
ter PMEDM. The hardness of molybdenum high speed steel after PMEDM is 
significantly improvement as compared to conventional EDM shown in Figure 
5. As explained above, this improvement is due to the presence of alloying ele-
ments deposited on machined surface. The hard layer containing TiC can be 
formed on the machined surface by EDM using titanium electrodes [24]. 

3.4. Fatigue Performance of Nano Aluminum PMEDM on MHSS 

Figure 6 presents the effect of nano aluminum PMEDM machining parameters 
on fatigue performance. It can be found that there is a significant improvement 
on fatigue performance as compare to the fatigue of EDM on molybdenum high 
speed material. Improvement of fatigue is due to the nano aluminum embedded 
on the machined surface and handing of the machined surface during PMEDM 
process. 

3.5. Surface Morphology of Nano Aluminum PMEDM on MHSS 

Figure 7 presents the surface morphology of machined surfaces as the result of 
changes in IP, ON and gap voltage at low (Figure 7(a)) and high parameter set-
ting (Figure 7(b)) when machining molybdenum high speed steel with PMEDM  

 

 
Figure 5. Micro-hardness of molybdenum high speed steel after PMEDM process. 
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Figure 6. Fatigue performance on MHSS after PMEDM process. 
 

 
Figure 7. Surface morphology of nano aluminum PMEDM on MHSS at low parameters: 
IP = 27 A, ON = 64 µs, GapV = 80 V, Pcon = 1 g/l (Figure 7(a)) and at high machining 
parameters IP = 51 A, ON = 128 µs, GapV = 150 V, Pcon = 3 g/l (Figure 7(b)). 

 
mixed. Machined surface micrograph at low peak current, ON-time and gap vol-
tage (Figure 7(a)) shows a less rough surface. Craters, voids, and micro-cracks can 
be seen especially for samples machined at high peak current, ON-time and gap 
voltage (Figure 7(b)). The addition of nano aluminum particles can reduce the 
electrical discharge power density and gap explosive pressure, which result in 
smaller craters with uniform distribution. 

Chrishna et al. [25], showed the influence of machining parameters on EDM 
of maraging steels where cracks were formed due to high thermal energy. The 
energy dispersive spectroscopy (EDS) spectrum characterization of molybdenum 
high speed steel (MHSS) is presented in Figure 8. 

Figure 9 presents EDS spectrum of respected machined surfaces EDM at low 
(Figure 9(a)) and high (Figure 9(b)) machining parameters setting when ma-
chining molybdenum high speed steel. From Figure 9, it can be analyzed the 
presence of carbon, oxygen, copper and increase in alloying elements compared 
to as received molybdenum high speed steel (Figure 8). 
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Figure 8. EDS of molybdenum high speed steel as received. 

 

 
Figure 9. EDS of nano aluminum PMEDM on MHSS at low parameters: IP = 27 A, ON = 64 µs, GapV = 80 
V, Pcon = 1 g/l (Figure 9(a)) and at high parameters IP = 51 A, ON = 128 µs, GapV = 150 V, Pcon = 3 g/l 
(Figure 9(b)). 

 
Percentage of aluminum, tungsten, and copper increase about 3.4% compared 

to the based molybdenum high speed steel material. The alloying elements are 
transferred, deposited and embedded onto the machined surface improving the 
micro-hardness and the fatigue of machined surface. Kumar et al. [26] con-
cluded in their finding that the surface modification is possible by the EDM 
process. 

4. Conclusion 

In this research work, analysis of fatigue and micro-hardness was done when 
machining molybdenum high speed steel in nano aluminum PMEDM for bio-
medical and industrial applications. The use of nano aluminum in PMEDM on 
molybdenum high speed steel results in improving fatigue and micro-hardness 
as compared to conventional EDM. This is attributed due to transfer of alloying 
deposited elements and uniform distribution of particles from nano aluminum 
onto the workpiece machined surface. The created carbon enriched surface layer 
also improves the properties of workpiece machined surface. 
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Further analysis on crack initiation, crack growth and osteointegration will be 
useful in order to establish the potential used of PMEDM for biomaterials. 
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