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Abstract 
Multiple myeloma (MM) is a type of cancer that remains incurable. In the last 
decade, most research into MM has focused on investigating the improve-
ment in the therapeutic strategy. Our study assesses the survival probability of 
48 patients diagnosed with MM based on parametric and non-parametric 
techniques. We performed parametric survival analysis and found a well-def- 
ined probability distribution of the survival time to follow three-parameter 
lognormal. We then estimated the survival probability and compared it with 
the commonly used non-parametric Kaplan-Meier survival analysis of the 
survival times. The comparison of the survival probability estimates of the 
two methods revealed a better survival probability estimate by the parametric 
method than the Kaplan-Meier. The parametric survival analysis is more ro-
bust and efficient because it is based on a well-defined parametric probabilistic 
distribution, hence preferred over the non-parametric Kaplan-Meier. This 
study offers therapeutic significance for further enhancement in the treat-
ment strategy of multiple myeloma cancer. 
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1. Introduction 

Multiple Myeloma (MM), also known as Kahler disease, myelomatosis, and 
plasma cell myeloma is a type of cancer that starts from malignant plasma cell 
(Specifically the white blood cell) [1]. As part of the human immune system is 
antibodies produced by the plasma cell which fight against germs and other sub-
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stances harmful to the human body. When the plasma cell becomes abnormal, 
called the myeloma cell, it causes myeloma [2]. When the myeloma cells in-
crease, it accumulates in the bone marrow and overcrowds the active blood cells, 
and with time may destroy the solid part of the bone. Hence, the collection of 
several myeloma cells in the bones causes multiple myeloma cancer [3] [4]. The 
development of the myeloma cells is shown in Figure 1 [2] [5]. 

Abnormal antibodies are produced by the abnormal plasma cells causing kid-
ney problems and highly thick blood [6]. MM has no specific causes. However, 
some research has found obesity, radiation exposure, family history, and certain 
chemicals as associated with the cause of MM [7] [8] [9] [10]. There have been 
some treatment recommendations for multiple myeloma focused on decreasing 
the clonal plasma cell population and consequently decrease the symptoms of 
disease [11]. A preferred treatment like high-dose chemotherapy, commonly 
with bortezomib-based regimens, and lenalidomide-dexamethasone followed by 
autologous hematopoietic stem-cell transplantation (ASCT), the transplantation 
of a person’s stem cells have been recommended for MM patients under 65 years 
[12]. In 2017, a meta-analysis performed has shown that post-ASCT mainten-
ance therapy with lenalidomide has improved the progression-free survival and 
overall survival in persons at standard risk [13]. Whereas in 2012, it was found 
from a clinical trial that intermediate and high-risk disease patients benefit from 
a bortezomib-based maintenance regimen [14]. 

Statistically, approximately 30,000 new patients are diagnosed with MM in the 
United States (U.S.) every year, making it the second most common hematologic 
malignancy in the U.S. [15]. In 2019, a report by the Surveillance, Epidemiology 
and End Results (SEER) Cancer Institute reported that of all new cancer cases in 
the U.S for MM constitutes 1.8% and ranked among the top 14 list of cancer  

 

 
Figure 1. Development of the myeloma cell. 

https://doi.org/10.4236/ojapps.2020.104010


L. Mamudu, C. P. Tsokos 
 

 
DOI: 10.4236/ojapps.2020.104010 120 Open Journal of Applied Sciences 
 

diseases [3]. A further projection by SEER indicates 32,110 estimated new cases 
of MM and an estimated 12,960 MM patients are expected to die. Those figures 
are scary and intriguing and cannot be overlooked. There is a sufficient increase 
compared with the 24,050 estimated new MM cases reported in 2014 [16]. The 
identified risk factors of MM are reported to be common among the black race, 
families with MM history, and being a male [3] [17]. SEER cancer institute re-
ported from 2012-2016 that 63.1% of all races and sexes of MM cases are aged 65 
or greater. 

Though multiple myeloma cancer disease remains incurable, most researches 
into MM focused on how to improve the survival times of patients diagnosed 
with MM. The Kaplan-Meier (KM) method has been popularly used for analyz-
ing cancer survivorship data in recent times due to the simplicity of its usage. It 
is often used to compare the survival difference of observations/groups based on 
the log-rank test of the null hypothesis that there is no difference. KM is mostly 
used for longitudinal studies like a cohort study [18]; an example is the present 
study (i.e. the survival time of patients diagnosed with multiple myeloma). Brain 
et al. [19] used Kaplan-Meier to test whether there was a significant difference in 
the overall survival duration between the categories of risk factors based on the 
generalized Wilcoxon test and the log-rank test. They found a significant differ-
ence in the survival duration between MM patients with LI% < 1% (i.e. low per-
centage labeling index) and LI% ≥ 1% (i.e. high percentage labeling index). Also, 
there was a significant difference in the survival duration for MM patients with 
the number of DNA synthesizing (S) values < 1.0 × 1011 and S values ≥ 1.0 × 1011. 
Shaji K. Kumar et al. [20], used the Kaplan Meier to test for the significant dif-
ference of the overall survival from the time of post-transplantation relapse be-
tween MM group treated subsequently with one or more of the newer drugs 
(thalidomide, bortezomib, or lenalidomide) and those not exposed to the newer 
drug, and they found a significant difference between the two groups. 

In the present study, we developed a parametric and non-parametric survival 
analysis of the survival time of patients diagnosed with multiple myeloma. We 
believe that being able to find the unique/correct probability distribution or 
probabilistic behavior that characterizes the survival time is a great step towards 
getting a good and accurate prediction of the survival duration. It is well known 
that parametric analysis is more powerful in decision analysis than its non-para- 
metric counterpart. Feigl and Zelen ([1965] p. 835) and other authors have 
pointed out that the assuming exponential distribution works well for studying 
the survival of cancer-related cases [21]. However, almost every data given on 
any cancer survival problem may have an associated well-defined probability 
distribution. Hence, assuming an exponential distribution for a given cancer 
survival case without any further investigation is a serious mistake that will lead 
to making incorrect decisions. We compare the more powerful parametric anal-
ysis of the survival time to the commonly known non-parametric Kaplan-Meier 
analysis of cancer survivorship. 
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2. Method 
2.1. Data Description 

The data used in this research is from West Virginia University Medical Center 
provided by Harley [22] [23]. Originally, the data constituted survival times of 
72 multiple myeloma (MM) patients diagnosed and treated with alkylating 
agents [22]. 65 out of 72 patients provided complete data for 16 contributing va-
riables (risk factor) whiles the remaining 7 were eliminated due to missing data 
in at least one of the 16 risk factors. Thus, the survival or death times of the MM 
patients is driven by the 16 risk factors. Given that a patient is diagnosed with 
myeloma, the 16 risk factors were recorded, and the time up to which the patient 
survived the disease was noted (called the survival time from diagnosis to the 
nearest month). Of the 65 patients, 48 and 17 were dead and alive, respectively. 
In the present research, we utilized the complete data of the 48 patients with the 
survival times for our analysis. 

Before we proceeded to perform the parametric analysis of the survival times 
of patients with multiple myeloma, we wanted to know whether there is a dif-
ference in the survival times for gender, i.e. male and female. Given that we have 
a small data of only 48 patients, we used the log-rank test [24] to compare the 
difference in survival times of male and female. From Figure 2, the log-rank test 
resulted in a large p-value = 0.45, indicating a failure to reject the null hypothesis 
(i.e. 0 : M FH µ µ= ) that there is no difference in the survival times of males and 
females. Given that we have a small sample size of only 48 patients and the fact 
that there is no difference in the survival times of males and females, we  

 

 
Figure 2. Log-rank test for difference in survival time of gender. 
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proceeded with parametric analysis without considering stratification based on 
gender.  

2.2. Parametric Analysis of the Survival Times  
of Multiple Myeloma 

Multiple Myeloma (MM) has been, and continues to be, the subject of many 
research studies. The main goals of these studies are to investigate the means 
of improving the therapeutic/treatment and survival of MM patients. Nearly 1 
to 5 per 100,000 individuals are affected by MM each year worldwide with a 
higher incidence in the West [25]. The continuous research into the survival 
rate of MM has seen an improvement from 34.5% to 49.6% in the last 13 
years, a statistic reported by the Multiple Myeloma Research Foundation 
(MMRF) [26]. The difficulties in the investigation of the survival of MM have 
been hampered by the limitation of data. Most often data collected has a small 
sample size and duration. This makes it tedious to undertake a parametric 
analysis. As a result, most analysis of survival time of MM has been based on 
nonparametric methods. Brian G.M. Durie et al. [19] used the Kaplan-Meier 
method to calculate the actual survival curves of MM stages and test their dif-
ferences using the generalized Wilcoxon test, and then used the log-rank test 
to test the difference in the survival duration. Shaji K. Kumar et al. [20] also 
used Kaplan-Meier to test for the overall survival improvement and tested for 
statistical significance using the 2-tailed log-rank test. Nonparametric tests 
are preferable if there is no unique probability distribution for the given data. 
However, their approach is statistically less robust or not as powerful com-
pared to parametric analysis if a pdf can be found. On the contrary, if para-
metric analyses are used prematurely (i.e. assumed a pdf), the result will be 
misleading. 

In the last few decades, scientific transformations have made it possible to 
employ parametric analysis to data which initially lack a unique probability dis-
tribution, particularly for skewed data. For instance, ANOVA is a parametric 
analysis widely recommended for comparing statistical models and means of 
different data sets. ANOVA assumes normality, homoscedasticity, and random 
independent samples. Several suggestions on transformations have been pro-
posed by various authors (Sokal and Rohlf 1995, Zar 1996, Hayek and Buzas 
1997, Krebs 1999) to possibly achieve the required assumptions for parametric 
analysis. To use ANOVA, Rogers, Gilnack, and Fitz (1983) [27], and others used 
the arcsine-square root transformation. Brown et al. (2004) utilized the arc-
sine-square root transformation to use the paired t-test. Log transformation has 
often been applied to skewed data to achieve the normal distribution. Giampaolo 
Merlini et al. [28] used log transformation to reduce asymmetry variables to a 
low level and avoid obvious outliers. Performing parametric analysis is an im-
perative approach to achieve good statistical analysis and inference by knowing 
pdf of the data. 
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2.3. Descriptive Statistics of the Survival Times  
of Multiple Myeloma 

We plotted the histogram to investigate the distribution of the survival time of 
multiple myeloma of our data as shown in Figure 3. We can see that the distri-
bution of the survival time of MM is right-skewed. Table 2 displays the descrip-
tive statistics of the survival time of MM. If a skewed value is negative (less than 
zero) implies the data depict left or negative skewness, if a skewed value is posi-
tive implies right or positive skewness [29]. So, the positive skewed value of 1.41 
in Table 2 is further evidence to support the right-skewed behavior as shown in 
Figure 3. Statistics like Kurtosis allow for the assessment of highly extreme val-
ues in the data. A positive kurtosis value demonstrates a leptokurtic behavior of 
the distribution, and a negative value displays a platykurtic behavior of the dis-
tribution. A kurtosis value of zero implies the distribution behavior is mesokur-
tic [30]. Thus, the kurtosis value of 0.78 in Table 1 attests to the leptokurtic in 
the survival time data of MM. 

 

 
Figure 3. Histogram showing the distribution of survival time (to the nearest month) of multiple myeloma. 

 
Table 1. Descriptive statistics of survival time (to the nearest month) of multiple myeloma. 

Mean Median Std Err Std Dev Kurtosis Skewness 

24.43 15.50 3.56 24.65 0.78 1.33 

 
Table 2. Goodness-of-fit test of the 3p-lognormal distribution of the survival time. 

Type of Test p-value 

Kolmogorov-Smirnov 0.90171 

Anderson-Darling 0.37878 

Chi-Squared 0.69163 
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2.4. Three-Parameter (3P) Lognormal Probability Estimation of 
the Survival Times of Patients with Multiple Myeloma 

After the assessment of Figure 3, and the descriptive statistics in Table 1, we find 
that the probability distribution of the survival time of MM follows the 3-parameter 
lognormal distribution. Table 2 shows three different goodness-of-fit tests of the 3p 
lognormal probability distribution of the survival times of the MM patients given 
by the Kolmogorov-Smirnov, Anderson-Darling and Chi-square test. Each of the 
tests resulted in a large p-value, indicating that we fail to reject the null hypothesis, 

0H : the probability distribution follows the 3p-lognormal. In this section, we 
defined the probability density function (pdf) of the 3p-lognormal distribution and 
estimate its parameters. Given the survival time of MM, t as a random variable, 
then the pdf of the 3p-lognormal probability distribution is given by, 
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where 0σ >  denotes continuous shape parameter, µ−∞ < < ∞  represents the 
continuous scale parameter and γ is the continuous location parameter. If 0γ ≡  
yields the 2p-lognormal distribution. To estimate the three parameters σ, µ and 
γ, we would apply the maximum likelihood estimation (MLE) procedure. The 
MLE estimates the parameters of the probability distribution by maximizing the 
likelihood function. Generally, MLE is the most used parameter estimation me-
thod for statistical inference due to the robustness compared to other traditional 
methods like the method of moment estimation; the logic is intuitive and flexible 
[31]. It has some unique and important statistical properties like consistency, 
invariant, efficiency, sufficiency and asymptotic normality. 

The MLE for three-parameter lognormal PDF may not be asymptotically effi-
cient, it is still regarded as a better parameter estimation technique than the me-
thod of moments or quantiles because the variance is much smaller [32]. There-
fore, the MLE is considered the best parameter estimation method for the 
3p-lognormal probability distribution. Calitz (1973) suggested that the MLE 
procedure by Cohen (1951) should be adopted because it works better than oth-
er procedures. To compute the MLE estimators γ, µ, and 2σ , we first find the 
likelihood function. The likelihood function of the random sample of n inde-
pendent observations of survival time ( )1, , nt t t=   for the 3p-lognormal pdf 
( )f t  can be expressed as follows: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1
21

12 2

1

2
12 2

1

, , | | , ,

ln12 exp
2

ln12 exp ,
2

n

i i
i

n
i

i
i

n n
i

i i
i

L t f t

t
t

t
t t

γ µ σ γ µ σ

γ µ
σ γ

σ

γ µ
σ γ γ

σ

=

− −

=

− −

=

=

   − −  = − −        
   − −  = − − ∀ >    

π

   
π

∏

∏

∏

     (2) 

https://doi.org/10.4236/ojapps.2020.104010


L. Mamudu, C. P. Tsokos 
 

 
DOI: 10.4236/ojapps.2020.104010 125 Open Journal of Applied Sciences 
 

To find the estimates ˆ ˆ,γ µ  and σ̂  of ,γ µ  and σ , Cohen (1951) ob-
tained local maximum likelihood estimators (LMLE) and equate the partial de-
rivative of the logarithmic likelihood function to zero. Thus, we have 

( ) ( )
( ) ( ) ( )( )

2 2
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2
1 1
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2 2
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We find µ̂  by equating the partial derivative of   with respect to µ  to 
zero and solving for µ , we have 
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We find σ̂  by equating the partial derivative of   with respect to σ  to 
zero and solving for σ . 
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Similarly, we equate the partial derivative of with respect to γ  and set it 
equal to zero, that is, 
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Hill (1963) demonstrated that arbitrarily large likelihoods can be obtained by 
allowing γ̂  to converge on ( ) ( ) ( )( )1 1min , , nt t t=  , and ( ) ( )1 , , nt t  are ordered 
samples. Thus, the global maximum likelihood results to the inadmissible esti-
mates ( )1ˆ tγ = , µ̂ = −∞  and σ̂ = +∞ , regardless of the sample. However, Co-
hen (1951) [33] found the localized estimate γ̂  to be sufficient in the identifica-
tion of the 3p-lognormal. The validation of the estimates from such procedure 
has since been investigated by Calitz (1973), Cohen and Whitten (1980) [34], 
and Chen (2006) [35] and others. Cohen’s (1951) procedure estimated the LMLE 
for γ by substituting µ̂  and σ̂  from Equations (4) and (5) into Equation (6) 
to obtain γ̂ . Thus, we have 
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To solve for γ̂  in Equation (7), we can solve iteratively the local maximum 
likelihood estimate (LMLE) of γ  to obtain γ̂ . Here, we take into consideration 
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admissible roots for which γ̂  is below ( )1t . Cohen and Whitten (1980) found 
only one of such roots; however, in the event of multiple admissible roots, 
choose the root that results in the closest agreement between the sample mean 
t  and the expected value of the 3p-lognormal probability distribution,  
( ) ( )2ˆˆ ˆ ˆexp 2tE t µ γ µ σ= = + + . Base on the procedure for the parameter estima-

tion of the three-parameter lognormal probability distribution discussed above, 
the 3p-lognormal probability distribution of the survival time t of multiple mye-
loma ( ˆ ˆ ˆ, ,γ µ σ ), the approximate estimates are given in Table 3 below. 

 
Table 3. Parameter estimates for the three-parameter lognormal probability distribution 
of the survival time of multiple myeloma. 

Location ( γ̂ ) Scale ( µ̂ ) Shape ( σ̂ ) 

−0.17824 2.7015 1.0429 

 

We substituted the estimates into Equation (1) to obtain the probability den-
sity function (pdf) of the 3p-lognormal distribution of the survival time of mul-
tiple myeloma given by, 
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The above findings that the survival times of multiple myeloma patients data 
follows three-parameter lognormal distribution can ensure efficient and accurate 
analysis of the survival times of MM patients. Given the pdf in Equation (1), we 
find the cumulative density function (cdf) by taking the integral of the pdf with 
respect to the random variable t, given by: 
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Given the tediousness in integrating the 3p-lognormal pdf, we adopted the 
method of integration by substitution; substituting into Equation (9) the stan-
dard normal cdf given by 
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In Equation (9), we substitute ( )( )ln iz t γ µ σ= − −  and the remaining part 
( )1 1itσ γ− ≈ . Hence, the 3p-lognormal cdf of the survival times can be ex-

pressed as 
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Figure 4. Cumulative distribution function plot for the survival time of MM. 

 
where ( ).Φ  represents the standard normal cdf at a given survival time it . 
Substituting the estimates of Table 3 into equation (10), we have 

( ) ( )2 ln 0.17824 2.7015
; , , .

1.0429
i

T

t
F t γ µ σ

 + −
= Φ  

 
          (11) 

( ).Φ  denotes the standardized normal cumulative probability distribution. 
The cdf can be useful in determining the probability of a given random observa-
tion (survival time t) would be less than or equal to some value T; thus,  
( )P t T≤ . Figure 4 shows the cdf plot of the survival times of multiple myeloma 

patients data. For example, we can estimate the probability that a patient with 
MM survives up to time 16t =  months is approximately 0.53. 

Now, given the cdf of the survival times of MM patients in Equation (12), we 
obtained the reliability of the survival time t of MM patients, given by 

( ) ( ) ( )2 2 ln 0.17824 2.7015ˆ ; , , 1 ; , , 1
1.0429

i
i T

t
S t F tγ µ σ γ µ σ

 + −
= − = −Φ  

 
  (12) 

The survival function can be used to estimate the probability that a patient di-
agnosed with multiple myeloma would survive beyond time T; thus, ( )P t T> . In 
Figure 5, we display the estimate of the survival function ( )Ŝ t  of the survival 
times of MM patients for the 3p-lognormal. As expected, we can see that the 
survival function of the survival times is decreasing and approximately zero 
beyond time 80t = . For instance, the probability that a patient survives beyond 
20 months is approximately 0.40. 

2.5. Kaplan-Meier Estimation of Survival Probability of the  
Survival Times of Patients with Multiple Myeloma 

Kaplan-Meier estimate (KM) was introduced by Edward L. Kaplan and Paul  
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Figure 5. Survival estimate for the survival time of MM. 

 
Meier (1958) [36], which is a non-parametric analytical tool. KM defined as the 
probability of survivorship at a given length of time called the survival time. 
Graphical representations of KM estimates are used to determine the events, 
censoring, and survival probability. Another name for KM estimator is the 
product-limit estimator which estimates the proportion of survival beyond a 
particular time t, given that some of the observed units may not die or fail. The 
KM survival estimate ( )Ŝ t  of MM patients can be said to represent the relia-
bility estimate ( )R̂ t  of MM patients obtained by taking the product of the 
conditional probability of surviving at time 1it + , given that a patient survived 
until time it . We estimate the survival function ( ) ( )ˆ ˆS t R t  or the probability 
that observation last longer than time t as 

( ) ( )
:

ˆˆ 1 ,
i

i

i t t i

R t S t
n
τ

≤

 
= = − 

 
∏

 
where it  is the time when at least one event happened, iτ  denotes the number of 
events (e.g. deaths or alive) at time it , in  represents the individuals/observations 
at risk (not yet had an event or censored) up to time it , and i inτ  denotes the 
probability of survival. In survival analysis, a nearly universal feature data is the 
censoring data, the commonest of which is the right-censoring where an indi-
vidual expires or removed before the end of the study or clinical trial. The other 
cases of censoring which rarely happen are the left-censoring (the initial time at 
risk is unknown or individuals removed at the start of the study), and inter-
val-censoring (a case of both right and left censored). A key advantage of the 
KM curve is that it can take into account censored data, particularly right-cens- 
oring, and is easy to estimate. The analysis of Kaplan-Meier survival curve takes 
into consideration the following three assumptions: 1) it assumes that censored 
observations have the same prospects of survival as those who continue in the  
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Figure 6. Kaplan Meier global estimates of the survival time with CI. 

 

study, 2) it assumes survival probabilities to be the same for individuals recruited 
early and late in the study, and 3) it assumes that the event happens at the speci-
fied time. We utilized KM to assess the overall survival of MM. In Figure 6, we 
show the KM curve for the global estimates of the probability of survival times of 
patients diagnosed with multiple myeloma with a 95% confidence interval. We 
can see that all the MM patients demised by time 92 (in months). Though the 
KM estimator is the most commonly used technique of survival analysis, and is 
useful for examining recovery rates, the probability of death and effectiveness 
of treatment. However, as we mentioned before the KM method is not as po-
werful as the parametric survival analysis for decision making. We cannot ob-
tain the hazard function to estimate the rate at which patients die with MM us-
ing KM. 

2.6. Comparison of Three-Parameter Lognormal with the  
Kaplan-Meier Estimation of the Survival Function 

In the parametric analysis, we found the survival times of patients with MM fol-
low the three-parameter lognormal probability distribution. In section 2.5, we 
performed a non-parametric analysis using the Kaplan-Meier to estimate the sur-
vival probability of the MM patients. Now, we compare the survival estimate of the 
3p-lognormal with the Kaplan-Meier survival estimate of the survival times of the 
MM patients. The relevance of the survival function of the two methods is to esti-
mate the survival probability of a patient diagnosed with MM beyond a given 
time, after a given treatment. The survival times along with the survival proba-
bilities of the two survival functions is given by Table 4. We see that the proba-
bility estimates by the 3p-lognormal survival function are mostly higher than 
that of Kaplan-Meier. Though there are times in which the KM estimates higher 
probabilities, the 3p-lognormal survival function from the parametric probability 
distribution estimates the survival proportion more accurately than the Kaplan- 
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Table 4. Kaplan-Meier ( ( )ˆ
KMS t ) vs parametric (3P-lognormal, ( )ˆ

PS t ) survival function 

estimate of the survival times. 

it  ( )ˆ
KMS t  ( )ˆ

PS t  it  ( )ˆ
KMS t  ( )ˆ

PS t  

1.25 0.958 0.988 25.00 0.313 0.308 

2.00 0.896 0.967 26.00 0.292 0.295 

3.00 0.875 0.931 32.00 0.271 0.230 

5.00 0.833 0.845 35.00 0.250 0.205 

6.00 0.750 0.801 37.00 0.229 0.190 

7.00 0.688 0.758 41.00 0.188 0.164 

9.00 0.667 0.679 51.00 0.167 0.118 

11.00 0.563 0.609 52.00 0.146 0.115 

13.00 0.542 0.547 54.00 0.125 0.108 

14.00 0.521 0.519 58.00 0.104 0.098 

15.00 0.500 0.493 66.00 0.083 0.076 

16.00 0.458 0.469 67.00 0.063 0.074 

17.00 0.417 0.446 88.00 0.042 0.044 

18.00 0.396 0.424 89.00 0.021 0.043 

19.00 0.354 0.404 92.00 0.000 0.040 

24.00 0.333 0.321    

 
Meier. Thus, because parametric methods are more powerful, robust and efficient 
than non-parametric methods. 

3. Discussion 

Given the danger posed by multiple myeloma (MM) cancer in recent years, it is 
imperative to investigate the prognosis and how to enhance the therapeutic/ 
treatment strategy of MM. While MM cancer currently remains incurable, there 
has been some improvement in the treatment process. The treatment progress 
has been largely due to the introduction of therapeutic agents such as thalido-
mide, lenalidomide, and bortezomib, as well as the introduction of high-dose 
chemotherapy and stem-cell rescue (ASCT). The quest to improve the survival 
time (or increase the death time) of patients with MM has resulted in adopting 
several different research approaches and methodologies. 

In the present study, 1) we identified a well-defined probability distribution 
that characterizes the survival times of the 48 patients diagnosed with MM and 
used it to estimate the survival function. 2) we estimated the proportion of sur-
vival time utilizing the commonly used Kaplan-Meier (KM) technique of analy-
sis of cancer survivorship. 3) we compare and contrast the relevance and effi-
ciency of the two different methods of analysis of survival probability estimation 
of patients diagnosed with MM beyond a given survival time. 

Firstly, we investigated utilizing the log-rank test to test the difference be-
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tween the survival times of the males and females diagnosed with MM. We 
found that the survival times of both males and females diagnosed with MM are 
not different, so we performed the analysis using the combined data of the males 
and females. 

We then found a well-defined probability distribution that characterizes the 
survival time of the 48 patients diagnosed with MM follows the 3p-lognormal 
probability distribution. We believe that being able to find the best probability 
distribution that characterizes the probabilistic behavior for a given cancer pa-
tient survival time can lead to estimating the survival probability with much 
more accuracy and efficiency. The fact that we found a unique probability dis-
tribution for our study of the survival times of patients diagnosed with MM 
refute the suggestion of assuming exponential distribution (as suggested by Feigl 
and Zelen ([1965] p. 835) and other authors) or using the non-parametric Kap-
lan-Meier for most cancer survivorship studies. 

We found both the 3p-lognormal survival most often estimates higher survival 
probability than the KM survival function, given by Table 4. We know that KM 
is the most commonly used technique for analyzing cancer survivorship data. 
Statistically, the parametric technique is said to be more robust and efficient 
than the non-parametric counterpart. Therefore, our finding of the parametric 
3p-lognormal probability distribution is better and of a higher degree of accura-
cy in estimating the survival probability of the patients diagnosed with MM than 
the Kaplan-Meier. The KM technique is more often used to compare the differ-
ence between the survival probability of the survival times of two or more enti-
ties or groups usually based on the log-rank test. However, by obtaining the best 
parametric probability distribution that characterizes the survival times, we can 
find the survival function and estimate the survival rate and compare the results 
of two or more entities with a high degree of accuracy. The only situation where 
non-parametric becomes highly applicable or recommended is when there is no 
parametric form (i.e. pdf) for the given data. One key demerit of KM is that it 
cannot be used to estimate the rate at which patients die or survive with MM (i.e. 
the hazard function). The hazard function can be easily calculated after finding 
the parametric probability distribution by dividing the probability density func-
tion, pdf by the survival function. 

4. Conclusions 

We estimated the survival probability of patients diagnosed with multiple mye-
loma (MM) using two different methods; the parametric three-parameter log-
normal and the non-parametric Kaplan-Meier. We found the parametric me-
thod to often give a higher estimate of the survival probability than the non-par- 
ametric method. Even though there are times when the non-parametric survival 
probability estimates are higher, all-important arguments favor the parametric 
method. The difficulty of the parametric survival analysis is the fundamental in-
trinsic assumption that the survival times of the population under study follow a 
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specific probability distribution. But if such a limitation can be overcome, then 
we can obtain a more robust or powerful result from the parametric analysis. We 
can also estimate the hazard function to assess the rate at which patients die with 
MM after finding the right parametric distribution. 

Base on the two different methods utilized for estimating the probability of 
survival of patients diagnosed with MM, we offer the following essential recom-
mendations. 1) If the only information about patients is the survival (death) 
time, then estimating the survival probability using the parametric technique 
will yield more accurate, robust, and efficient results than the commonly used 
Kaplan-Meier. 2) However, if no unique or well-defined parametric probability 
distribution is found, then we still recommend the use of Kaplan-Meier tech-
nique for the estimation of the survival probability. Though the use of non-para- 
metric Kaplan-Meier survival analysis may, in some cases result in a similar or 
higher estimate of the survival rate (such as in our case), the parametric analysis 
remains more powerful, robust and efficient, and hence must be considered first 
in the analysis of any given cancer survivorship data. The study provides an im-
proved method for estimating the survival probability and analysis of cancer 
survivorship data, and further enhance the therapeutic/treatment process of the 
incurable multiple myeloma cancer. 
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