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Abstract 
The burgeoning robotics industry has catalyzed significant strides in the de-
velopment and deployment of industrial and service robotic arms, position-
ing path planning as a pivotal facet for augmenting their operational safety 
and efficiency. Existing path planning algorithms, while capable of delineat-
ing feasible trajectories, often fall short of achieving optimality, particularly 
concerning path length, search duration, and success likelihood. This study 
introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, 
meticulously designed to rectify the issues of node redundancy and the com-
promised path quality endemic to conventional RRT approaches. Through 
the integration of an adaptive pruning mechanism and a dynamic elliptical 
search strategy within the Informed RRT* framework, our algorithm effi-
ciently refines the search tree by discarding branches that surpass the cost of 
the optimal path, thereby refining the search space and significantly boosting 
efficiency. Extensive comparative analysis across both two-dimensional and 
three-dimensional simulation settings underscores the algorithm’s proficien-
cy in markedly improving path precision and search velocity, signifying a 
breakthrough in the domain of robotic arm path planning. 
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1. Introduction 

As robotics continues to evolve, path planning has garnered increasing attention 
and research within the field of robotics applications. Path planning involves 
generating a complete, collision-free path through a space filled with obstacles, 
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starting from an initial position and leading to a target location, connected by a 
series of waypoints. With the ongoing advancement of robotic technology and the 
increase in the degrees of freedom of robotic arms, the complexity of path plan-
ning has also escalated. The objective of path planning is to maximize the distance 
from obstacles in the space while ensuring the path found is the shortest possi-
ble. Sampling-based methods are considered an efficient solution, especially al-
gorithms based on the Rapidly-Exploring Random Tree (RRT) [1]. These algo-
rithms are particularly popular due to their effectiveness in exploring the state 
space and have been widely applied in robotic path planning.  

Among algorithms based on random sampling, the RRT algorithm is a quin-
tessential example. Introduced by Professor Steven M. La Valle in 1998, it is a 
probabilistically complete and fast-converging path planning algorithm suited 
for navigating through complex environments with obstacles [2]. The RRT algo-
rithm operates by randomly sampling within a space, effectively avoiding ob-
stacles to generate a complete search path. However, in complex environments 
where robotic arms operate, the RRT algorithm may not adequately address path 
planning challenges. The random sampling points and the paths generated can 
be less smooth, with too many turning points, resulting in suboptimal paths for 
the robotic arm. 

Currently, path planning algorithms for robotic arms based on random sam-
pling are still under active research, leading to the emergence of a wide variety of 
RRT algorithm variants. The primary optimization goal for most of these va-
riants is to reduce randomness, yet they still rely on sampling methods. This ap-
proach aims to enhance the search efficiency and improve the probabilistic com-
pleteness of the algorithms. Kuffner [3] and others introduced the RRT-Connect 
algorithm, which operates by constructing two RRTs simultaneously—one starting 
from the initial point and the other from the target point. They explore the space 
around them, gradually moving towards each other using a simple greedy heu-
ristic method. This strategy accelerates the search process, and once the two 
trees meet, a complete path from the start to the target point is formed. Howev-
er, like the RRT, the RRT-Connect algorithm lacks asymptotic optimality and 
can only guarantee a 100% success rate in finding a path as the number of sam-
pling nodes approaches infinity. Kuwata [4] introduced the Dubins path plan-
ning algorithm, which consists of straight lines and multiple circular arcs, lead-
ing to discontinuous path curvatures. Karaman [5] and Frazzoli proposed a va-
riant of RRT, the RRT* algorithm, and proved its asymptotic optimality. The 
RRT* algorithm represents one of the most significant advancements in RRT re-
search, taking a substantial step forward. By introducing features such as tree re-
wiring and optimal neighbor search, the RRT* algorithm with asymptotic opti-
mality significantly enhances the quality of path planning for robotic arms. 

To address the slow convergence issue of the RRT* algorithm, Jonathan [6], 
Siddhartha, and others proposed a new algorithm called Informed RRT* to 
enhance the efficiency of path planning. This method, building on an existing 
path found by the RRT* algorithm, uses the start and end points of this path as 
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foci to construct an ellipse with the major axis defined by the straight-line dis-
tance between these points. It then searches for paths within this ellipse, conti-
nually updating the sampling area until the optimal path is obtained. This ap-
proach retains the probabilistic completeness and optimality of the RRT* algo-
rithm while making significant strides in speeding up convergence and improv-
ing solution quality. The RRTSmart algorithm, introduced by Fahad and col-
leagues, incorporates path optimization and intelligent sampling techniques [7]. 
It uses the first path found by RRT as a guide for intelligent sampling to explore 
the configuration space, resulting in straighter paths with fewer waypoints and 
facilitating optimal path planning for robots. Daniel [8] proposed the AM-RRT* 
algorithm for online path planning in complex dynamic environments, which 
enhances performance in obstacle-rich settings using auxiliary distance metrics. 
Connell D [9] developed a dynamic re-planning method based on RRT*, de-
monstrating excellent performance in re-planning paths and laying the ground-
work for finding more optimal paths in the presence of unpredictably moving 
obstacles. Otte M [10] from MIT introduced RRT-X, a sampling-based asymp-
totically optimal single-query re-planning algorithm capable of real-time dynamic 
navigation in changing environments. For dynamic obstacle avoidance, Adiya-
tov [11] and colleagues proposed the RRTFND algorithm, which employs a 
greedy algorithm’s heuristic to rectify paths hindered by dynamic obstacles. This 
method, compared with RRT and RRT*FN, validated its effectiveness in dynam-
ic settings. 

Professor Sun Fuchun [12] from Tsinghua University proposed a goal-directed 
version of the Rapidly-Exploring Random Tree method (RRT-GD) for redun-
dant robotic arm path planning. This method focuses on both the state of the 
end effector and the motion of the joints, employing the Newton-Raphson me-
thod for kinematic inversion; the RRT-GD algorithm often achieves speeds more 
than ten times that of conventional RRT algorithms. Yang Hanjiang [13] and 
others introduced a hybrid robotic arm obstacle avoidance path planning algo-
rithm based on joint configuration space, simplifying the models of robotic arms 
and obstacles and using exhaustive methods to search for collision-free paths in 
the serial robotic arm joint configuration space. Professor Liu Chengju [14] from 
Tongji University and colleagues developed an improved RRT algorithm ad-
dressing the issues of slow speed and poor effectiveness in robotic obstacle avoid-
ance. This path planner adapts to dynamic moving obstacles with strategies like 
goal-directed policies, added gravitational components, and path smoothing, 
combined with path caching and dynamic expansion of random trees, effectively 
avoiding moving obstacles and ensuring path safety and real-time performance. 
Professor Wan Fangyi [15] from Northwestern Polytechnical University and 
others proposed an improved RRT* algorithm, the F-RRT* algorithm, in 2021, 
which optimizes paths by creating parent nodes for random points and repeat-
edly using the triangle inequality throughout the process, resulting in better ini-
tial solutions and faster convergence than the RRT* algorithm. Professor Meng 
Zhijun [16] from Beijing University of Aeronautics and Astronautics and col-
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leagues introduced a new RRT-based pathfinding algorithm, Fast-RRT, aimed at 
quickly finding near-optimal paths by sampling only in the unexplored space of 
the random tree, enhancing search speed and algorithm stability. For perfor-
mance issues in narrow passages, a random steering strategy was proposed. 
Wang [17] from the Chinese University of Hong Kong introduced a motion- 
constrained bidirectional rapidly exploring random tree algorithm with effective 
branch pruning, KB-RRT*, which employs an efficient branch pruning strategy 
to identify less costly parent nodes and remove nearby high-cost nodes. Zhang Y 
[18] and others, in 2023, proposed Bi-AM-RRT*, a fast and effective sampling- 
based motion planning algorithm for dynamic environments, incorporating the 
AM method to optimize robotic motion planning performance in dynamic ob-
stacle environments and employing a bidirectional search strategy to reduce 
search time. Kashyap A K et al. [19]. Proposed the RA-CD-WOA algorithm in 
their research on humanoid robots, demonstrating robustness and effectiveness 
in robot navigation control. Additionally, they also introduced a method for man-
aging humanoid robots walking on uneven terrain and dealing with both static 
and dynamic obstacles [20]. It is inspected by implementing a novel Enhanced 
DAYANI Arc Contour Intelligent (EDACI) Algorithm that designs trajectory by 
searching feasible points in the environment. It provides an optimum steering 
angle, and step optimization is performed by Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) Quasi-Newton method that leads to guide the humanoid robot stably to 
the target. Additionally, Kashyap A K also proposed a hybrid trajectory planning 
method for artificial markets [21], which combines the faster local search BFGS 
quasi-Newton method with the global search APF method to achieve an efficient 
and faster hybrid trajectory planning technique. 

2. Research on Robotic Arm Path Planning Algorithms 
2.1. RRT Algorithms 

The RRT algorithm is a sampling-based approach that utilizes stochastic tree 
expansion [22]. Beginning from a specified starting point, it constructs a search 
tree which is then incrementally expanded through random sampling, achieving 
complete coverage of the environmental space until a target point is reached. 
This process creates a continuous path between the initial and target points. The 
strengths of the RRT algorithm lie in its probabilistic completeness and rapid 
search capabilities. Completeness refers to the exhaustive coverage of the search 
space, where, given sufficient time and iterations, the algorithm conducts a com-
prehensive and unobstructed exploration of the entire map area, facilitating path 
planning between any two points.  

The principle of node search in the RRT algorithm is illustrated in Figure 1. 
The specific implementation process of the RRT algorithm is as follows: 
1) Define a set of variables, input parameters, and output values. “Tree” represents 

the generated tree structure, and “plan” denotes the planned path. This includes 
the definition of the map’s boundary limits and a flag for reaching the target, as  
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Figure 1. RRT Tree expansion process. 

 
well as the coordinates of the initial node and the destination point. Set the sam-
pling step size, the maximum number of search nodes, map resolution, and oth-
er parameters. 

2) Initialize the parameters, creating a new node that takes the starting point 
of the path planning as the initial node Qstart. From this initial node, generate 
the random tree, “tree,” setting the node’s cost to zero. 

3) Generate random sampling points, Qrand, within the unknown search do-
main based on a given probability value. These points will guide the expansion 
of the random tree in subsequent steps. 

4) Calculate the Euclidean distance between all existing nodes in the random 
tree and Qrand, identifying the node closest to Qrand, named Qnearest. 

5) Iterative sampling is conducted through the Extend function, progressing 
from Qnearest towards Qrand direction by a predetermined step size to generate 
a new node, Qnew. Subsequently, a collision check is performed to verify the 
absence of obstacles along the path from Qnearest to Qnew. If the path is clear, 
Qnew is incorporated into the tree structure. Encountering an obstacle halts ex-
pansion, prompting a return to step 2 for repetition, continuing this process un-
til a clear, complete path connecting to the target point is established. 

During execution, the algorithm continuously generates new nodes and at-
tempts to connect them until it finds a path from the initial node to the target 
point or reaches the limit of maximum search node attempts.  

Several characteristics of the RRT algorithm: 
1) The RRT algorithm is inclined towards expansion in unexplored areas; it 

generates nodes in space through random sampling, obviating the need for a 
global map. 

2) The RRT algorithm possesses the characteristic of probabilistic complete-
ness, meaning that as the number of iterations increases, it can always guarantee 
finding a sampling point in the target area with sufficient probability, while avoid-
ing entrapment in local optima. 

3) The RRT algorithm is fast in searching, particularly in simple environments 
where it can quickly find a complete path. However, in more complex settings, 
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the RRT may require numerous iterations to discover a feasible path, thereby 
increasing computational costs. 

The RRT algorithm, owing to its unique advantages, is widely applied in the 
field of path planning. Nevertheless, its drawbacks are also apparent, as evi-
denced by Figure 1, which shows the paths found by the algorithm to be exces-
sively long. Consequently, numerous scholars have conducted extensive research 
based on the RRT algorithm, proposing various improved algorithms to mitigate 
its shortcomings. 

Although the probabilistic completeness of RRT ensures that a path can be 
found given sufficient time, this does not imply that the path found by the RRT 
algorithm is optimal or most efficient. The randomness inherent in the RRT al-
gorithm can lead to paths that are not ideal in terms of length and shape, espe-
cially in applications requiring the rapid identification of high-quality paths 
within complex environments. 

2.2. RRT* Algorithm 

The RRT* algorithm generates globally optimal paths by converging to the op-
timum within the tree structure, while incorporating heuristic strategies to avoid 
local optima. Based on its probabilistic completeness, it also exhibits asymptotic 
optimality. RRT* conducts a search among the new node’s neighbors to select 
the parent node with the lowest path cost and employs a rewiring process for 
further optimization of the path cost. With its property of asymptotic optimality, 
the algorithm ensures convergence to the optimal solution as the runtime in-
creases. 

Under collision detection conditions, the latest sampling point, NewNode, 
expands with a radius r, with all nodes within this sampling space being subsets 
of the new node. Sequentially, the cost sums from the initial coordinate point to 
the nearest node and to the new node are calculated. The node with the lower 
cost is chosen as the parent of the new node. If there are no obstacles between 
the nearest node and the new node, then the new node is added to the tree 
structure. This iterative process continues until a feasible path is found or re-
quirements are met. The following formula represents the search radius: 

 
1log dnr

n
γ  =  
 

 (2.1) 

In the formula: r represents the search radius; γ  is a planning constant based 
on the environment; n denotes the dimensional count of the space for robotic 
arm path planning; and d stands for the dimensionality of the configuration 
space. 

The process of reselecting parent nodes in the RRT* algorithm is illustrated in 
Figure 2. The numbers connecting the nodes in the diagram represent the path 
cost between two nodes, which can be expressed through the Euclidean distance. 
The formula for calculating Euclidean distance is as follows: 
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(a) 

 
(b) 

Figure 2. The process of re-selecting the parent node. 
 

 ( ) ( )2 2
1 2 1 2h x x y y= − + −  (2.2) 

In the formula: h-represents the Euclidean distance between two nodes; 
( )1 1,x y  and ( )2 2,x y  are the coordinate values of the two nodes, respectively. 

From Figure 2(a), it is evident that there are multiple paths from the initial 
node to the new node, allowing for the selection of the optimal path based on 
different costs along the way. Through calculation, the optimal path cost is de-
termined to be 4 + 5 + 4 + 2 = 15. The costs for other paths are 4 + 7 + 5 = 16, 4 
+ 5 + 4 + 3 + 4 = 20, and 4 + 7 + 5 + 2 = 18, respectively. Hence, the optimal 
path has the minimum cost. At this juncture, the nodes on the optimal path can 
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be designated as the new node’s parent nodes, replacing the originally nearest 
node, as shown in Figure 2(b). 

In the RRT* algorithm, each node is assigned a path cost. When a new node is 
generated, the algorithm checks not only for the shortest path from the new 
node to existing ones in the tree but also whether connecting existing nodes to 
the new one could reduce their costs. If such a change decreases the path cost, a 
rewiring process is implemented, optimizing the search tree’s structure, short-
ening the path length, and enhancing search efficiency. This rewiring process 
involves reconnecting nodes on the search tree, improving the efficiency of the 
entire search process, as depicted in Figure 3. 

 

 
(a) 

 
(b) 

Figure 3. Schematic diagram of node rewiring. 
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2.3. Informed RRT* Algorithm 

The Informed RRT* algorithm is an improvement upon the RRT* algorithm, 
integrating heuristic sampling methods to enhance the efficiency and quality of 
path planning. Once an initial path is found, Informed RRT* replaces global 
uniform sampling with a heuristic elliptical sampling approach to reduce inef-
fective sampling nodes and optimize path search. By defining an elliptical sam-
pling region based on the length of the initial path, Informed RRT* restricts the 
sampling process within this ellipse. The ellipse is centered around the generated 
path, with its foci at the start and end points, and its major axis equal to the 
length of the current shortest path. In subsequent iterations, new sampling 
points are generated exclusively within this elliptical region. This method effec-
tively narrows the search space, improves search efficiency, and is more likely to 
generate new nodes within the optimal path region. The transformation of the 
sampling region is illustrated in Figure 4. 

The algorithm first utilizes the RRT* algorithm to determine an initial path, 
obtaining the initial optimal path cost Cbest. Then, based on parameters such as 
Cbest, an elliptical sampling region is constructed, within which sampling opera-
tions are performed. As the value of Cbest gradually decreases, the sampling range 
of the ellipse simultaneously shrinks, aiding in the gradual refinement and de-
termination of an effective planning path. The standard equation of the ellipse is 
given by Equation (2.3). 

 
2 2

2 2 1x y
a b

+ =  (2.3) 

In the equation, a and b are nonzero constants. The coordinates of the ellipse 
foci are (c, 0) and 2 2 2a b c= + . 

Utilizing the properties of ellipses, namely that the distance between the two 
foci of an ellipse is less than the sum of the distances from any point outside the 
ellipse to the two foci, and greater than the sum of the distances from any point 
inside the ellipse to the foci, the planning regarding the elliptical sampling re-
gion in the Informed RRT* algorithm is outlined as follows: 

In path planning, set the initial node and the target node as the two foci of the 
ellipse, letting 

 

best

min

2

2

C
a

Cc

 =

 =


 (2.4) 

Substituting (2.4) into (2.3) yields: 

 
2 2
best min

2
C C

b
−

=  (2.5) 

The elliptical model for sampling in the Informed RRT* algorithm can be seen 
in Figure 5. 

One of the main advantages of the Informed RRT* algorithm is its asymptotic  
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Figure 4. Schematic diagram of sampling area transformation of Informed RRT* algo-
rithm. 
 

 
Figure 5. Informed RRT* algorithm sampling range selection. 

 
optimality, and compared to the original RRT* algorithm, it can more effectively 
narrow down the search space, thereby accelerating convergence. On the other 
hand, the efficiency of the algorithm still depends on the sampling strategy and 
parameter settings. For instance, in high-dimensional spaces, determining an ap-
propriate elliptical search area becomes more challenging, which can impact the 
performance of the algorithm. Moreover, in overly complex environments, the 
algorithm may require more time to converge to the optimal solution, leading to 
an increase in the number of sampled nodes and extended search times. Addi-
tionally, the performance of the algorithm heavily relies on the accurate calcula-
tion of heuristic information, which may be difficult to achieve in certain com-
plex or dynamically changing environments. 

3. Research on Improved RRT Algorithms 

The improved RRT algorithm is a path planning algorithm that integrates in-
formation heuristic search, adaptive pruning optimization strategies, and dy-
namic elliptical region sampling. Its aim is to enhance the efficiency and quality 
of path planning through more precise sampling methods and path optimization 
techniques, achieving superior path planning even in high-dimensional or com-
plex environments. 

3.1. Definition of the Robotic Arm Path Planning Problem 

State Space: This refers to the set representing all possible positions of the ro-
botic arm during its movement, defined as R. Qfree represents the obstacle-free 
region within the space, and Qobs denotes the space occupied by obstacles. 
Qstart is defined as the initial state of the robotic arm’s path, and Qgoal as the 
target state of the arm, where both Qstart and Qgoal are included in Qfree. 
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Sampling Function (Sample): In path planning, the coordinates of required 
nodes are obtained through random sampling. This method of random sampling 
is the most common approach, ensuring that nodes are uniformly distributed. 

Distance Function (Distance): This function calculates the path cost between 
two node states, assuming the region between them is free of obstacles. The cost 
between two nodes is determined using the Euclidean distance, as illustrated in 
Equation (2.2). 

Nearest Node Function (Nearest): This function retrieves the number of nodes 
in a tree structure, identifies a new random point to expand the tree, and calcu-
lates the Euclidean distance between this node coordinate and the first node in 
the tree structure, setting this as the initial value for the minimum distance. It 
then continues to traverse through the nodes in the tree structure, calculating 
the distance between the current node and the random point, to find the node 
Qnearest, which is closest to the random point in terms of Euclidean distance, 
thereby identifying the nearest node. If this distance is less than the minimum 
distance, the function updates the minimum distance accordingly. 

Collision Detection Function (Obstacle): This is a typical Boolean function 
used to determine whether the connection between two nodes is obstructed by 
obstacles, i.e., whether the path would collide with any obstacles. The function 
outputs true when there are obstacles between the two nodes that cause a colli-
sion; it outputs false when there is no collision. 

3.2. Adaptive Pruning Optimization Strategy 

The improved RRT algorithm incorporates an adaptive pruning optimization 
mechanism, adding an adaptive pruning threshold. This means the algorithm 
does not solely rely on the cost of the current optimal path to determine pruning 
criteria but dynamically adjusts this threshold based on actual conditions en-
countered during the search process. It also takes into consideration the charac-
teristics of obstacles in different environments, such as the density of obstacles, 
the complexity of the path, and various dimensions, to dynamically adjust the 
pruning threshold. In areas dense with obstacles, it may be necessary to lower 
the pruning threshold to delay pruning and preserve more potential path op-
tions. Additionally, the algorithm integrates a local path re-evaluation algorithm 
to assess paths in the existing search tree, deciding whether to retain or modify 
them. 

This optimization strategy can directly manipulate the tree structure, effec-
tively reducing the search space and further enhancing the efficiency of the algo-
rithm. Due to the continuous pruning and path optimization process, the im-
proved RRT algorithm can shorten the path length and enhance path smooth-
ness. The algorithmic process of its adaptive pruning strategy is shown in Table 
1. 

3.3. Dynamic Elliptical Search Strategy 

The improved RRT algorithm further optimizes based on the elliptical search  
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Table 1. Pruning optimization strategy algorithm process. 

Adaptive Pruning Optimization Strategy 

Input: T, C_best 
Output: T_pruned 

1 T_pruned ← ∅  

2 T_pruned ← Qstart; 

3 for Q = 1 to N do 

4 if Cost(Q) > C_best, then 

5 Continue; 

6 T_pruned.add(Q); 

7 for Q in T_pruned: 

8 for Q_child in Q.children; 

9 if Q_child.cost > C_best: 

10 T_pruned.remove(Q_child) 

11 end if 

12 end for 

13 end for 

14 return T_pruned 

 
strategy of the Informed RRT* algorithm by using a dynamically adjusted ellip-
tical sampling area to guide the path search. This elliptical area is determined 
based on the current Cbest. Sampling within the ellipse means that all new sam-
pling points are more likely to contribute to a shorter path. As the algorithm 
progresses and shorter paths are discovered, the ellipse correspondingly shrinks. 
Concurrently, the random tree outside the ellipse undergoes pruning in combi-
nation with the pruning strategy, ensuring that the entire search process remains 
within the ellipse, further focusing on areas likely to yield shorter paths. Com-
pared to the elliptical search strategy of the Informed RRT* algorithm, this ap-
proach is more efficient in finding and maintaining the optimal path, thus en-
hancing the quality of path planning. It not only limits the sampling area but al-
so dynamically adjusts this area to reflect real-time path information. Through 
pruning, it directly affects the structure of the tree, making the search process 
more focused and efficient. 

When a shorter path is discovered, the major axis length of the ellipse is fur-
ther updated, thereby narrowing the sampling area. As a result, as the algorithm 
progresses, the sampling space gradually concentrates in the area most likely to 
yield the optimal path. The dynamic ellipse can be adjusted more precisely with 
each discovery of a superior path. By integrating an adaptive pruning strategy, 
the search focus can be more effectively concentrated around the potential areas 
near the current optimal path. This aids in rapidly refining and optimizing the 
path. The dynamic ellipse search strategy is shown in Table 2. 
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Table 2. Dynamic ellipse search strategy process. 

Dynamic Elliptical Search Strategy 

Input: T, S_start, S_goal 
Output: Path 

1 T = Tree(start) t 

2 Cbest = ∞; 

3 ellipse = space; 

4 while not stop_condition() 

5 if Cbest < ∞; 

6 Update ellipse(Cbest); 

7 qrand = Sample_point() 

8 qnearest = Nearest node(qrand); 

9 qnew = Extend tree(qnearest, qrand): 

10 if is valid(qnew) 

11 T.add(qnew); 

12 cost = calculate cost(qnew) 

13 if cost < Cbest 

14 Cbest = cost; 

15 end 

16 return get_best_path() 

 
The Update function is used to update the elliptical area, the Sample function 

performs sampling within the ellipse, and the Extend function is responsible for 
incorporating new sampling points into the search tree. 

4. Path Planning Simulation Validation 

To demonstrate the effectiveness and efficiency of this method, a large number 
of comparative experiments were conducted in different simulation environ-
ments. This section presents the details of the experiments and compares and 
discusses the results. The experiments analyzed and compared the RRT, RRT*, 
Informed RRT*, and the improved RRT algorithms through simulation experi-
ments in simple, complex, and maze environments, providing detailed compar-
isons. The simulation hardware used was a Lenovo ThinkBook laptop, running 
64-bit Windows 11 Home Edition, with an Intel(R) Core(TM) i5-13500H pro-
cessor. The simulation platform was Unity 2021. The simulation environments 
are illustrated, where red represents the starting point, green represents the tar-
get point, and black rectangles represent obstacles. 

The parameters in the environment were set to keep the starting and target 
points consistent. The step length between nodes was set to 1, and the maximum 
number of nodes in the algorithm’s search tree as well as the number of itera-
tions N was set to 5000. The target direction probability was set to 10, meaning 
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that every 10th random point would not be random but instead placed at the 
target location, based on empirical values. The experimental results will analyze 
the path planning outcomes from three aspects: path length, time, and success 
rate. These three parameters represent the average values obtained from running 
each of the four algorithms 50 times. 

4.1. Two-Dimensional Simulation Experiment Analysis 

In the three environments, the RRT, RRT*, Informed RRT*, and improved RRT 
algorithms were validated for path planning. The maximum number of nodes in 
the algorithm’s search tree, as well as the iteration count N was set to 5000, with 
a search radius of 2. Each set of algorithms was run 50 times to obtain average 
values. 

1) Path Planning in Environment 1 
In obstacle environment 1, a path planning instance is illustrated in Figure 6. 

Here, the starting point is marked in red, with coordinates set at (−7.33, 6.57), 
and the target node is marked in green, with coordinates set at (7.43, −6.18). 

From Figure 6, it is evident that in the context of the obstacles in Environ-
ment 1, the improved RRT algorithm performs the best. The path it plans fully 
adheres to the edges of the obstacles, and all sampled nodes are located within 
the ellipse. The average values of path length, search time, and search success 
rate for the four algorithms in Environment 1 are presented in Table 3. 

From Table 3, it is observed that the improved RRT algorithm yields the best 
results among the four algorithms, proving its superior performance under the  
 

    
(a)                           (b) 

    
(c)                           (d) 

Figure 6. Path planning in environment 1: (a) RRT algorithm, (b) RRT* algorithm, (c) 
Informed RRT* algorithm, (d) Improved RRT algorithm. 
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Table 3. Performance comparison of four algorithms in environment 1. 

Algorithms Step Size Path Length/m Search Time/s Search Success Rate 

RRT 1 37.99 9.66 100% 

RRT* 1 33.64 12.07 100% 

Informed RRT* 1 27.18 10.59 100% 

Improved RRT 1 25.33 8.18 100% 

 
obstacle conditions of this environment. Compared to the RRT, RRT*, and In-
formed RRT* algorithms, the improved RRT algorithm achieved reductions in 
path length by 33.32%, 24.70%, and 6.81%, respectively. The search times were 
reduced by 15.32%, 32.22%, and 22.75%, respectively. Given the relatively simple 
placement of obstacles in Environment 1, all four algorithms achieved a 100% 
path success rate. 

2) The path planning in Environment 2 
In Environment 2, which is cluttered with obstacles, one instance of path plan-

ning is shown in Figure 7. The starting point is marked in red, with coordinates 
set at (−6.56, 6.2), while the goal node is marked in green, with coordinates set at 
(5.71, −5.9). 

From Figure 7, it can be observed that under the obstacles in Environment 2, 
the path found by the improved RRT algorithm is optimal, seamlessly fitting 
around the obstacles, while the sampled nodes still remain within the ellipse. 
The average values of path length, search time, and search success rate parame-
ters for the four algorithms in Environment 2 are presented in Table 4. 

In Environment 2, obstacles are characterized by their chaotic and disordered 
nature, which necessitates higher standards for pathfinding. As evidenced in Ta-
ble 4, the enhanced RRT algorithm remains superior in all metrics compared to 
its predecessors. Specifically, when compared to the original RRT algorithm, the 
path length has been reduced from 35.92 meters to 23.27 meters, marking an 
improvement of 35.22%. In comparison to RRT*, the improvement is from 32.16 
meters to 23.27 meters, which is a 27.64% enhancement. Against Informed RRT*, 
the reduction is from 26.70 meters to 23.27 meters, translating to a 12.85% im-
provement. In terms of search time, the refined algorithm shows a reduction of 
25.69%, 47.73%, and 45.49% respectively when compared to the first three algo-
rithms. Moreover, within the context of complex and unorganized obstacles, both 
RRT and RRT* algorithms exhibit a decline in path success rates. 

3) The path planning in Environment 3 
Obstacle Environment 3 represents a more complex maze configuration. The 

path planning outcomes of the four algorithms for a specific instance are illustrated 
in Figure 8. In this scenario, the starting point is set at coordinates (−6.56, 6.2), 
while the target node is positioned at (5.71, −5.9). 

Figure 8 demonstrates that the paths generated by the Informed RRT* and 
P-Informed RRT* algorithms are shorter than those produced by the RRT and 
RRT* algorithms. A comparison of the four algorithms across 50 simulation  
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(a)                           (b) 

    
(c)                           (d) 

Figure 7. Path planning of four algorithms in environment 2: (a) RRT algorithm, (b) 
RRT* algorithm, (c) Informed RRT* algorithm, (d) Improved RRT Algorithm. 
 

    
(a)                           (b) 

    
(c)                           (d) 

Figure 8. Path planning of four algorithms in environment 3: (a) RRT algorithm, (b) 
RRT* algorithm, (c) Informed RRT* algorithm, (d) P-Informed RRT* algorithm. 
 
trials in Environment 3 is presented in Table 5, showing their performance me-
trics. 
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Table 4. Performance comparison of four algorithms in environment 2. 

Algorithms Step Size Path Length/m Search Time/s Search Success Rate 

RRT 1 35.92 8.37 85% 

RRT* 1 32.16 11.90 88% 

Informed RRT* 1 26.70 11.41 100% 

Improved RRT 1 23.27 6.22 100% 

 
Table 5. Performance comparison of four algorithms in environment 3. 

Algorithms Step Size Path Length/m Search Time/s Search Success Rate 

RRT 1 41.52 9.66 74% 

RRT* 1 36.16 12.07 81% 

Informed RRT* 1 25.11 10.60 100% 

Improved RRT 1 24.19 5.27 100% 

 
The data indicates that, compared to the RRT, RRT*, and Informed RRT* al-

gorithms, the improved RRT algorithm achieved a reduction in path length by 
41.74%, 33.10%, and 3.66%, respectively. In terms of search time, reductions were 
45.45%, 56.34%, and 50.28%, respectively. Regarding the success rate of searches, 
the RRT and RRT* algorithms had success rates of 74% and 81%, respectively. 
This suggests that, in the more complex maze environment of Environment 3, 
the performance of the RRT and RRT* algorithms in path planning is relatively 
inferior compared to the other environments. 

In summary, a comparative analysis of path planning data across three envi-
ronments of varying complexity was conducted for four algorithms: RRT, RRT*, 
Informed RRT*, and an improved RRT algorithm. The comparison focused on 
three aspects: path length, search time, and success rate. Figure 9 and Figure 10 
reveal that the improved RRT algorithm significantly outperforms the others in 
terms of path length and search time. On average, it reduced the path length by 
35.77%, 28.48%, and 7.77% compared to the other three algorithms, respectively. 
Search time was reduced by 28.82%, 45.43%, and 39.51%. Moreover, this algo-
rithm maintained a high success rate, demonstrating its stability and reliability 
under various conditions. 

4.2. Three-Dimensional Simulation Experiment Analysis 

To further verify the effectiveness of the improved RRT algorithm, this study 
constructs a three-dimensional simulation environment within Unity3D soft-
ware for path planning of a robotic arm. The three-dimensional obstacle envi-
ronment is depicted in Figure 11. Similar to the two-dimensional simulation 
algorithms, a comparison and analysis of data results are conducted for the RRT, 
RRT*, Informed RRT*, and the improved RRT algorithms within this con-
structed three-dimensional simulation environment. 
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(a) 

 
(b) 

Figure 9. (a) Path lengths of the four algorithms in different environments, (b) Search 
time of the four algorithms in different environments. 
 

The initial point is marked in red with coordinates (−5.94, 6.46, 1.1), while the 
target point is indicated in green, located at (5.81, −7.02, −2.4). The maximum 
number of sampling nodes is set to N = 5000, with a search radius of 2 and a step 
size of 1. Each algorithm is subjected to 50 path calculations to determine their 
path lengths, search times, and success rates, with the averages being calculated. 
The path taken by one instance of the algorithm run is shown in Figure 11. The 
recorded data are presented in Table 6. 

Integrating the data from Table 6 with Figure 12, the enhanced RRT algo-
rithm demonstrates superior performance in the three-dimensional simulation 
environment regarding path length, search time, and success rate. The algorithm  
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Figure 10. Success rates of four algorithms in different environments. 
 

    
(a)                            (b) 

    
(c)                            (d) 

Figure 11. Path planning in three-dimensional environment: (a) RRT algorithm, (b) RRT* 
algorithm, (c) Informed RRT* algorithm, (d) Improved RRT algorithm. 
 
achieves a reduction in path length by 52.28%, 47.56%, and 11.14%; and a reduc-
tion in search time by 27.72%, 55.65%, and 34.75% compared to its counterparts. 
The RRT and RRT* algorithms do not achieve a 100% success rate, falling short  
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Table 6. Comparative performance of algorithms in a three-dimensional environment. 

Algorithms Step Size Path Length/m Search Time/s Search Success Rate 

RRT 1 42.11 8.49 90% 

RRT* 1 38.33 13.80 91% 

Informed RRT* 1 22.62 9.38 100% 

Improved RRT 1 20.10 6.12 100% 

 

 
(a) 

 
(b) 

Figure 12. (a) Search time of four algorithms in a three-dimensional environment, (b) 
Path length of four algorithms in a three-dimensional environment. 
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of the requirements for three-dimensional or higher-dimensional search needs. 
While the Informed RRT* algorithm does reach a 100% success rate, its path 
length and search time are not as advantageous when compared to the improved 
algorithm. 

5. Conclusion 

This chapter addresses issues such as node redundancy, poor path quality, and 
decreased success rates in complex environments encountered by the RRT, RRT*, 
and Informed RRT* algorithms during the sampling process, by proposing an 
improved RRT path planning algorithm. It begins with a description of the basic 
principles of the RRT, RRT*, and Informed RRT* algorithms, followed by a de-
tailed presentation of the strategies employed by the improved RRT algorithm, 
emphasizing adaptive pruning optimization and dynamic elliptical search strate-
gies. Particularly, building on the Informed RRT* algorithm, it introduces a syn-
chronized pruning of the dynamic elliptical search tree to eliminate branches with 
costs higher than the current optimal path, effectively reducing the search space 
and enhancing search efficiency. This targeted path optimization enables the 
improved RRT algorithm to outperform the Informed RRT* algorithm in speed 
and reliability, especially in complex environments. To verify the practical effects 
of the improved algorithm, 50 sets of experiments in two and three-dimensional 
spaces were conducted. The results in two-dimensional environments show sig-
nificant improvements in path length and search time, with path lengths re-
duced by an average of 35.77%, 28.48%, and 7.77% compared to the other three 
algorithms, and search times decreased by 28.82%, 45.43%, and 39.51%, respec-
tively. 
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