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Abstract 
A study was conducted on the effect of time delay and structural parameters 
on the vibration reduction of a time delayed coupled negative stiffness dy-
namic absorber in nonlinear vibration reduction systems. Taking dynamic 
absorbers with different structural and control parameters as examples, the 
effects of third-order nonlinear coefficients, time-delay control parameters, 
and negative stiffness coefficients on reducing the replication of the main 
system were discussed. The nonlinear dynamic absorber has a very good vi-
bration reduction effect at the resonance point of the main system and a 
nearby area, and when 1 increases to a certain level, the stable region of the 
system continues to increase. The amplitude curve of the main system of a 
nonlinear dynamic absorber will generate Hop bifurcation and saddle node 
bifurcation in the region far from the resonance point, resulting in almost pe-
riodic motion and jumping phenomena in the system. For nonlinear dynamic 
absorbers with determined structural parameters, time-delay feedback control 
can be adopted to control the amplitude of the main system. For different 
negative stiffness coefficients, there exists a minimum damping point for the 
amplitude of the main system under the determined system structural para-
meters and time-delay feedback control parameters. 
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1. Introduction 

The time-delay dynamic vibration absorber is a new technology, which intro-
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duces a partial state feedback with time delay to the vibration absorber based on 
the traditional dynamic vibration absorber, which belongs to the semi-active vi-
bration control in essence. The advantage of time-delay dynamic vibration ab-
sorber is that the frequency range of vibration reduction is large, it can be ad-
justed in real-time, and in some cases (such as when applied to the structure vi-
bration reduction of the main system is a single degree of freedom) it can com-
pletely absorb the vibration of the main system, and the time-delay dynamic vi-
bration absorber is easy to design. However, at present, the theoretical and expe-
rimental research on vibration reduction of amplifying mechanism absorbers 
with additional negative stiffness is not in-depth. Therefore, mechanism analysis 
and optimization design are carried out to provide a theoretical basis for the de-
sign of new dynamic vibration absorber models. Domestic and foreign scholars 
have done relevant research on the design optimization and time-delay applica-
tion of vibration absorbers. 

The traditional linear adjustable dynamic vibration absorber is a kind of vi-
bration absorber which is placed on the main system and absorbs the energy of 
the main system. The vibration control can be divided into passive control, ac-
tive control and semi-active control according to its components. The passive 
control device is widely used for its advantages of simple structure, strong stabil-
ity and no external energy supply. The stiffness and damping of the early passive 
vibration control devices are linear, so when the environmental excitation is 
random or broadband, the vibration reduction effect will be sharply reduced due 
to frequency imbalance. The first undamped vibration absorber was proposed by 
Frahm [1] to completely suppress the amplitude of the main system by generat-
ing anti-resonance at the target frequency, but the effective frequency regulation 
range is only in a narrow frequency band near the anti-resonance point. Den 
Hartog et al. [2]: Adding damping to the absorber not only overcomes the dis-
advantage of narrow band of the undamped absorber, but also effectively inhi-
bits the amplitude of the main system. The finding that the frequency response 
curve of the main system always passes through two fixed points and is not af-
fected by the damping value of the absorber provides the support of the fixed- 
point theory for the optimization of structural parameters. Asami et al. [3] [4] 
adopted the fixed-point theory to optimize the structural parameters of the 
damped vibration absorber on the premise that the amplitudes of the two for-
mant peaks were equal and minimum, and obtained the exact solution of the op-
timal structural parameters of the vibration absorber. Literature [5] designed a 
vibration isolation system with negative stiffness structure by using the principle 
of parallel cancellation of positive stiffness, and derived the stiffness criterion of 
static stability of the elastic system by using the energy criterion, proving that the 
negative stiffness system has the advantages of low natural frequency, large bear-
ing capacity and good vibration isolation effect. Peng Haibo et al. [6] optimized 
the parameters of the dynamic vibration absorber system containing negative 
stiffness elements, and obtained the optimal frequency ratio and optimal damp-
ing ratio of the negative stiffness vibration absorber by using the fixed-point 
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theory. The research shows that the negative stiffness dynamic vibration absor-
ber has stronger damping capacity and wider damping frequency band than the 
traditional dynamic vibration absorber. Wang Xiaoran et al. [7] optimized the 
parameters of a three-element dynamic vibration absorber containing a negative 
stiffness spring element, adjusted the three fixed points to the same amplitude by 
using the fixed-point theory, and obtained the optimal negative stiffness ratio. 
The shock absorber has good vibration damping performance. Hao Yan et al. [8] 
optimized the parameters of the Maxwell model dynamic vibration absorber for 
devices with negative stiffness, and adjusted the three fixed points to the same 
amplitude by using the fixed-point theory to obtain the optimal negative stiff-
ness ratio. The shock absorber can greatly reduce the amplitude of the resonance 
region and has a wide damping frequency band. Xing Zhaoyang et al. [9] com-
bined the lever amplification mechanism with the negative stiffness structure, 
which can greatly reduce the resonance amplitude, broaden the damping fre-
quency band, and reduce the resonant frequency of the system. Chen Jie et al. 
[10] used a dynamic vibration absorber containing a inertial vessel and negative 
stiffness to suppress the transverse vibration of the beam. The negative stiffness 
can suppress the vibration of the beam well, while the inertial vessel can further 
inhibit the vibration. Some scholars have found that taking time delay as a state 
feedback control quantity, consciously controlling its size, and making it rea-
sonably matched with the feedback system can have a good vibration reduction 
effect. Many scholars have done a lot of research on time delay in vibration con-
trol systems. Li Yingsong et al. [11] designed a new type of magnetic liquid 
damper and studied the influence of different factors on the performance of the 
magnetic liquid damper. Based on the existing dynamic vibration absorber, Li 
Yan [12] added a particle damping system, hollowing out the original mass blocks 
and filling in particle materials to form a particle damping dynamic vibration 
absorber, and studied its effect on vibration and noise reduction in the track 
structure. Yang Geng et al. [13] proposed a dynamic vibration absorber with 
multiple dry friction damping with compact structure and designed a ring vibra-
tion absorber structure composed of multiple cantilever beam type vibrators to 
solve the vibration suppression problem when the rotor was over critical speed. 
Then, the nonlinear dynamic equation of the absorber is constructed by La-
grange equation and integrated with the finite element model of the rotor struc-
ture, and the coupling dynamic equation of the absorber and rotor system is ob-
tained. On this basis, the influence of vibration absorber parameters on its vibra-
tion damping performance is analyzed to clarify the vibration damping charac-
teristics of multiple dry friction damping vibration absorber. Xiong Bo et al. [14] 
built a double-wire pendulum test system to explore the vibration damping per-
formance of the hub double-wire pendulum absorber on the test bench, and 
conducted a comparison of vibration levels under the no-axis rotation test of the 
test bench and the double-wire pendulum test respectively. The results showed 
that the maximum vibration absorption effect of the double-wire pendulum on 
the bearing seat of the test bench could reach 35% under single-direction loading. 
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When Fx and Fy are loaded in the same direction, the maximum vibration ab-
sorption effect can reach 61%. Olgac et al. [15] applied the time-delay feedback 
as an input to the vibration absorber to form a “time-delay dynamic vibration 
absorber”. Simulation shows that the vibration reduction effect of the vibration 
absorber with time-delay feedback is better than that of the passive vibration 
absorber. Teacher Zhao Yanying [16] studied the damping effect of time-delay 
dynamic vibration absorber on the main system in nonlinear vibration system by 
taking advantage of the active control with time delay. Sun et al. [17] verified the 
effectiveness of delay damping through experiments. Chen Longxiang et al. [18] 
studied the time-delay active control of the rotational motion and forced vibra-
tion of flexible beams. Subsequently, Chen Long et al. [19] studied the effect of 
time delay on semi-active suspension. Fu Wenqiang et al. [20] explored the 
asymptotic stability mechanism of the semi-active suspension control system 
with time-delay ceiling damping. Zhu Kun et al. [21] improved vehicle suspen-
sion performance based on tire displacement delay feedback control. Yan Gai et 
al. [22] considered the inherent time delay of the suspension system and applied 
the time-delay feedback to vehicle suspension control by using the state change 
method. Zhao Yanying et al. [23] studied the nonlinear time-delay feedback 
control of high-speed train with the vehicle body as the feedback object. Wu 
Kaiwei et al. [24] to address the issue of damage to vehicle components and im-
pact on passenger comfort caused by vibrations generated during uneven road 
driving, a damping method for an active suspension with time-delay feedback 
control is proposed in a quarter car model. 

2. Structural Model 

Dynamic shock absorber is a kind of widely used shock absorber. Although the 
dynamic absorber can eliminate the vibration of the main system at the reson-
ance point in a linear system, the damping effect is poor at the departure from 
the resonance point. To solve the problem that the linear dynamic absorber is 
not effective in damping the vibration far from the resonance point, the nonli-
near dynamic absorber is used. Therefore, in this paper, the vibration suppres-
sion of the main system is studied under the coupling delay of the negative stiff-
ness absorber with two degrees of freedom. The kinetic model is shown in the 
figure. 

As shown in Figure 1, The whole system consists of main system m1 and 
shock absorber m2. C1 is the damping coefficient of the main system, C2 is the 
damping coefficient of the shock absorber. The spring of the main system is li-
near and its stiffness coefficient is K1. The spring of the shock absorber is nonli-
near, and the expression of the nonlinear elastic element is 3

2 1f k δ β δ= + , 
where K2 is the linear stiffness coefficient of the shock absorber, and 1β  is the 
nonlinear stiffness coefficient of the shock absorber. K3 is the introduced nega-
tive grounding stiffness. Assuming that the main system receives an external ex-
citation the period ( ) cosf t A tω= , ( )1x t  and ( )2x t  represent the vertical 
displacement of the main system and the absorber. Is the delay feedback control,  
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Figure 1. Nonlinear model of time-delay coupled negative 
stiffness dynamic vibration absorber. 

 
where g is the delay feedback gain coefficient and τ is the delay quantity. 

The dynamic equation of the vibration absorber system is as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

3
1 1 1 1 1 1 2 1 2 1 1 2 2 1 2 1 2

3
2 2 2 2 1 1 2 1 2 2 1 3 2 1 2 0

m x k x c x k x x x x c x x g x f t

m x k x x x x c x x k x g x
τ

τ

β

β

+ + + − + − + − − =

+ − + − + − + + =

�� � � � ��

�� � � ��
 (1) 

where, ( )2 2x x tτ τ= − , when the gain coefficient of hysteretic feedback is 1 0g = , 
the delay feedback term of the system disappears. 

3. Perturbation Analysis 

To simplify the calculation, the following dimensionless quantities are introduced:  
2 2 22

* *11 2 2 1
1 2 2 2 2

1 2 12 1 2
2

* * 2 31 2 1
1 2 1 2

21

, , , , , ,

, , , , ,

c

c

c c

xc c m gAv v f g
m m mm m x m

kx x kt t y y
x x km

β
α γ

ω ω ω ω ω

ω ωτ τ ω η
ω

ΩΩ Ω ΩΩ
= = = = = =

Ω
= = = = = =
Ω Ω

 

where Ω  is the dimensionless frequency, *t  is denoted as t and *τ  is denoted 
as τ  for ease of writing. To facilitate perturbation analysis, some system variables 
are re-scaled: 

* *, , , , ,v f F g gεξ α εα γ εµ ε ε η εζ= = = = = =  

where 0 1ε< ≤  The dimensionless motion equation of the equation is: 

( ) ( )
( ) ( )

2 2 2
1 1 1 1 1 2 2 1 2 2 1

32 2
2 1 2 cos

y y y y y y y

y y gy F tτ

ω εξ εµω ε µξ

ε µα ε µ ε

+ = − + − + −

+ − + + Ω

�� � � �

��
        (2) 

( ) ( ) ( )32 2
2 2 2 1 2 2 1 2 1 2 2 2y y y y y y y gy yτω εξ εα ε εζω+ − = − − − − − −�� � � ��    (3) 

The multi-scale method is adopted to solve the equation. Introduce different 
time scales: 

n
nT tε=                           (4) 

The inverse of t concerning time becomes the partial derivative of nT , so: 
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0 1

2
2

0 0 12

d
d
d 2
d

D D
t

D D D
t

ε

ε

= + +

= + +

�

�
                     (5) 

where , 0,1i iD T i= ∂ ∂ =  
Set the solution as follows: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 11 0 1 12 0 1

2 21 0 1 22 0 1

2 21 0 1 22 0 1

, , ,

, , ,

, , ,

y t y T T y T T

y t y T T y T T

y t y T T y T Tτ τ τ

ε ε

ε ε

ε ε

= + +

= + +

= + +

�

�

�

             (6) 

Then, by substituting Equations (5) and (6) into Equations (2) and (3), and 
making the coefficients of the same power of ε  equal, we get 0ε : 

( )

2 2
0 11 1 11
2 2
0 21 2 21 11

0

0

D y y

D y y y

ω

ω

+ =

+ − =
                      (7) 

0ε : 

( ) ( )
( ) ( )

( )

2 2 2
0 12 1 12 0 1 11 1 0 11 2 21 11 0

2 2 2
0 22 2 22 12 0 21 0 1 21 2 0 21 0 11

3 3 2 2 2
21 11 21 11 21 11 2 21

2 cos

2

3 3

D y y D D y D y y y F T

D y y y gD y D D y D y D y

y y y y y y y
τ

ω ξ µω

ω ξ

α ζω

+ = − − + − + Ω

+ − = − − − −

− − + − −

   (8) 

The general solution of Equation (8) can be expressed as: 

( )
( ) ( )

1 0

2 0 1 0

11 1

21 1 1

e

e e

i T

i T i T

y A T cc

y B T C T cc

ω

ω ω

= +

= + +
                  (9) 

where 
2
2

2 2
2 1

C Aω
ω ω
 

=  − 
. Where 1i = −  and cc represent the conjugate com-

plex numbers of the preceding terms. The external excitation and delay terms 
can be expressed in the complex form as follows: 

( ) ( ) ( ) ( )

0

1 0 2 0

0

21

1cos e
2
e e

i T

i T i T

F T F cc

y B T C T ccω τ ω τ
τ τ τ

Ω

− −

Ω = +

= + +
             (10) 

Assuming that τ  and ε  are both small, Bτ  and Cτ  are expanded ac-
cording to Taylor to get: 

( ) ( ) ( )

( ) ( ) ( )

2 2

1 1 1

2 2

1 1 1

2

2

B B T B T B T B

C C T C T C T C

τ

τ

ε τετ ετ
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�

�
          (11) 

Substituting Equations (9)-(11) into Equation (8) is obtained: 

( ) ( ) ( )

( ) ( ) ( )
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ω
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Ω
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+ + +
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    (12) 

where:  
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( ) ( )
( ) (
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And ( ) ( ) ( ) ( )1T tε′ = ∂ ∂ = ∂ ∂ . 
Both linear dynamic vibration absorber and nonlinear dynamic vibration ab-

sorber use main resonance and 1:1 internal resonance to reduce the vibration of 
the main system. Under normal circumstances, due to the influence of manu-
facturing and control technology, the control of internal resonance ratio inevita-
bly has a certain deviation, so the harmonic solution parameter is introduced to 
represent the deviation value. At the same time, the harmonic parameters are 
introduced to represent the size of the damping frequency band. 

2 1 1,ω ω εδ= +                         (13) 

2 2ω εδΩ = +                          (14) 

Considering Equations (13) and (14), the conditions for solvability of Equa-
tions (12) are obtained: 

( ) ( )
( )

( )
( )

( )
1 1 1 1

1 11 1 2

2
2 2

4
2 2
1 1 2 12 2

1 2

2 2 2 2

22 2 2
1

2 2 2 2
2 1

2 6 6 3 6 6

2
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e 3 6 3 e

3 3 e e e

i T i T
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B B i C A i C

A A ACA C A ABB BCB A C ACC C C

C A B ACB C B

B A B C gB gC

δ δ

ω τ δδ ω τ

ω ξ α

µω
ζ ω ω ξ ω

ω ω

α

ζ ω α

α ω ω

− −

− +−

′− + − − + − +

′− + + − − −−

+ − + + − − + −
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+ − + + ( )1 0=

  (15) 

( ) 1 1 2 12 2
2 1 2

12 e e 0
2

i T i TC A A i B Fδ δµω ω µω′− − + + =           (16) 

Equations (15) and (16) can be written in polar coordinates as follows: 

( ) ( ) ( )1
1 1

1 e
2

i TA T a T θ=                     (17) 

( ) ( ) ( )1
1 1

1 e
2

i TB T b T θ=                     (18) 

Equations (17) and (18) are substituted into Equations (15) and (16), and the 
resulting result is obtained by separating the real part and the imaginary part: 

2
1 2 2 1

1 1

1 1 1sin sin ,
2 2 2

a a b Fξ µω φ φ
ω ω

′ = − − +             (19) 
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( ) ( )

( ) ( )

( ) ( )
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2
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ω
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      (20) 

( )2 2
1 2 2 1 2 2
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1 11 cos cos ,
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( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ]
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ω
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ω
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ω
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−

− −

− +  

− + + +

− +

      (22) 

4. Equilibrium Solution and Its Stability 

The steady-state motion of the system corresponds to the equilibrium solution 
when 1 2 0a b φ φ′ ′ ′ ′= = = =  in the Equations (19)-(22). In order to determine the 
stability of its equilibrium solution, the Equations (19)-(22) are transformed into 
the rectangular coordinate system: 

( )2 2
1 1 1 2 1 2 1 2 2

1 1

1 1 11 ,
2 2 2

p p q q qξ δ µω γ µω
ω ω

′ = − − − − −          (23) 

( )2 2
1 1 1 2 1 2 1 2 2

1 1 1

1 1 1 11 ,
2 2 2 2

q q p p p Fξ δ µω γ µω
ω ω ω

′ = − + + − + +      (24) 

( ) ( ) ( )

( ) ( ) ( )
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8 4 8
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8 8
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q q g p

q p q q q p p q
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ω
δ δ ξω γ ω τ

ω

ω
ω τ µω γ ωτ

ωω ω

ωτ α γ γ
ω

α γ
ω
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+ − +  −

 + − − + − −    

 + − + − + 
 

 

( ) ( )

( )

( ) [ ]

2 2 2 2 2
2 1 1 2 2

2

2 3 2 2
1 1 1

2

2 2 2
2 2 1 2 1

2

1 3 3 3 3
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q p q
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α γ γ
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           (25) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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δ δ ξω γ ω τ

ω

ω
ω τ µω γ ωτ

ωω ω

ωτ α γ γ
ω

α γ
ω

′ = − + − + 

− + +  −

 − − − + − +    
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( ) ( )

( )

( ) [ ]
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2 1 1 2 2

2

2 3 2 2
1 1 1

2

2 2 2
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2

1 3 3 3 3
4 2 4 8
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p q p p

α γ γ
ω

α γ γ γ
ω
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 − − + − + +  
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            (26) 

where 1 1cosp a φ= , 1 1sinq a φ= , ( )2 1 2cosp b φ φ= + , ( )2 1 2sinq b φ φ= + . 
In order to analyze the stability of the equilibrium solution, perturbation analy-

sis is first performed on the Equations (23)-(26), and the perturbation equation 
is as follows: 

{ } [ ]{ }T T
1 1 2 2 1 1 2 2, , , , , , ,p q p q J p q p q′ ′ ′ ′∆ ∆ ∆ ∆ = ∆ ∆ ∆ ∆            (27) 

where T stands for transpose matrix, Jacobian matrix. Then, the characteristic 
equation corresponding to the equilibrium point is expressed as:  

4 3 2
1 2 3 4 0λ δ λ δ λ δ λ δ+ + + + =                  (28) 

where λ  represents the eigenvalue of matrix λ , 1 2 3, ,δ δ δ  and 4δ  represent 
the coefficients of the eigenequation. Finally, Rose-Horwitz criterion is used to 
judge the stability of the equation. Obtain sufficient and necessary conditions for 
system stability: 

( ) 2
1 1 2 3 3 1 2 3 1 4 40, 0, 0, 0,δ δ δ δ δ δ δ δ δ δ δ> − > − − > >          (29) 

The necessary and sufficient conditions for static bifurcation are: 

4 0δ =                              (30) 

The necessary and sufficient conditions for Hopf bifurcation are: 

( ) 2
1 3 3 1 2 3 1 40, 0.δ δ δ δ δ δ δ δ> − − =                (31) 

The sufficient and necessary condition for the equilibrium solution of Equa-
tions (2) and (3) is that the real parts of all eigen roots of the Eigenequation (28) 
are less than zero; The equilibrium solution of Equations (2) and (3) is unstable 
if the real part of one of the eigen roots is positive. Moreover, if the real part of 
the characteristic root changes sign, the system may have a saddle bifurcation, 
which will lead to a jump phenomenon. Moreover, if the real part of a pair of 
complex eigen roots changes sign, the system may have a Hope bifurcation, re-
sulting in complex motions such as almost periodic motions. 
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Dimensionless parameter selection is as follows: 

1 2 1 1 21.0, 0.8, 0.2, 0.15, 0.3, 0.3, 0.1.Fω ω εσ εµ εξ εξ ε= = = − = = = =  

5. Effect of Cubic Nonlinear Coefficient on Vibration  
Reduction of System 

According to the above analysis, when the feedback gain coefficient 0gε = , the 
delay feedback term disappears. In this chapter, the nonlinear dynamic vibration 
absorber with negative stiffness coefficient h of 0.1εζ = −  is taken as an exam-
ple to analyze the vibration reduction effect of the third nonlinear coefficient b 
on the dynamic vibration absorber. Figure 2 shows the steady-state amplitude- 
frequency response curve of the main system with a negative stiffness coefficient 

0.1εζ = − . H1, H2 represent the Hopf bifurcation point, SN1, SN2, SN3, SN4 
represent the Saddle node bifurcation point. The solid line of the black dot 
represents the stable solution, the solid line of the red dot represents the unstable 
focus, and the solid line of the blue dot represents other unstable solutions ex-
cept the unstable focus. 

The dimensionless parameters in this chapter are selected as: 

1 2 1 1 21.0, 0.8, 0.2, 0.15, 0.3, 0.3, 0.1.Fω ω εσ εµ εξ εξ ε= = = − = = = =  
 

 

Figure 2. The steady-state amplitude frequency response curve of the main system. (a) 1.7εα =  (b) 2.5εα =  (c) 3.6εα =  
(d) 5.5εα = . 
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Separate analysis of different values of εα : As can be seen from Figure 2(a), 
when the cubic nonlinear coefficient 1.7εα = , Hope bifurcation occurs in the 
region from 0.04 to 0.3 of the external tuning parameter 2εδ , and saddle junc-
tion bifurcation occurs in the region from 0.18 to 0.8 of the external tuning pa-
rameter 2εδ  to the right of the resonance point, resulting in an unstable region. 
Because of the existence of Hope bifurcation, the system may have complex al-
most periodic motion. The saddle-junction bifurcation makes multiple periodic 
solutions coexist, and the system will jump. As can be seen from Figure 2(b), 
when the cubic nonlinear coefficient εα  increases from 1.7 to 2.5, the instabil-
ity region of the amplitude-frequency response curve due to Hope bifurcation 
and saddle junction bifurcation increases continuously. By increasing the cubic 
nonlinear coefficient h to 3.6, it can be seen in Figure 2(c) that the branches of 
unstable solutions intersect with the branches of stable solutions between the 
two saddle junction bifurcation points SN3 and SN4. When the cubic nonlinear 
coefficient εα  is increased to 5.5, the stable region of the amplitude-frequency 
response curve is increasing. 

Through comparative analysis of the four diagrams in Figure 2(a), it is found 
that although the internal resonance ratio is not strictly equal to 1 due to the in-
ternal tuning parameter 1 0εδ ≠ , it can be observed that the negative stiffness 
nonlinear dynamic vibration absorber can effectively control the amplitude of 
the system at the resonance point. With the increase of the cubic nonlinear coef-
ficient, the amplitude of the main system at the resonance point will decrease to 
a certain extent, which can be controlled to about 0.1, and the nonlinear vibra-
tion reduction effect is very significant. However, it should be noted that the 
nonlinear dynamic vibration absorber with larger εα  has a wider vibration at-
tenuation frequency band of its control system than the nonlinear dynamic vi-
bration absorber with smaller εα , so the selection of εα  should simultaneously 
satisfy the requirement that the width of the vibration attenuation band is wide 
enough and the resonance point replication is small enough. 

6. Effect of Time Delay on Vibration Reduction of System 

From the above analysis of the nonlinear dynamic vibration absorber, it can be 
seen that the negative stiffness nonlinear dynamic vibration absorber proposed 
in this chapter plays a good damping effect near the resonance point. In this chap-
ter, the negative stiffness nonlinear dynamic vibration absorber with cubic non-
linear parameter 0.1εα =  and negative stiffness coefficient 0.6εζ = −  is tak-
en as an example. That is, Figure 3 analyzes the effect of time-delay feedback 
control of external tuning parameter 2 0.05εδ = −  on vibration reduction of the 
dynamic system. Figure 3 shows the amplitude-time delay response curve of the 
main system under different feedback gain coefficients gε  with time-delay 
coupling negative stiffness dynamic vibration absorber under given parameters. 
Figure 3(a) shows the amplitude-delay response curve of the main system with 
feedback gain coefficient 0.4gε = − . As can be seen from the figure, the ampli-
tude-delay response curve of the main system will produce two formants and  
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Figure 3. The amplitude time delay response curve of the main system. (a) 0.4gε = − ; (b) 0.5gε = − ; (c) 0.65gε = − ;  
(d) 0.8gε = − . 

 
one anti-formant in the interval of delay value 0 to 10. Moreover, with the in-
crease of the delay, two Hope bifurcation points H1 and H2 are generated in the 
amplitude response curve with the delay of about 4.0 to 6.0, and the distance 
between H1 and H2 also increases with the increase of the absolute value of the 
feedback gain coefficient. When the time lag is taken between the Hoppe bifur-
cation points, the system may produce complex almost periodic motion and be-
come unstable, and the dynamic absorber loses the damping effect. As can be 
seen from the four figures in Figure 3, the amplitude of the anti-formant de-
creases with the increase of the absolute value of the feedback gain coefficient. 

7. Influence of Negative Stiffness Coefficient ζ on Vibration  
Reduction of System  

As shown in Figure 4. From the analysis of the above two chapters, it can be 
seen that the time-delay coupled negative stiffness nonlinear dynamic absorber 
proposed in this chapter plays a good damping effect near the resonance point. 
In this chapter, a time-delay coupled negative stiffness nonlinear dynamic vibra-
tion absorber with cubic nonlinear parameters 1.7εα =  and delay feedback 
gain coefficient 0.7gε = −  is taken as an example. As shown in Figure 4, the 
effect of time-delay feedback control at external tuning parameter 2 0.02εδ = −  
on vibration reduction of dynamic system is analyzed. Figure 4 shows the ampli-
tude-delay response curves of the main system under different negative stiffness  
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Figure 4. The amplitude time delay response curve of the main system. (a) 0.4εζ = −  (b) 0.5εζ = −  (c) 0.6εζ = −  (d) εζ =
0.7− . 

 
coefficients εζ  of the time-delay coupled negative stiffness dynamic vibration 
absorber with given parameters. 

Figure 4(a) shows the amplitude-delay response curve of the main system 
with a negative stiffness coefficient 0.4εζ = − . It can be seen from the figure 
that the amplitude-delay response curve of the main system will produce one 
formant and two anti-formants in the interval of time delay ranging from 0 to 10. 
Moreover, with the increase of time delay, the amplitude-time delay response 
curve generates two Hope bifurcation points H1 and H2 within the interval of 
time delay of about 4.0 to 7.0. When the delay takes a value between the Hope 
bifurcation points, the system will do complex almost periodic motion, resulting 
in instability of the system and loss of vibration damping effect of the dynamic 
vibration absorber. It can be seen from the four figures in Figure 4 that under 
different negative stiffness coefficients, the minimum vibration reduction point 
exists in the amplitude of the main system under the determined system struc-
ture parameters and time-delay feedback control parameters. 

8. Conclusions 

This chapter mainly studies the influence of time delay and structural parame-
ters on the vibration damping effect of the dynamic vibration absorber with 
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time-delay coupling and negative stiffness in nonlinear vibration damping sys-
tem. Taking the dynamic vibration absorber with different structural parameters 
and control parameters as an example, the influence of the cubic nonlinear coef-
ficient, time-delay control parameter and negative stiffness coefficient on reduc-
ing the amplitude of the main system is discussed respectively, and the following 
conclusions are obtained: 

1) The vibration reduction effect of the nonlinear dynamic vibration absorber 
is very good at the resonance point of the main system and an area near it, and 
when εα  is increased to a certain level, the stability area of the system is con-
stantly increasing. 

2) The amplitude curve of the main system of the nonlinear dynamic vibra-
tion absorber will produce Hope bifurcation and saddle bifurcation in the region 
far from the resonance point, so that the system will produce almost periodic 
motion and jumping phenomenon. 

3) For the nonlinear dynamic vibration absorber whose structural parameters 
are determined, delay feedback control can be adopted to control the amplitude 
of the main system. 

4) For different negative stiffness coefficients, under the determined system 
structure parameters and time-delay feedback control parameters, there is a min-
imum vibration reduction point in the amplitude of the main system. 
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