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Abstract 
The objective of this paper is to evaluate the reliability of a system in its dif-
ferent states (absence of failures, partial failure and total failure) and to pro-
pose actions to improve this reliability by an approach based on Monte Carlo 
simulation. It consists of a probabilistic evaluation based on Markov Chains. 
In order to achieve this goal, the functionalities of Markov Chains and Monte 
Carlo simulation steps are deployed. The application is made on a production 
system.  
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1. Introduction 

A production system is defined as the set of resources (people, machines, me-
thods and processes) whose synergy is organized to transform raw materials (or 
components) in order to create a product or a service [1] [2] [3]. 

Current production systems cause continuous irregularities in production and 
this is due to breakdowns that occur during manufacturing. The concern of any 
company is to ensure its function continuously with better quality, minimum 
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cost and maximum security [4]. To achieve this perspective, the companies have 
a maintenance department whose role is to choose an appropriate maintenance 
policy taking into consideration the technical, economic and financial aspects of 
the different methods in order to optimize the operating safety of the systems of 
productions that allow decisions to be made. 

This would mean making industrial systems or processes more reliable, and in 
so doing, reducing the costs of system failure, thereby boosting production and 
the manufacturer’s gross margin. What’s more, reliability enhances site safety 
and reduces the severity of environmental threats. 

To evaluate the performance of a system, in this paper, we use Monte Carlo 
simulation to find solutions to the problems of the production system. 

Monte Carlo simulation is a very interesting method because it gives access to 
many parameters inaccessible by other methods and leads to extremely detailed 
analyses of the systems studied. With the Monte Carlo simulation, the analyst 
clearly sees the combinations of input values associated with the outcomes and 
thus has information that is extremely useful for further analysis of the system. 

Monte Carlo simulation remains the most reliable tool for determining the 
probability of failure. However, it remains very costly, especially for complex 
systems with large finite element models and many uncertain design parameters. 

In the rest of this paper, we will describe the method used in the reliability as-
sessment. 

2. Markov Chains and Basic Concepts of Monte Carlo 
Simulation 

Monte Carlo methods by Markov Chains make it possible to greatly broaden the 
range of distributions that can be simulated numerically. They are relatively 
simple to implement and often only require knowledge of the target density 
function up to a constant, which makes them interesting in many situations. 

However, a naive implementation can lead to very long computation times, 
since the convergence of these methods is relatively slow when they are not well 
calibrated to a given situation. 

To build such an algorithm, it is therefore necessary to determine an appro-
priate set of transition probabilities P, that is to say irreducible, ergodic and 
having the right stationary distribution [5]. 

2.1. Markov Chains 

A sequence of random variables { }nX , 0n ≥  with values in the countable 
space E is called stochastic (discrete-time) process (with values in E). The set E is 
the state space, whose elements will be denoted i, j and k. When nX i= , the 
process is said to be in, or visiting, the state i at time n. 

Markov Chains are stochastic processes whose evolution is governed by a re-
currence equation of the type ( )1 1,n n nX f X Z+ += , where { }nZ , 1n ≥  is a se-
quence independent of the initial value 0X . This extremely simple structure is 
sufficient to generate a wide variety of behaviors. 
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2.1.1. Definitions and Property 
1) Definition 1: (Markov Chain) 
Consider ( ); 0nX n ≥  a sequence of random variables with values in the set of 

states E assumed to be equal to N. We say that this sequence is a Markov Chain 
if, for everything 0n ≥  and for every sequence ( )0 1 1, , , , ,ni i i i j− , we have the 
relation 1. 

 ( ) ( )1 0 0 1, ,n n n nP X j X i X i P X j X i+ += = = = = =  (1) 

Touche [6] makes the following observation: 
 The state of the process at the moment ( )1n +  depends only on that at the n 

previous moment, but not on its previous states; 
 We will say that such a process is without memory. 

2) Definition 2: (Homogeneous Markov Chain) 
A Markov Chain is said to be homogeneous (in time), if the preceding proba-

bility does not depend on n. We have the relation 2. 

 ( ) ( ) ( )1 1 0 ,  0ij n n ijp n P X j X i p P X j X i n+= = = = = = = ≥  (2) 

3) Definition 3: (Transition Probability) 
We define the probability of transition from state i to state j between times n 

and 1n +  by the quantity defined by relation 3. 

 ( )1 ,  ,ij n np P X j X i i j E+= = = ∀ ∈  (3) 

where ijp  is the probability that the system is in the state j at the moment 
1n +  knowing at the moment n it was in the state i. 

4) Definition 4: (Transition Matrix) 
The transition matrix is the matrix P whose general term ( ),p i j  is the 

probability of transition from state i to state j [6]. It is a matrix which has the 
characteristics below and is defined by relation 4 [7]. 
 It is square, 
 It is independent of time. 

 
( ) ( )

( ) ( )

1,1 1,

,1 ,

p p j
P

p i p i j

 
 =  
  



  



 (4) 

This matrix is stochastic because the (stochastic) line vector i contains the 
probabilities of all possible transitions starting from the state i whose sum is 
equal to one [8]. 

2.1.2. Property of the Matrix P 
 P admits 1 as its eigenvalue; 
 There is an eigenvector, associated with the eigenvalue 1 which defines a 

probability distribution. 
Notes: 

 A homogeneous Markov Chain “jumps” randomly from state to state, and 
the probability of each jump is given by the transition matrix P; 
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 The law of 0X  is called the initial law of the Markov Chain and is written 
by the relation 5 [6]. 

 ( ) ( ) ( ) ( )( )0 0 0 0 01 , 2 , 1 ,P X P X P X N P X Nπ = = = = − =  (5) 

2.1.3. Characterizations of a Homogeneous Markov Chain 
The sequence { }nX , n N∈  is a homogeneous Markov Chain if and only if 
there exists a matrix P having the property defined by relation 6. 

 
( )
( ) ( ) ( )

1 1 0 0

0 0 0 1 1 0

, , ,

, , ,   and , ,
n n n n

n n n

P X i X i X i

P X i p i i p i i n N i i E
− −

−

= = =

= = ∀ ∈ ∈



 

 (6) 

In this case, P is the homogeneous Markov Chain transition matrix ( )( )n n N
X

∈
 

[9]. 

2.1.4. State Graphs 
To visualize the evolution of a homogeneous Markov Chain, it is often useful to 
represent the transition matrix of P the Markov Chain by a directed graph. The 
nodes of the graph are the possible states for the Markov Chain. An arrow from 
state i to state j indicates that there is a strictly positive probability that the next 
state in the chain will be the state j if it is currently in the state i. We put weight 
( ),P i j  on the arrow going from state i to state j [10]. Figure 1 gives an illustra-

tion of a state graph. 

2.1.5. Law of Probability of Xn 
The analysis of the transient state of a Markov Chain consists in determining the 
vector ( )nπ  of the probabilities of states which one generally notes  

( ) ( )n
i nP X iπ = = , so that the chain ( ),nX n N∈  is in the state i after n step. 
The distribution of nX  can be described in the form of the row vector given 

by relation 7. 

 ( ) ( )( )1 2, ,n nπ π π=   with ( ) ( )
1 2 1n nπ π+ + =  (7) 

To calculate the vector ( )nπ , it is necessary to know either the value taken by 

0X , that is to say the initial state of the process, or its initial distribution defined 
by the relation 8 [11]. 

 ( ) ( ) ( ) ( )( )0 0 0 0
1 2 1, , , ,π π π π=    (8) 

According to the total probability theorem, we have relations 9 and 10. 
 

 

Figure 1. Markov plot. 
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 ( ) ( ) ( )0 0n n
i E

P X i P X j P X i X j
∈

= = = ⋅ = =∑  (9) 

 ( ) ( ) ( )0i i ij
i E

n p nπ π
∈

= ⋅∑  (10) 

In a similar way, we obtain the relation 11: 

 ( ) ( ) ( )0n nPπ π=  (11) 

Property: 
If the eigenvalue 1 of the stochastic matrix P of a homogeneous Markov chain 

is simple and dominant (any other eigenvalue has a modulus strictly less than 1) 
then the sequence ( )( )n n N

P
∈

 converges to a strictly positive matrix P∞  of the 
form given by relation 12. 

 
1

1

N

N

p p
P

p p

∞

 
 =  
  



  



 (12) 

The elements of the matrix P∞  verify relation 13. 

 1 2 1Np p p+ + + =  (13) 

Moreover, any sequence ( )( )n n
π

∈
 defined in its recurrent form given by eq-

uation 14 converges to π∞  as defined by relation 15 and is the unique probabil-
ity distribution satisfying relation 16. 

 
( ) ( ) ( )( )

1

0 0 0 0

,  
1   2     

n n P
n

P X P X P X N

π π

π
+ = × ∀ ∈ = = = =





 (14) 

 ( )1 2     Np p pπ∞ =   (15) 

 Pπ π× =  (16) 

2.1.6. Stationary Distributions and Limits for Homogeneous Markov  
Chains 

It is often found that the distribution ( )nπ  converges to a limiting distribution 
when n →∞ . In this case, the latter is said to define the steady state of the 
Markov Chain. 

In practice, it is generally accepted that the steady state of a Markov Chain is 
reached in a finite number of transitions [6]. 

1) Definition 1: (Limit Distribution) 
We say that a Markov Chain converges towards π  or has a limiting distribu-

tion π  if we have the relation 17 and that independently of the initial distribu-
tion ( )0π . 

 lim n

n
π π

→∞
=  (17) 

2) Definition 2: (Stationary Markov Chain) 
A Markov Chain is said to be stationary if the distribution ( )nπ  is indepen-

dent of time. 
In other words, if the initial distribution ( )0π  is a stationary distribution of 

the Markov Chain in question. 
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2.2. Basic Concepts of Monte Carlo Simulation 
2.2.1. Monte Carlo Method 
The Monte Carlo method is broadly defined as a technique for solving a model 
using random or pseudo-random numbers [12] [13]. Random numbers are sto-
chastic variables that are uniformly distributed over the interval [ ]0;1  and 
show stochastic independence [13]. This means that the variables can take any 
value between 0 and 1 with the same probability. Independence implies that if 
we know the random numbers 1 2 1, , , ir r r −  we have no information about ir . 

Pseudo-random numbers are generated by applying deterministic algorithms 
called random number generators. For practical purposes, the behavior of these 
numbers is considered strictly random. They are then considered to be un-
iformly distributed and independent. The most common algorithms for the 
generation of random numbers are: the multiplicative congruent generator and 
the mixed congruent generator [14]. Uniform random variables can sometimes 
be used directly in simulations. In other cases, they must be converted into 
non-uniform distributions before the start of the simulation. The procedures for 
generating non-uniformly distributed random variables can be categorized into 
three techniques: the inverse transformation method, the composition method 
and the accept-reject method. There are also special methods for specific distri-
butions. A more detailed description is given in [12] [14]. 

Among the most widespread applications of the Monte Carlo method, we find 
simulations [13]. 

2.2.2. Monte Carlo Simulation 
It is used in Dependability (SdF) when a system proves to be too complex to be 
treated by several methods, in this case Fault Trees (ADD), Analysis of the Fail-
ure Modes of their Effects and of their Criticality (AMDEC) and Petri nets 
(RDP). Its principle consists in simulating a large number of times the dynamic 
behavior of the components of a system in order to evaluate its operating cha-
racteristics, by reconstituting the total state [15]. 

1) Definitions 
There are several definitions, of which we will cite three. 
a) Definition 1 
The Monte Carlo simulation method is a numerical technique for solving 

mathematical problems by simulating random variables. There is no absolute 
consensus on a precise definition of what a Monte Carlo-like technique is, but 
the most usual description is that methods of this type are characterized by the 
use of chance to solve computational problems. They are generally applicable to 
problems of the numerical type, or to problems of a probabilistic nature itself 
[11]. 

b) Definition 2 
Monte Carlo methods are very often the only approaches usable for the study 

of high-dimensional nonlinear systems for which no analytical approach is ap-
plicable. They are used in an industrial context, to characterize the response to a 
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random excitation or to carry out a study of the propagation of uncertainties. 
They are generally applicable to problems of the numerical type, or to problems 
of a probabilistic nature themselves [9]. 

c) Definition 3 
The use of the Monte Carlo simulation method allows us to take into account 

the diversity of possible situations without resorting to point estimates. 
2) Advantages of Monte Carlo simulation 
Monte’s simulation Carlo is a very interesting method because it gives access 

to many parameters inaccessible by other methods and leads to extremely de-
tailed analyzes of the systems studied: 
- It is not limited by the number of states of the system studied because, even if 

there are hundreds of thousands of them, only the preponderant states ap-
pear during the simulation; 

- It allows any law of probability to be taken into account; 
- It allows the association in the same model of deterministic phenomena and 

random phenomena; 
- It can insert and simulate all features and processes of the system that can be 

recognized; 
- It can provide a wide range of output parameters; 
- Its computer implementation is easy. 

Three conditions are necessary for its use: 
 A behavior model of the studied system capable of correctly reproducing its 

operation and its evolution over time when it is subjected to various hazards 
(failure, repairs, external events, etc.). We can find at this stage, to properly 
model the system: the Markov process (which consists in representing the 
behavior of a system by a set of components that can be in a finite number of 
operating states) or the Petri nets (where the various states of the modeled 
system are traversed sequentially) which can constitute interesting supports; 

 A description of the data in probabilistic form; 
 Monte simulation software Carlo to carry out random draws of the input va-

riables (state of the system), to produce stories of the system from its beha-
vior model and to statistically analyze the output variables [9]. 

3) Stages of the Monte Carlo simulation 
In general, the Monte Carlo simulation involves the following steps: 
Step 1: Writing a parametric model 
The aim of this first step is to define an algebraic model (of the form  

( )1 2, , , ny f x x x=  ) which makes it possible to show the relationships between 
the input parameters of the system ( )1 2, , , nx x x  and the results obtained 
( )1 2, , , ny y y  through the mathematical function f. 

Step 2: Generation of random data 
The key to Monte Carlo simulation is that it generates the random data set. 
So, it is necessary to associate with each input random numbers according to 

adequate distributions (Uniform, Normal, etc.). In this case, it is necessary to 
have a random number generator to carry out this step. 
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Different modeling techniques are available. They depend on the architecture 
of the system studied, the undesirable events concerned, the criteria to be eva-
luated and the assumptions taken into account in the models. Among all these 
techniques, we mention: analytical equivalents, fault trees, Markov graphs, Petri 
nets, …etc. 

At the end of this step (in the context of a production system) we are able to 
define: 
 Probability density functions (distribution law, random variables); 
 A random number generator. 

This step also allows us to: 
○ To make a list of breakdowns; 
○ Define the event ready to simulate; 
○ To have a new state vector of the components to know the new temporary 

architecture of the system to be studied. 
Step 3: Evaluation of the model at a number of iterations  
Here, it is necessary to make an execution for the stochastic data defined in 

the previous step, to calculate the result ( )iy . 
It will therefore be a question of repeating the experiment n times, that is to 

say repeating the evaluation of the model (redoing step 2) with new random 
values of the variables ( )ix  of the model until reaching a threshold defined at 
the beginning. (a number of iterations, a precision, etc.). 

Step 4: Calculation of static values and through graphs 
This step involves representing the results obtained, by applying the previous 

steps, in the form of a histogram (graphical representation) to clearly visualize 
the results ( )iy  and calculate, among other things, statistical variables: the mean, 
the standard deviation, and the coefficient of variation [9]. 

There are generally two types of Monte Carlo simulation: non-sequential Monte 
Carlo (by system states) [16] [17] [18] and sequential (chronological) Monte 
Carlo [19] [20] [21] [22] [23]. 

The preceding statistical variables are evaluated by the sequential Monte Carlo 
simulation. 

The coefficient of variation makes it possible to impose a maximum number 
of samples as a criterion for stopping the process of convergence of the Monte 
Carlo simulation. 

The evaluation of the coefficient of variation is done by relation 18 [24]. 

 x

N x
σ

ε =
⋅

 (18) 

With:  
- N: the number of samples (years); 
- x : the mean of the study sample; 
- xσ : the standard deviation of the random variable x; 
- ε : the dispersion coefficient. 

Based on the 2005 Canadian Safety Survey, estimates with a coefficient of var-
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iation less than 16.6% are considered reliable and can be used. Estimates with a 
coefficient of variation between 16.6% and 33.3% should be accompanied by a 
disclaimer warning users of high error rates. 

Step 5: Analysis of the results obtained 
The idea of this step is to comment on the results obtained previously. 

3. Application of Monte Carlo Simulation by Markov Chains  
on a Production System for Reliability Modeling 

This method consists of representing the operation of a system by a set of com-
ponents that can be in a finite number of operating and fault states. 

Markov Chains are the simplest means to generate random probabilities and 
to model the states of a production system and possible transitions in Monte 
Carlo simulations. 

Considering a production system, the history of operating hours over a year of 
operation reveals the time between failures (TBF), given in Table 1. 

3.1. Production System Reliability Parameters 

The processing of data from the history of operating hours makes it possible to 
determine the reliability ( )R n , the probability of failures ( )F n , the probability 
density of failures ( )f n , the mean time between MTBF failures and the failure 
rate ( )nλ . 

Assuming that the TBFs evolve according to an exponential law, we then have 
relations 19 to 23 respectively. 

 ( ) ( )e n nR n λ− ⋅=  (19) 

 ( ) ( )1 e n nF n λ− ⋅= −  (20) 

 ( ) ( ) ( )e n nf n n λλ − ⋅=  (21) 

 
TBF

MTBF 461h
N

= =∑  (22) 

 ( ) 11 0.00217
MTBF

n hλ λ −= = =  (23) 

3.2. Markov Chain Modeling the Reliability of the Production  
System 

We consider here a production system evolving according to a stochastic process 
in discrete time and discrete state E space ( { }0,1,2E = ). 
 
Table 1. Operating hours (h) history. 

M
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r 
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to
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r 

N
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em
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r 

D
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be
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T
ot
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TBF (h) 460 530 320 500 600 512 660 502 620 463 220 145 5532 
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It is assumed that our production system can be found in three states: the state 
E0 where there are no failures, the state E1 where there is a partial failure and the 
state E2 where a total failure of the system is observed. It is assumed that the 
graph of states and transitions modeling reliability is described by Figure 2. 

3.3. Implementation of Monte Carlo Simulation Steps 

Step 1: Writing a parametric model 
The parametric model consists of a system of equations defined as follows: 

 

( )
( )
( )
( )
( )
( )
( )
( )
( )

1 0,0

1 0,1

1 0,2

1 1,0

1 1,1

1 1,2

1 2,0

1 2,1

1 2,2

0 0 1

1 0

2 0

0 1 0

1 1 0

2 1 0

0 2 0

1 2 0

2 2 0

n n

n n

n n

n n

n n

n n

n n

n n

n n

P X X p

P X X p

P X X p

P X X p

P X X p

P X X p

P X X p

P X X p

P X X p

λ

λ

λ

+

+

+

+

+

+

+

+

+

 = = = = −

 = = = =


= = = =


= = = =
 = = = =


= = = =


= = = =
 = = = =
 = = = =

 (24) 

Step 2: Generation of a first random number 
According to the writing of the previous parametric model and by applying 

relation 4, the reliability transition matrix is given by relation 25. 

 
1 0.99783 0.00217 0.00217

0 0 0 0 0 0
0 0 0 0 0 0

P
λ λ λ−   

   = =   
      

 (25) 

The initial condition is given by relation 26. 

 ( ) ( )0
0 1 2, , 1,0,0π π π =  (26) 

The probability of the system in its states (E0, E1 and E2) after one year of op-
eration is given by relation 27. 
 1 0 Pπ π= ×  (27) 

Thus, the generation of a first random number gives the relation 28. 

 
( ) ( )

( )

1
0 1 2

0.99783 0.00217 0.00217
, , 1,0,0 0 0 0

0 0 0

0.99783,0.00217,0.00217

π π π
 
 =  
  

=

 (28) 

 

 

Figure 2. System reliability state graph. 
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Step 3: Evaluation of the model at a number of iterations 
We first set the number of iterations to 90 randomly. 
To determine the probabilistic state of the system in the year n, we applied the 

distribution of nX  of Markov. We then denote nπ  the row matrix (relation 
29). 

 ( ) ( ) ( )( )1   2     n n n nP X P X P X Nπ = = = =  (29) 

According to relation 14, we have by conjecture relations 30 and 31. 

 0
n

n Pπ π= ×  (30) 

 ( ) ( )0
0 1 2 0 1 2, , , ,n nPπ π π π π π=  (31) 

 The probability of the system in its states after two years of operation is (rela-
tion 32): 

 ( ) ( )

( )

2

2
0 1 2

0.99783 0.00217 0.00217
, , 1,0,0 0 0 0

0 0 0

0.99566,0.00216,0.00216

π π π
 
 =  
  

=

  (32) 

 The probability of the system in its states after three years of operation is (re-
lation 33): 

 ( ) ( )

( )

3

3
0 1 2

0.99783 0.00217 0.00217
, , 1,0,0 0 0 0

0 0 0

0.99349,0.00216,0.00216

π π π
 
 =  
  

=

  (33) 

By conjecture, by completing with the probabilities of the system in its states 
after n years of operation { }( )4,5, ,90n∈  , we have Table 2. 

Step 4: Calculation of static values through the graphs 
Table 3 gives the various random values of system reliability and failure. 
Table 4 gives the different random values of the probability density of the 

system. 
According to the series of samples obtained previously, the reliability, failure 

and density graphs are represented respectively by Figures 3-5 and Tables 5-7 
show the values of the reliability, failure and density. 

Step 5: Analysis of the results obtained 
At the end of the previous results, we see that the reliability of the production 

system decreases slowly over time and stabilizes from the 87th year of operation, 
ie with a value of 0.82860 (Figure 3). The production system remains guaran-
teed during the uptime, with reliability exceeding 80%. However, increased 
monitoring of the production system remains necessary, in order to increase its 
reliability. 

On the other hand, reduced reliability corresponds to an increase in the 
probability of failures (Figure 4). The fact that the probability of failure ap-
proaches 1, means an increase in repair of the production system. 
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Table 2. Probability of reliability after n years. 

n π0 π1 π2 N π0 π1 π2 

1 0.99783 0.00217 0.00217 46 0.90550 0.00196 0.00196 

2 0.99566 0.00216 0.00216 47 0.90353 0.00196 0.00196 

3 0.99349 0.00216 0.00216 48 0.90156 0.00196 0.00196 

4 0.99133 0.00215 0.00215 49 0.89960 0.00195 0.00195 

5 0.98991 0.00215 0.00215 50 0.89764 0.00195 0.00195 

6 0.98776 0.00214 0.00214 51 0.89569 0.00194 0.00194 

7 0.98561 0.00214 0.00214 52 0.89474 0.00194 0.00194 

8 0.98347 0.00213 0.00213 53 0.89279 0.00194 0.00194 

9 0.98133 0.00213 0.00213 54 0.89085 0.00193 0.00193 

10 0.97920 0.00212 0.00212 55 0.88891 0.00193 0.00193 

11 0.97707 0.00212 0.00212 56 0.88698 0.00192 0.00192 

12 0.97494 0.00212 0.00212 57 0.88505 0.00192 0.00192 

13 0.97282 0.00211 0.00211 58 0.88312 0.00192 0.00192 

14 0.97070 0.00211 0.00211 59 0.88120 0.00191 0.00191 

15 0.96859 0.00210 0.00210 60 0.87928 0.00191 0.00191 

16 0.96648 0.00210 0.00210 61 0.87737 0.00190 0.00190 

17 0.96438 0.00209 0.00209 62 0.87546 0.00190 0.00190 

18 0.96228 0.00209 0.00209 63 0.87356 0.00189 0.00189 

19 0.96019 0.00208 0.00208 64 0.87116 0.00189 0.00189 

20 0.95810 0.00208 0.00208 65 0.86926 0.00189 0.00189 

21 0.95602 0.00207 0.00207 66 0.86737 0.00188 0.00188 

22 0.95394 0.00207 0.00207 67 0.86548 0.00188 0.00188 

23 0.95186 0.00207 0.00207 68 0.86360 0.00187 0.00187 

24 0.94994 0.00206 0.00206 69 0.86172 0.00187 0.00187 

25 0.94787 0.00206 0.00206 70 0.85985 0.00186 0.00186 

26 0.94581 0.00205 0.00205 71 0.85798 0.00186 0.00186 

27 0.94375 0.00205 0.00205 72 0.85611 0.00186 0.00186 

28 0.94170 0.00204 0.00204 73 0.85425 0.00185 0.00185 

29 0.93965 0.00204 0.00204 74 0.85239 0.00185 0.00185 

30 0.93761 0.00203 0.00203 75 0.85054 0.00184 0.00184 

31 0.93557 0.00203 0.00203 76 0.84869 0.00184 0.00184 

32 0.93353 0.00203 0.00203 77 0.84684 0.00184 0.00184 

33 0.93150 0.00202 0.00202 78 0.84500 0.00183 0.00183 

34 0.92947 0.00202 0.00202 79 0.84316 0.00183 0.00183 

35 0.92745 0.00201 0.00201 80 0.84133 0.00182 0.00182 

36 0.92543 0.00201 0.00201 81 0.83950 0.00182 0.00182 
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Continued 

37 0.92342 0.00200 0.00200 82 0.83767 0.00182 0.00182 

38 0.92141 0.00200 0.00200 83 0.83585 0.00181 0.00181 

39 0.91941 0.00199 0.00199 84 0.83403 0.00181 0.00181 

40 0.91741 0.00199 0.00199 85 0.83222 0.00180 0.00180 

41 0.91541 0.00199 0.00199 86 0.83041 0.00180 0.00180 

42 0.91342 0.00198 0.00198 87 0.82860 0.00180 0.00180 

43 0.91143 0.00198 0.00198 88 0.82680 0.00179 0.00179 

44 0.90945 0.00197 0.00197 89 0.82680 0.00179 0.00179 

45 0.90747 0.00197 0.00197 90 0.82680 0.00179 0.00179 

 
Table 3. Reliability and failure values. 

n R(n) F(n) n R(n) F(n) N R(n) F(n) 

1 0.99783 0.00217 31 0.93557 0.06443 61 0.87737 0.12263 

2 0.99566 0.00434 32 0.93353 0.06647 62 0.87546 0.12454 

3 0.99349 0.00651 33 0.93150 0.06850 63 0.87356 0.12644 

4 0.99133 0.00867 34 0.92947 0.07053 64 0.87116 0.12884 

5 0.98991 0.01009 35 0.92745 0.07255 65 0.86926 0.13074 

6 0.98776 0.01224 36 0.92543 0.07457 66 0.86737 0.13263 

7 0.98561 0.01439 37 0.92342 0.07658 67 0.86548 0.13452 

8 0.98347 0.01653 38 0.92141 0.07859 68 0.86360 0.13640 

9 0.98133 0.01867 39 0.91941 0.08059 69 0.86172 0.13828 

10 0.97920 0.02080 40 0.91741 0.08259 70 0.85985 0.14015 

11 0.97707 0.02293 41 0.91541 0.08459 71 0.85798 0.14202 

12 0.97494 0.02506 42 0.91342 0.08658 72 0.85611 0.14389 

13 0.97282 0.02718 43 0.91143 0.08857 73 0.85425 0.14575 

14 0.97070 0.02930 44 0.90945 0.09055 74 0.85239 0.14761 

15 0.96859 0.03141 45 0.90747 0.09253 75 0.85054 0.14946 

16 0.96648 0.03352 46 0.90550 0.09450 76 0.84869 0.15131 

17 0.96438 0.03562 47 0.90353 0.09647 77 0.84684 0.15316 

18 0.96228 0.03772 48 0.90156 0.09844 78 0.84500 0.15500 

19 0.96019 0.03981 49 0.89960 0.10040 79 0.84316 0.15684 

20 0.95810 0.04190 50 0.89764 0.10236 80 0.84133 0.15867 

21 0.95602 0.04398 51 0.89569 0.10431 81 0.83950 0.16050 

22 0.95394 0.04606 52 0.89474 0.10526 82 0.83767 0.16233 

23 0.95186 0.04814 53 0.89279 0.10721 83 0.83585 0.16415 

24 0.94994 0.05006 54 0.89085 0.10915 84 0.83403 0.16597 

25 0.94787 0.05213 55 0.88891 0.11109 85 0.83222 0.16778 

26 0.94581 0.05419 56 0.88698 0.11302 86 0.83041 0.16959 
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Continued 

27 0.94375 0.05625 57 0.88505 0.11495 87 0.82860 0.17140 

28 0.94170 0.05830 58 0.88312 0.11688 88 0.82680 0.17320 

29 0.93965 0.06035 59 0.88120 0.11880 89 0.82680 0.17320 

30 0.93761 0.06239 60 0.87928 0.12072 90 0.82680 0.17320 

 
Table 4. Probability density value. 

n f(n) n f(n) n f(n) 

1 0.00216529 31 0.00203019 61 0.00190389 

2 0.00216058 32 0.00202576 62 0.00189975 

3 0.00215587 33 0.00202136 63 0.00189563 

4 0.00215119 34 0.00201695 64 0.00189042 

5 0.00214810 35 0.00201257 65 0.00188629 

6 0.00214344 36 0.00200818 66 0.00188219 

7 0.00213877 37 0.00200382 67 0.00187809 

8 0.00213413 38 0.00199946 68 0.00187401 

9 0.00212949 39 0.00199512 69 0.00186993 

10 0.00212486 40 0.00199078 70 0.00186587 

11 0.00212024 41 0.00198644 71 0.00186182 

12 0.00211562 42 0.00198212 72 0.00185776 

13 0.00211102 43 0.00197780 73 0.00185372 

14 0.00210642 44 0.00197351 74 0.00184969 

15 0.00210184 45 0.00196921 75 0.00184567 

16 0.00209726 46 0.00196494 76 0.00184166 

17 0.00209270 47 0.00196066 77 0.00183764 

18 0.00208815 48 0.00195639 78 0.00183365 

19 0.00208361 49 0.00195213 79 0.00182966 

20 0.00207908 50 0.00194788 80 0.00182569 

21 0.00207456 51 0.00194365 81 0.00182172 

22 0.00207005 52 0.00194159 82 0.00181774 

23 0.00206554 53 0.00193735 83 0.00181379 

24 0.00206137 54 0.00193314 84 0.00180985 

25 0.00205688 55 0.00192893 85 0.00180592 

26 0.00205241 56 0.00192475 86 0.00180199 

27 0.00204794 57 0.00192056 87 0.00179806 

28 0.00204349 58 0.00191637 88 0.00179416 

29 0.00203904 59 0.00191220 89 0.00179416 

30 0.00203461 60 0.00190804 90 0.00179416 
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Figure 3. System reliability probability graph by years. 
 

 

Figure 4. System failure graph by years. 
 

 

Figure 5. Probability density graph of system failures by years. 
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Table 5. Statistics of R(n) of the system. 

Series size 90 

Minimum 0.99783 

Maximum 0.82680 

Mean 0.90819 

Standard deviation 0.05092 

Median 0.90648 

Coefficient of variation 0.59% 

 
Table 6. Statistics of F(n) of the system. 

Series size 90 

Minimum 0.00217 

Maximum 0.17320 

Mean 0.09180 

Standard deviation 0.05092 

Median 0.09351 

Coefficient of variation 5.84% 

 
Table 7. Statistics of f(n)of the system. 

Series size 90 

Minimum 0.00179 

Maximum 0.00216 

Mean 0.00197 

Standard deviation 0.05092 

Median 0.0935 

Coefficient of variation 5.84% 

 
The curve in Figure 5 represents the instantaneous failure probability density. 

In this case, the increase in downtime of the production system causes a decrease 
in reliability and increases the probability of the presence of a defect or failure. 

With regard to Tables 5-7 and by applying the safety threshold set in Canada 
in 2005, the estimates of the coefficient of variation are reliable. Indeed, the low-
er the value of the coefficient of variation, the more accurate the estimation of 
the reliability functions (R(n), F(n) and f(n)). This can be explained by a low 
dispersion around the mean, due to a low coefficient of variation. 

4. Proposals for Actions to Improve Reliability  

To improve the reliability of the production system, we offer the following rec-
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ommendations: 
○ Daily inspections must be respected in order to detect failures very early to 

trigger the repair process as soon as possible; 
○ When a breakdown occurs, immediately change the faulty element with an 

element playing an equivalent but more reliable role; 
○ Perform preventive maintenance (regular maintenance, monitoring of ano-

maly rate increases, etc.); 
○ Comply with the established maintenance program. 

5. Conclusion 

This paper aimed to evaluate the reliability of a production system and to pro-
pose actions to improve reliability, by applying Monte Carlo simulation using 
Markov Chains. The main reliability characteristics were evaluated. It turns out 
that the production system always ensures better functioning during its life 
cycle, due to a reliability exceeding 80%. However, as this reliability decreases, 
albeit slowly over time, this does not negate the increase in failure frequency. It 
is on the basis of this observation that suggestions for improving reliability have 
been made. 
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