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Abstract 
General anesthesia relies on pharmacological anesthetics. However, some side 
effects of anesthetics have been observed. Non-pharmacological transcranial 
photobiomodulation (tPBM) as an adjuvant treatment may reduce the dosage 
of pharmacological anesthetics while maintaining anesthetic depth. The inhi-
bitory effects of tPBM in terms of central nervous system depression render it 
a potential approach for inducing general anesthesia. Alteration of quantum 
processes of neuronal microtubules, the mechanisms of general anesthesia on 
consciousness, may occur in response to tPBM treatments. Further, tPBM as 
an adjuvant treatment may facilitate the distribution of the pharmacological 
anesthetics in the brain. The analgesic effects of photobiomodulation (PBM) 
are acknowledged, and PBM has been used for regional analgesia. However, 
whether tPBM can be used for general anesthesia is unknown. Here, I define 
“optoanesthesia” as “the use of tPBM for general anesthesia”. I hypothesize 
that optoanesthesia can act as a means of general anesthesia. Supporting evi-
dence in the form of unconsciousness, amnesia, and immobilization is provided 
in this paper. In addition, the tPBM-induced frequent yawning (a manifestation 
of transient arousal-shift during the continuing loss of consciousness during 
induction of general anesthesia) observed incidentally in my previous study 
of tPBM preconditioning for seizures also supports the hypothesis. I further 
discuss the issues with respect to the pharmacokinetics, parameters of optoa-
nesthesia such as wavelength and targeted brain regions, and apparatus design, 
as well as the compatibility of the optoanesthesia and the Bispectral Index 
Monitoring System during surgery. Future research is needed to prove this 
hypothesis. 
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1. Introduction 

General anesthesia is currently induced mainly using pharmacological anesthet-
ics administered via inhalation and intravenously. However, these agents have 
some drawbacks. Specifically, inhalational anesthetics have side effects such as 
sevoflurane-induced hypotension and sevoflurane-induced delirium and agita-
tion [1], desflurane-and-sevoflurane-induced respiratory complications [2], while 
intravenous agents have side effects such as propofol-induced apnea [3] and hy-
potension [4], and etomidate-induced myoclonus [5]. Nonpharmacological ap-
proaches to be used as adjuvant treatments combined with current pharmaco-
logical anesthetics are thus needed, to facilitate reducing the dosage of pharma-
cological anesthetics while maintaining anesthetic depth. 

Photobiomodulation (PBM), previously termed “low-level laser/light therapy” 
[6], refers to the use of red to near-infrared (NIR) light to induce biological alte-
rations in organisms that result from the interactions of photons with molecules 
in cells or tissues [7]. It is generally accepted that mitochondrial cytochrome c 
oxidase (CcO) is the primary photoreceptor of PBM [8] [9]. Transcranial PBM 
(tPBM) is the application of PBM transcranially. Photons of laser light or from a 
light-emitting diode (LED) in the red to NIR wavelength administered during 
tPBM treatments penetrate the scalp, skull, and dura, and reach the brain. The 
wavelength 808 (or 810) nm exhibits the best light penetration in human brain 
tissue when compared with the wavelengths 660 nm, 940 nm, and 980 nm [10] 
[11]. This technique has been applied in several neurological diseases [12], such 
as stroke [13], traumatic brain injury [14], Alzheimer’s disease/dementia [15], 
Parkinson’s disease (PD) [16], epilepsy [17]-[22], and depression [23]. It is a safe 
and noninvasive approach and has no known side effects, apart from one report 
of a mild increase in diastolic blood pressure [24]. 

The tPBM technique produced inhibitory effects in the cortex and hippo-
campus of normal healthy rats [25], while tPBM monotherapy attenuated sei-
zures in peripubertal (808 nm wavelength) [17] [19] and adult rats (750 nm) 
[21]. In addition, tPBM (808 nm) add-on therapy combined with valproic acid 
attenuated pentylenetetrazole (PTZ)-induced seizures [18]. Further, Tsai [20] 
proposed the use of tPBM as an add-on therapy to be used with general anes-
thetics to treat pediatric refractory status epilepticus and super refractory status 
epilepticus. These tPBM add-on strategies may reduce the demand for/dose of 
general anesthetics, thereby reducing the side effects of anesthesia. Although not 
all anesthetics are anticonvulsant, some are proconvulsant, and virtually every 
anesthetic has both proconvulsant and anticonvulsant properties [26], tPBM has 
anticonvulsant effects in that it inhibits abnormal electric discharge, thus partially 
meeting the requirements for anesthetics—central nervous system depression 
[27]. 

With respect to mechanisms through which tPBM induces general anesthesia, 
I proposed that tPBM has the potential to alter consciousness reversibly as well 
and that tPBM may alter the quantum processes in microtubules that underly 
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consciousness [28]. General anesthesia alters consciousness reversibly [29]. Ha-
meroff and Penrose [28] proposed in the mid-1990s that “consciousness depends 
on biologically ‘orchestrated’ coherent quantum processes in collections of micro-
tubules within brain neurons” [28]. With respect to the role of microtubules in 
anesthesia, it was suggested more than 50 years ago that microtubular proteins 
are susceptible to reversible depolymerisation caused by anesthetics [30]. Recent 
studies have confirmed that general anesthetics bind to and affect microtubules 
[31] [32] [33]. Craddock et al. [34] suggested that anesthetics act on quantum 
channels in the microtubules of brain neurons. Recently, Staelens et al. [35] 
demonstrated that PBM (810 nm) modulates the microtubules in living cells. In 
response to tPBM treatments, alteration of quantum processes may occur in the 
microtubules within the neurons of the brain regions that are related to general 
anesthesia. 

Further, tPBM as an adjuvant treatment may facilitate the distribution of phar-
macological anesthetics in the brain. Moro et al. [36] speculated that PBM has an 
arousal-dependent effect. When PBM is applied during wakefulness, it stimu-
lates neuronal function; boosts mitochondrial activity and gene expression; in-
fluences α, β, and γ, waves; improves neuronal survival; and enhances neuro-
protection against distress and neurodegenerative diseases. When it is applied 
during sleep, PBM may be more effective for the clearance of cerebral spinal 
fluid (CSF). They further suggested that PBM may increase the permeability of 
aquaporin-4 in astrocytes, thereby increasing the flow of CSF. Based on this 
proposal that PBM has arousal-dependent effects of PBM, in the induction and 
maintenance phases induced using current intravenous and inhaled anesthetics, 
the patients’ arousal condition is closer to sleep than to wakefulness, so the admin-
istration of tPBM may enhance the distribution of the pharmacological anesthetics 
by increasing the flow of CSF. Therefore, tPBM may have a synergistic effect on 
general anesthetics when it is administered during the induction and mainten-
ance phases. 

With respect to regional analgesia, the local analgesic effects of PBM have 
been used in dental surgery to reduce injection pain [37] [38], and a positive 
analgesic outcome was noted [39]. Local anesthetic effects of PBM during pedia-
tric dental procedures have also been confirmed [40]. Further, PBM adminis-
tered in the form of laser acupuncture with a wavelength of 808 nm induced 
analgesic effects in an animal model of postsurgical pain [41]. In humans, PBM 
administered as laser acupuncture with a wavelength of 810 nm relieved post-
operative pain in patients with traumatic rib fractures and this was confirmed in 
a randomized-controlled trial (RCT) [42]. In the setting of general anesthesia, 
tPBM (810 nm) had been reported to ameliorate mice with a perioperative neu-
rocognitive disorder caused by isoflurane inhalation anesthesia [43]. Tsai [44] 
speculated in 2021 that “tPBM might possess general anesthetic effects on the brain”. 
However, the use of tPBM as a form of nonpharmacological general anesthesia has 
not yet been explored. 
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Here, I define “optoanesthesia” as “the use of tPBM for general anesthesia”. 
This nonpharmacological method of general anesthesia may be useful as an ad-
juvant treatment to be combined with current anesthetics in general anesthesia. 

2. Hypothesis 

I hypothesize that optoanesthesia can act as a means of inducing general anes-
thesia. This hypothesis can be divided into three secondary hypotheses: 

1) Optoanesthesia is effective; 
2) Optoanesthesia can be used as an adjuvant treatment to induce general 

anesthesia; and 
3) Optoanesthesia can be used as the sole treatment to induce general anes-

thesia. 

3. Supporting Evidence 

The characteristics of general anesthesia are amnesia, unconsciousness (hypno-
sis), analgesia, and immobilization [45] [46]. The analgesic effects of tPBM are 
discussed above. With respect to unconsciousness, cortical and subcortical ef-
fects are involved in the mechanisms of anesthetics-induced unconsciousness 
[46]. Among the pharmaceuticals that exhibit cortical effects, propofol, pento-
barbital, ketamine, isoflurane, enflurane, and halothane inhibit spontaneous ac-
tion potentials in the cortical neurons [46]. Similarly, tPBM induces a transitory 
reduction in the excitability of the designated cortex (primary motor cortex, or 
M1 [47]). In subcortical areas such as the thalamic reticular nucleus (TRN), cor-
tical activity was suppressed during isoflurane anesthesia under TRN stimulation 
[46] [48], and sensitivity to propofol via GABA type B (GABAB) receptors is in-
creased under TRN stimulation [49] [50]. Correspondingly, Radwan et al. [51] 
speculated that tPBM mimics benzodiazepine and barbiturates in its blocking 
effect on GABAB receptors (i.e. tPBM acts as a positive modulator of GABAB re-
ceptors [18]).  

Amnesia elicited by etomidate is caused by the modulation of GABA type A 
(GABAA) receptors in the hippocampus [52] [53] [54]. The study by Tsai et al. 
[18] study indicated that tPBM can also modulate GABAA receptors by attenu-
ating the noncompetitive antagonism of PTZ toward the GABAA receptor com-
plex in postsynaptic principal cells. 

Immobilization can be induced by the action of GABAA agonist in the meso-
pontine tegmental anesthesia area (MPTA) [55] [56]. Coincidentally, Tsai et al. 
[18] speculated that tPBM could act as a positive modulator of GABAA recep-
tors, and this is equivalent to considering tPBM as a GABAA agonist. Therefore, 
one of the more important brain regions targeted in optoanesthesia is the 
MPTA. 

Tsai [44] observed incidentally that during 60-minute tPBM preconditioning 
behavioral observations, frequent yawning was observed in rats subjects to tPBM 
treatment (808 nm) 60 minutes prior to a PTZ injection. Up to 11 times of 
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yawning per rat were observed in rats received tPBM preconditioning, and it was 
more frequently compared to yawning frequency observed in rats subjected to a 
sham treatment 60 minutes prior to the PTZ injection (up to 6 times per rat, 
unpublished data). Further, rats in the tPBM treatment group tended to be 
sleepier than those in the sham treatments group, although some rats in the lat-
ter group did also sleep during the 60-minute observation period (unpublished 
data). Yawning during the intravenous induction of general anesthesia with thi-
opental or propofol indicates a transient arousal-shift during the continuing loss 
of consciousness [57]. Such yawning responses may occur one minute after the 
injection of thiopental or propofol, with an occurrence rate of approximately 
50% [58]. Upper-airway collapse during the induction of anesthesia coincides with 
increased yawning, while upper-airway muscle dilation and decreased yawning 
caused either by either teeth clenching or opioids administrations coincides with 
obstructive sleep apnea-like symptoms [59]. Yawning after tPBM administration 
mimics the yawning that is elicited by thiopental or propofol administration 
during induction of general anesthesia. 

4. Discussion 

With respect to pharmacokinetics of optoanesthesia, since the tPBM photons do 
not “dissolve” in the blood flow and are not absorbed by the alveolar, its phar-
macokinetics are presumably different from those of current pharmacologi-
cal anesthetics. I now discuss the physiological basis of the pharmacokinetics 
of tPBM. The tPBM photons are absorbed by the CcO in brain cells (such as 
neurons, astrocytes, and microglia). Although there is no direct distribution of 
the photons around the rest of the body, the distribution of adenosine triphos-
phate (ATP), red blood cells (RBC) carrying oxygenated hemoglobin, and neu-
rotrophic factors (as a result of direct mediation by the tPBM photons) within 
the blood flow would distribute. It has been reported that tPBM increases re-
gional blood flow [60] [61]. In particular, the regional blood flow in brain re-
gions such as the reticular formation may increase in response to tPBM treat-
ments. Since tPBM increases ATP production, the quantity of non-synaptic and 
non-vesicular ATP released into the bloodstream [62] would increase. Further, 
tPBM also increases changes in the concentration of oxygenated hemoglobin 
Δ[HbO] and neurotrophic factors. Accordingly, the quantity of ATP, Δ[HbO], 
and neurotrophic factors may increase in the brain regions related to general 
anesthesia. In addition, GABA release (which mimics the action of propofol in 
the induction phase [63]) in the pontine reticular formation may increase following 
tPBM treatment. This conjecture is based on the study by Tsai et al. [17] that tPBM 
(808 nm) preserved GABAergic interneurons (parvalbumin-positive interneurons, 
PV-INs) in the hippocampus from status epilepticus-induced or PTZ-induced 
apoptosis and preserves the neurites of the PV-INs surrounding pyramidal cells. 
Considering that the tPBM photons are absorbed by mitochondrial CcO, and 
probably by other proposed photoreceptors as well, there may be no accumula-
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tion of photons in the brain or the rest of the body. Notably, Moro et al. specu-
lated that biophotons may be involved in the mechanisms of tPBM [36]. If so, 
then there would be the issue of biophotons accumulation to be addressed. With 
respect to the clearance of wastes products caused by pharmacological anesthet-
ics and excess neurotrophic factors, tPBM promotes the glymphatic system dur-
ing treatments [64]. It also increases the permeability of the blood-brain barrier 
under healthy conditions. 

Different ranges of wavelengths in tPBM treatments in combination with dif-
ferent targeted brain regions might have different or even opposite effects in the 
human brains. The wavelength-brain region combinations in tPBM treatment 
that 780 nm [21], 808 nm [17] [19], 830 nm [25] [51], 850 nm, 905 nm [47] and 
980 nm [65], targeting the precentral gyrus and anterior paracentral lobule (M1), 
temporal cortex, hippocampus, limbic system, TRN, reticular formation, and 
brain stem may have suppressive effects toward brain state arousal. In contrast, 
tPBM with wavelengths longer than 1000 nm, such as 1064 nm, targeting the pre-
frontal cortex boosts brain state arousal, with effects that manifest as cognitive en-
hancement [66]. Former wavelength-brain region combinations may be more 
suitable for optoanesthesia. 

The tPBM apparatus available varies in appearance and purpose, in terms of 
the targeted brain regions. McGee et al. [67] designed a tPBM apparatus they 
called the “PDNeuro Helmet” for patients with PD, with 20 points of light 
sources including the 2nd cervical vertebrae (C2) points in the sub-occipital re-
gion corresponding to the brain stem. The locations of the points closely match 
those of the corresponding pontine reticular formation. Zomorrodi et al. dem-
onstrated that tPBM with “Vielight Neuro Gamma” (known as Neuro Gamma) 
modulates gamma oscillations [68], and the brain regions targeted by the Neuro 
Gamma and the Neuro Gamma 3 (Brain) [69] include the temporal lobe. The 
design of a tPBM apparatus for optoanesthesia targeting the brain stem (espe-
cially the MPTA) and the temporal lobe could refer to the design of the PDNeu-
ro, the Neuro Gamma, and the Neuro Gamma 3 (Brain) [69]. Notably, the fore-
head (corresponds to the prefrontal cortex) should be avoided when designing 
the tPBM apparatus for optoanesthesia. 

The administration of optoanesthesia does not conflict or interfere with the 
use of the Bispectral Index Monitoring System (BIS) [70] during surgery. The 
first and second patches of the BIS are applied on the forehead, at points corres-
ponding to the prefrontal cortex. However, the third patch is located in the tem-
poral region. I, therefore, recommend that the patch or probe of the tPBM device 
placed contralaterally to the site of the third BIS patch. Using this arrangement, 
the tPBM patch or probe would correspond to the hippocampus (which is con-
tralateral to the side on which the temporal BIS patch is placed), thalamus, lim-
bic system, and the posterior neck around 1st cervical vertebrae-C2, corresponding 
to the pontine reticular formation and the brain stem. Considering the neuroa-
natomical distance between the BIS and tPBM patches or probes, there should 
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be no conflict or interference between them. 
In vitro, in vivo, and human studies, as well as clinical trials including RCTs, 

are thus needed to test the hypothesis I have proposed here. 

5. Conclusion 

I have proposed a hypothesis that “optoanesthesia can act as a means of induc-
ing general anesthesia”. Supporting evidence includes the fact that tPBM can 
induce a transitory reduction in cortical excitability, which resembles the effects 
of pharmacological anesthetics in suppressing spontaneous action potentials in 
cortical neurons. The fact that tPBM elicits yawning resembles the effects of 
intravenous anesthetics. Further studies are needed to prove this hypothesis. 
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