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Abstract 
In this paper, we consider the estimation problem of the unknown link func-
tion in the nonparametric multiplicative regression model. Combining the 
penalized splines technique, the least product relative error estimation me-
thod is proposed, where an effective model degree of freedom is defined, then 
the smoothing parameter is chosen by some information criteria. Simulation 
studies show that these strategies work well. Some asymptotic properties are 
established. A real data set is analyzed to illustrate the usefulness of the pro-
posed approach. Finally, some possible extensions are discussed. 
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1. Introduction 

In many applications, such as the studies of financial and biomedical data, the 
response variable usually is positive. For modelling the relationship between the 
positive response and a set of explanatory variables, a natural idea is that first 
take an appropriate transformation for the response, e.g., the logarithmic trans-
formation, then some common regression models, such as the linear regression 
or quantile regression, can be employed based on the transformed data. As ar-
gued by [1], the least square or least absolute deviation criteria are both based on 
absolute errors, which is not desirable in many practical applications. Rather, the 
relative errors are more of a concern. In the early literature, many authors have 
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contributed fruitfully to this issue, see [2] [3] and [4]. Especially, since the work 
of [1], more attention has focused on the multiplicative regression (MR) model, 
and various extensions have been investigated, for example, see [5] [6] [7] and 
references therein. 

It is worth noting that all the existing studies on MR are in the framework of 
linear (parametric) or semi-parametric MR models. Once the parametric forms 
or structures are misspecified, the resulting estimation and inference may be bi-
ased and the resulting conclusions become unreliable. Rather, nonparametric 
modelling is conceptually appealing and more robust. To the best of our know-
ledge, there are seldom studies on this problem. To fill this gap, we will address 
this problem in detail in this paper. 

When estimating the nonparametric function g(z) in some semi-parametric 
MR models, such as the partially linear MR model ([6] [8] [9]), single index MR 
model ([10] [11] [12]), varying coefficient MR model ([13]), and others ([14]), 
almost all the researchers use the local linear smoothing technique and approx-
imate it in a neighborhood of z for obtaining its estimation, where a good choice 
of the bandwidth is quietly critical and its value is sensitive to the performance 
of the resulting estimation and inference. Besides, due to the fact that the value 
of the function at every observation of z is estimated separately, the optimal se-
lection of bandwidth for all observations may be not the same and the numerical 
problem will become untractable then the sample size is large. As a result, the 
researchers had to make a compromise and assume that the bandwidths used for 
estimating g(z) are the same. 

In the nonparametric regression literature, spline-based methods, such as re-
gression splines, smoothing splines, and penalized splines, are also popular and 
applied extensively in many fields. Recently, [15] proposed the multiplicative 
additive models based on the least product relative error criterion (LPRE), where 
the B-spline basis functions are used to estimate the nonparametric functions. 
Approximating a smooth function by a spline function has many desirable bene-
fits, as presented in [16] and [17]. It is well known that the number and location 
of internal knots should be well-addressed when using the B-spline approxima-
tion approach. Too many knots may cause overfitting, few knots then bring un-
derfitting. Although some information criteria can be adopted to select an ap-
propriate number of knots, the overall computation burden is rather heavy. 
Fortunately, the penalized spline (P-splines) can avoid this difficulty and have 
gained remarkable popularity, especially due to computational expediency and 
easy adaptability to more complex models, see [18]. However, this technique has 
not been studied in the context of MR, and this is the first work to employ 
P-splines estimation for MR, although this issue is of importance and meaning-
ful. All these motivate us to conduct this study in a formal manner. 

This paper is organized as follows. In Section 2, we first introduce the nonpa-
rametric multiplicative regression model. Combining the penalized splines and 
the least product relative error criterion, a new estimation method is proposed, 
and some remarks about the selection of smoothing parameters and knots, and 
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the asymptotic properties of the proposed estimator are given. Some simulation 
studies are carried out to assess the performance of our method under finite 
sample situations in Section 3. To illustrate its usefulness, we also apply our me-
thod to one real data set in Section 4. Finally, some discussions in Section 5 con-
clude the paper. 

2. Methodology 

In this section, we mainly introduce the model and estimation approach. At the 
same time, some related issues will be answered in detail. 

2.1. Model and Estimation 

Consider the following nonparametric multiplicative regression model  

( )( )exp ,Y g ε= Z                         (1) 

where Y is the response variable, Z  is a p-vector of covariates, ε  is the posi-
tive random error and independent of Z , ( )g ⋅  is an unknown link function. 
Without loss of generality and for simplicity, we will assume that 1p =  in the 
following, i.e., the covariate Z  is univariate. But the method discussed later 
can be easily be extended to the general case. Assume that an i.i.d. sample 
( ), , 1, ,i iY Z i n=   from model (1) are observed. For model identifiability, it is 
required that ( ) ( )1E Eε ε −=  in [5]. On the other hand, after taking logarith-
mic transformation on bosh sides of Equation (1), it follows that  

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )ln ln ln ln ,Y g Z g Z c c g Zε ε ε= + = + + − + 
     (2) 

holds for any real number c, which means that the former requirement is not 
enough to ensure the nonparametric component unique. This phenomenon has 
been found by [8], where they imposed a strong condition on the model, namely, 

( )( )ln 0E ε = . In our opinion, this is not necessary. The unknown constant c can 
be set to be ( )( )lnE ε  such that ( )( )ln 0E ε =  holds. Thus the function ( )g ⋅  
is identifiable. Meanwhile, suppose that one obtains a initial estimator of ( )g ⋅ , 
denoted by ( )ng ⋅ . Combining the Equation (2), a more efficient estimator of 
( )g ⋅ , denoted by ( )ˆng ⋅ , can be obtained by subtracting the mean of ( )( )lnE ε  

from the initial estimator ( )ng ⋅ , where  

( ) ( ) ( ) ( )
1

1ˆ ,  ln .
n

n n i n i
i

g z g c c Y g Z
n =

 = ⋅ − = − ∑               (3) 

In this process, it only needs that ( )( )lnE ε , the expectation of ( )ln ε  is fi-
nite, which is allowed to be nonzero. Therefore, our condition is weaker than 
that stated in [8]. 

Following the LPRE technique used in [5], the estimator of ( )g ⋅  in model (1) 
can be obtained by minimizing the objective function  

( )
( )( ) ( )( )

( )( )1

exp exp1 .
exp

n
i i i i

n
i i i

Y g Z Y g Z
S g

n Y g Z=

 − − = × 
  

∑          (4) 

When all iZ ’s are mutually different, the computation involved in Equation (4) 
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can be accomplished individually for each ( )ig Z . However, the resulting estima-
tor is not continuous, which is unsatisfactory in some applications. To overcome 
these drawbacks, we approximate ( )g ⋅  by B-spline functions. Exactly speaking, 
let 0 1 1n nk ka t t t t b+−∞ < = < < < < = < ∞  be a sequence of knots, where [ ],a b  
denotes the support of Z. As discussed in [19], a set of B-spline basis function of 
degree d can be constructed and denoted by ( ) , 1, , 1j n nj K k dϕ ⋅ = = + + , 
where 2d =  or 3 corresponds to the quadratic spline or the cubic spline. Then 
( )g z  can be approximated by a linear combination of basis functions, i.e., 
( ) ( ) ( )1

nK
j jjg z z zα ϕ Τ

=
≈∑ Bα , where ( )1, ,

nKα α
Τ

= α  is the spline coeffi-
cient vector and ( ) ( ) ( )( )1 , ,

nKz z zϕ ϕ
Τ

=B  . Further, the model (1) can be re-
written as  

( )( )exp .Y Z εΤ= Bα                        (5) 

Meanwhile, α  can be estimated by α , the minimizer of the loss function  

( )
( ) ( )

( )

( ) ( )

1

1

1

exp exp1
exp

1 exp exp 2 ,

n i i i i
n

i i i

n

i i i i
i

Y Y
L

n Y

Y Y
n

Τ Τ

Τ
=

Τ − Τ

=

 − − = × 
  

 = − + − 

∑

∑

B B

B

B B

α α
α

α

α α

 

where ( )i iZ=B B . Then the B-spline estimator of ( )g ⋅  can be obtained 
through Equation (3), where ( )ng z  is replaced by ( )zΤBα . 

However, for reasons discussed in Section 1, here we estimate the nonpara-
metric function in model (1) using penalized splines by adding a roughness pe-
nalty to the above minimization problem. In the literature, there are mainly two 
kinds of definition of roughness. One is based on the integrated squared q-th de-
rivative of the spline function, the other is based on the q-th order difference of 
the spline coefficient vector, which is more popular for its simplicity and 
adopted in this paper. Exactly, let Δ denote the backward difference operator. 
Then we have 1j j jα α α −∆ = −  and 2

1 22j j j jα α α α− −∆ = − + . In General, let 
1q q−∆ = ∆∆ . With these notations, the P-spline estimator of ( )g ⋅  is defined as 

ĝ , the corrected spline function in (3), where ( )ng z  is replaced by ( )ˆ zΤBα , 
and α̂  is the minimizer of  

( ) ( )
1

,
nK

q
n n j

j q
Q L

γ
λ α

= +

= + ∆∑α α  

where 0γ >  and 0λ >  is the smoothing parameter controlling the smooth-
ness of the fitting vurve. If 0λ = , the resulting estimator becomes the B-spline 
estimator. In practice, common choices of q and γ  are 2q =  and 2γ =  for 
computational convenience. At this time, the above minimization problem can 
be rewritten as  

( ) ( ) ,n nQ L λ Τ Τ= + D Dα α α α                   (6) 

where D  is the ( )2n nK K− ×  matrix representation of the second order dif-
ference operator 2∆ .  
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2.2. Computation 

Note that for given smoothing parameter and knots, the loss function (6) is dif-
ferential and convex, minimizing it is not difficult, and some common algo-
rithms can be applied. In the later simulation studies and real data analysis, we 
employ the function nmk in the R package dfoptim. 

However, other alternatives are still helpful. As in the least square mean re-
gression and penalized quantile regression (e.g. [20]), an iterative reweighed 
least square (IRLS) algorithm can be developed. Meanwhile, the measure for the 
effective model degree of freedom can be introduced based on the trace of the 
hat matrix, as used in [20]. In the literature, the degree of freedom usually is 
adopted as the measure of model complexity to facilitate further model compar-
ison, which has not been discussed for multiplicative regression using local 
smoothing technique. Thus, the smoothing parameter selection can be achieved 
naturally using some existing information criteria or cross-validation. 

When the smoothing parameter and knots are prepared, α̂  can also be seen 
as the root of the first derivative of objective function (6), namely,  

( ) ( )1

1

1 ˆ ˆ ˆexp exp 2 0,
n

i i i i i
i

Y Y
n

λΤ − Τ Τ

=

 − − − + = ∑ B B B D Dα α α         (7) 

which can be rewritten as  

( ) ( )
1

1 ˆ ˆ ˆ2 ln 2 0,
n

i i i i
i

Y B W
n

λΤ Τ

=

− − + =∑ B D Dα α α             (8) 

where  

( )
( ) ( )

( )
1ˆ ˆexp exp

ˆ .
ˆ2 ln

i i i i
i

i i

Y Y
W

Y

Τ − Τ

Τ

− −
=

−

B B

B

α α
α

α
              (9) 

Write ( )1ln , , ln nY Y Τ=Y  , ( )1, , n=B B B  and  
( ) ( ) ( )( )1ˆ ˆ ˆ, , ndiag W W=W α α α . The IRLS algorithm is implemented as fol-

lows. 
Step 0. For given smoothing parameter λ , provide an initial value of α , 

denoted as 0α̂ , which can be taken as the unpenalized B-spline estimator, or the 
ordinary least square estimator based on the logarithmic transformed data. As-
sume that we have the k-th iterative value ˆ kα . 

Step 1. At the 1k + -th step, update the parameter by  

( )( ) ( )11ˆ ˆ ˆ2 .k k kλ
−

+ Τ Τ= +BW B D D BW Yα α α  

Repeat Step 1 until convergence. The value at the terminated step is defined as 
the final estimator of α , also denoted by α̂ . At the same time, as in the linear 
regression, the hat matrix here can be defined through  

( )( ) ( )
1

ˆ ˆ2 .λ λ
−Τ Τ Τ= +H B BW B D D BWα α  

2.3. Choice of Smoothing Parameter and Knots 

To implement the estimator, the smoothing parameter λ  and the number and 
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location of knots had to be determined in advance. Compared with the knots, 
the smoothing parameter plays a more significant role in the penalized spline es-
timation. As done in [20], we set the trace of the hat matrix mentioned above to 
be the model degrees of freedom, denoted by ( )df tr λ= H , where ( )tr A  de-
notes the trace of a square matrix A. In spline context, some criterions have 
been proposed to select the smoothing parameter λ , such as the Bayesian In-
formation Criterion (BIC), Generalized Approximation Cross-Validation crite-
rion (GACV) and Generalized Cross-Validation criterion (GCV). Especially, in 
this paper, they are implemented by minimizing the functions:  

( ) ( )( )1
lnˆBIC ln ,

2n
df nL

n
λ ⋅

= +α  

( ) ( )1 ˆ
GACV ,

1
nL
df n

λ =
−

α
 

( )
( ) ( )( )
( )2

1
ˆ ˆln

GCV ,
1

n
i i ii W Y n

df n
λ

Τ
=

−
=

−

∑ Bα α
 

respectively. 
[18] suggested some rules for the number and location of knots. In the same 

spirits, we follow the strategy in [20], where quadratic B-splines with 20 equal-
ly-spaced quantiles knots are used unless otherwise specified. With the BIC, 
GACV, GCV criterions above, we use 51 equally-spaced log-scaled grid points 
on ( ) [ ]10log 5,5λ ∈ −  for the choice of λ . All these settings work well in the 
numerical studies and a real example analysis. 

2.4. Asymptotic Results 

For any probability measure P, define 2L -norm ( )2
2

1 2
df f P= ∫ . Denote 

1p d= + . To derive the asymptotic results, some regularity conditions are needed 
and listed as follows. 

(A1) The true function in model (1) is 0g . Suppose that  
[ ] ( ) ( ) ( ) ( ) ( ){ }0 0 1 2 1 1 2, : , 1, , ,j r rrg g C a b g M j r g z g z M z z

∞
∈ = ∈ ≤ = − ≤ − , 

where 0M  and 1M  are some positive constants, 
∞

⋅  is the superior norm, 
1q r d≤ ≤ + . 

(A2) Define 1i i ih t t −= − . Assume that ( )1max 1i i i nh h o k+ − = . Moreover, 
the ratio of maximum and minimum spacings of knots is uniformly bounded. 

(A3) ( )nk o n= . (A4) The covariate Z has abounded support [ ],a b  with cor-
responding density ( ).Zf , which has second derivative and is bounded away from 
zero and infinity. 

(A5) ε  is independent of Z, and ( ) ( )1E Eε ε −= , ( )( )lnE ε  is finite. 
(A6) ( )1E ε ε −+ < +∞ . 
Conditions (A1)-(A3) are common requirements in the penalized spline 

theory. (A4) is the regularization condition used in the study of MR. (A5) is an 
identification condition for the LPRE estimation, which is similar to the zero 
mean condition in the classical linear mean regression. (A6) is required for proof, 
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which is also used in [15]. 
Theorem 2.1 Under conditions (A1)-(A6) mentioned above, we have that 
1) If r p= , ( )( )1 2 1p

nk O n +=  and ( )O n βλ −=  with ( ) ( )1 2 1p q pβ > + − + , 
then it yields that ( )( )2 2 2 1

0 2
ˆ p p

Pg g O n− +− = . 
2) If =r q , ( )( )1 2 1qO nλ − +=  and ( )nk O nβ=  with ( )1 1 2 1qβ> > + , then 

it yields that ( )( )2 2 2 1
0 2

ˆ q q
Pg g O n− +− = .  

Proof. Note that  

( ) ( ) ( )

( )( )( ) ( )( )( )

1

1

1

1

1 exp exp 2

1 exp exp 2

,

n

n i i i i
i

n

i i i i i i i i
i

Q Y Y
n

R g Z R g Z
n

λ

ε ε

λ

Τ − Τ Τ Τ

=

∗ Τ − ∗ Τ

=

Τ Τ

 = − + − + 

 = + − + − − − − 

+

∑

∑

B B D D

B B

D D

α α α α α

α α

α α

 

where ( )( )0expi i iY g Zε = , ( ) ( )i i iR g Z g Z∗= − , and ( ) ( )g Z Z∗ ∗= Bα  de-
notes the best spline function approximation. Define 1

1
n

i iin−
=

Τ= ∑X B B , 

λ λ Τ= +G X D D  and ( )1 2Gλ
∗= −θ α α . Then we have that  

( ) ( ) 1 2
i i i ig Z λ

∗ Τ Τ −∗ Τ− = − =B B B Gα α α θ . Let na  denote the convergence rate in 
the Theory. Since ( ) ( ) ( )1ˆ ˆ= arg minn n n na Q a Q∗ ∗ − ∗ − = + − θθ α α α θ α , we only 
need to prove that for every 0ν > , there exists a large constant δ >  such that  

( ) ( )
2

1inf 1 .n n nP Q a Q
δ

ν∗ − ∗

=

 + − ≥ − 
 θ

α θ α  

In the line of the proof of Theorem 1 in the Appendix of [17], some similar 
techniques can be applied. Finally, by the Corollary 1 of [16], the desirable re-
sults are derived. The proof is completed.  

3. Numerical Studies 

In this section, numerical studies were conducted to evaluate the finite sample 
performance of our proposed method under various situations. To fairly com-
pare the un-penalized B-spline estimator with the penalized spline estimators 
obtained by the BIC, GCV, GACV criterions and for simplicity, we set the de-
gree of spline basis to be 2q = , the number of internal knots 20nk = , which 
are located on equally-spaced quantiles for all methods. All results below are 
based on 500 replicates, where the sample size 100,300,500n = , respectively. 
All simulations are implemented using the software R. 

3.1. Model A and Results 

Model A. We generated ( ),Y Z  from the following model  

exp 1 2sin ,
30
ZY ε  = +  

 

π

 
                  (10) 

where ( )~ 0,50Z Unif  and is independent with the random error ε . Further, 
three error distributions are considered, namely,  

Case (i): ( )exp Uε = , ( )~ 0,1U N , 
Case (ii): ( )exp Uε = , ( )~ 2,2U Unif − , 
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Case (iii): ( )~ 0.0001,4.635506Unifε . 
Note that under case (i)-(ii), it holds that ( )1 0E ε ε −− =  and ( )( )log 0E ε = . 

But under case (iii), ( )1 0E ε ε −− = , ( )( )log 0.5339771E ε = . We use the aver-
aged Integrated Absolute Bias (IABIAS) and Mean Integrated Square Error 
(MISE), where for one estimator ( )ˆ 1, ,500jg j =   obtained from the j-th sam-
ple,  

( ) ( )
500

0
1 1

1 1 ˆIABIAS ,
500

ngrid

j k k
j k

g u g u
ngrid= =

 
= − 

 
∑ ∑  

( ) ( )
500 2

0
1 1

1 1 ˆMISE ,
500

ngrid

j k k
j k

g u g u
ngrid= =

  = −   
∑ ∑  

at the fixed grid points { }ku  equally-spaced in [0, 50] and 501ngrid = . The 
values below them are the associated sample standard deviation. To study the 
different smoothing parameter selection methods at a finer scale, we also calcu-
late the mean and standard deviation of effective model degree of freedom (DF). 

Table 1 reported the results. It can be seen that all three penalized estimators  
 
Table 1. Results of Model A under cases (i)-(iii) with different sample sizes and criterions (×10−2).  

  Case (i)    Case (ii)    Case (iii)   

 BIC GACV GCV BS BIC GACV GCV BS BIC GACV GCV BS 

n = 100             

IABIAS 29.835 33.621 30.643 43.104 29.550 34.495 30.006 46.696 49.812 54.306 51.422 64.237 

 6.069 6.499 6.140 8.036 7.027 7.847 7.026 10.649 9.797 12.765 9.684 16.827 

MISE 14.581 19.176 15.379 37.450 14.436 20.481 14.873 54.989 37.339 58.578 39.666 106.553 

 5.875 14.661 6.106 54.348 6.459 17.833 6.547 135.870 20.192 329.668 22.028 587.813 

DF 1227.584 1409.248 1267.132 - 1181.893 1376.901 1204.128 - 1260.861 1429.779 1318.995 - 

 106.715 106.075 102.198 - 106.072 109.127 100.670 - 104.080 111.360 108.925 - 

n = 300             

IABIAS 17.885 19.834 18.962 23.643 15.972 17.978 16.595 22.295 33.432 36.265 36.146 40.697 

 3.370 3.529 3.476 3.645 3.363 3.624 3.413 3.838 6.675 6.458 6.577 6.291 

MISE 5.188 6.407 5.852 9.179 4.225 5.348 4.552 8.318 18.751 21.386 21.270 26.320 

 1.845 2.161 2.036 2.753 1.671 2.089 1.783 2.961 9.249 9.319 9.419 9.831 

DF 1196.849 1407.369 1314.363 - 1142.739 1354.685 1222.428 - 1289.492 1485.475 1471.698 - 

 68.528 76.614 78.794 - 68.308 77.785 69.231 - 77.216 75.052 88.981 - 

n = 500             

IABIAS 14.356 15.654 15.113 18.230 12.5844 13.735 12.969 16.557 29.411 31.519 31.803 34.598 

 2.626 2.768 2.750 2.910 2.4399 2.530 2.388 2.715 7.374 6.952 7.045 6.740 

MISE 3.372 4.003 3.740 5.439 2.6288 3.130 2.788 4.567 16.395 18.093 18.354 20.913 

 1.184 1.354 1.303 1.651 0.9924 1.113 0.993 1.470 11.118 10.905 11.013 10.937 

DF 1210.032 1426.518 1339.452 - 1157.6377 1365.706 1251.546 - 1317.323 1522.904 1553.775 - 

 61.335 68.784 73.771 - 52.0414 68.176 55.066 - 75.347 74.644 103.840 - 
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have smaller IABIAS and MISE than those of the unpenalized B-spline estimator. 
This indicates the benefits of the proposed method. As the sample size increases, 
the differences between them decrease and become comparable. The model de-
gree using GACV are almost larger than those of using BIC and GCV in all set-
tings, and those using BIC are the smallest, which is also observed in [20]. These 
imply that GACV tends to select more complex models, BIC tends to select 
simpler models, GCV makes a compromise and lies between them. Figure 1 dis-
plays the average estimated curves and their 95% point-wise confidence band 
under cases (i) with sample size 300n =  for model A. We can see that all esti-
mated curves are close to the true one, but the B-spline estimation has a drastic 
deviation near the boundaries. Figure 2 shows the boxplots of the estimates of 
( )g z  at 15,30,45z = , respectively. We can see that most estimates are cen-

tered around the true values of ( )3,1, 1−  with small deviations, although the BS 
estimator has a little larger standard deviation. The corresponding QQ-plots of 
them are presented in Figure 3, which show that the resulting estimators seem 
to converge asymptotically to the normal distribution. Estimated curves under 
other situations are similar, and are not displayed, but are available in the sup-
plementary materials. 
 

 

Figure 1. Estimate of ( )g Z  for Model A under case (i) with sample size 300. The solid 

thick line (black) and solid thin line (red) correspond to the true and estimated curves, 
respectively. The dashed lines (blue) are the 95% point-wise confidence bands. 
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Figure 2. Box-plots of ( )g Z  at 15,30, 45Z = , respectively, for 

Model A under case (i) with sample size 300. 

3.2. Model B and Results 

We generated ( ),Y Z  from the following model  
325

exp ,
5000

Z
Y ε

 −
 =
 
 

                      (11) 

where ( )~ 0,50Z Unif  and is independent with the random error ε . Others 
are the same as defined in Model A. We reported the results in Table 2 and dis-
played the average estimated curves and their 95% point-wise confidence band 
under cases (i) with sample size 300n =  for model B in Figure 4. Again, results 
are similar to those presented in Table 1 and Figures 1-3 are found. More re-
lated figures can be available in the supplementary materials. 

4. Real Data Analysis 

In this section, we will analyze the ethanol data to illustrate our proposed me-
thod. This data is available in the R package lattice, and aims to investigate the 
relationship between the emissions of nitrogen oxides, denoted by Y, and vari-
ous settings of the engine compression ratio and equivalence ratio, denoted by Z, 
when ethanol fuel is burned in a single-cylinder engine. In this data set, 88 ob-
servations are collected. [13] analyzed it in the framework of varying coefficient 
multiplicative regression model based on the LPRE criterion and local linear ap-
proximation technique. His results demonstrate that various settings of the en-
gine compression ratio have little effect in Y, as illustrated in page 280 therein. 
Therefore, here we only consider the covariate Z in the following model.  
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Figure 3. QQ-plots of ( )g Z  at 15,30, 45Z = , respectively, for Model A under case (i) with sample size 300. 

 
Table 2. Results of Model B under cases (i)-(iii) with different sample sizes and criterions (×10−2).  

  Case (i)    Case (ii)    Case (iii)   

 BIC GACV GCV BS BIC GACV GCV BS BIC GACV GCV BS 

n = 100             

IABIAS 30.954 34.347 31.649 43.095 31.263 35.429 31.520 46.884 50.598 54.612 52.022 63.973 

 6.074 6.498 6.170 8.037 6.626 7.611 6.604 11.695 9.431 12.712 9.376 14.377 

MISE 16.093 20.245 16.762 37.521 16.510 21.848 16.727 60.375 38.319 59.115 40.487 89.844 

 5.979 14.659 6.219 56.611 6.612 18.404 6.645 185.554 21.209 334.487 23.024 328.872 

DF 1253.243 1429.974 1292.463 - 1210.361 1395.702 1228.656 - 1281.472 1445.200 1338.260 - 

 99.732 100.901 95.411 - 108.539 110.258 98.756 - 106.142 108.857 104.281 - 
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Continued 

n = 300             

IABIAS 18.762 20.381 19.606 23.643 16.979 18.632 17.519 22.294 34.039 36.581 36.376 40.696 

 3.338 3.458 3.426 3.644 3.176 3.521 3.287 3.838 6.588 6.406 6.537 6.289 

MISE 5.888 6.823 6.358 9.179 4.972 5.794 5.183 8.317 19.121 21.600 21.393 26.320 

 1.962 2.180 2.087 2.752 1.830 2.143 1.893 2.961 9.197 9.268 9.422 9.832 

DF 1258.010 1457.920 1363.208 - 1205.782 1408.397 1284.380 - 1325.434 1518.928 1496.542 - 

 65.165 70.682 71.458 - 67.726 71.847 63.174 - 70.470 71.405 87.412 - 

n = 500             

IABIAS 15.087 16.093 15.705 18.229 13.501 14.360 13.814 16.558 29.910 31.766 31.988 34.599 

 2.561 2.696 2.665 2.910 2.225 2.417 2.284 2.715 7.169 6.858 6.965 6.741 

MISE 3.816 4.257 4.075 5.438 3.160 3.452 3.231 4.568 16.721 18.253 18.463 20.914 

 1.230 1.357 1.301 1.651 1.041 1.137 1.052 1.470 11.018 10.847 10.949 10.939 

DF 1281.520 1484.408 1406.453 - 1233.752 1437.042 1329.486 - 1360.986 1560.749 1586.328 - 

 56.717 62.400 68.205 - 54.702 65.378 57.779 - 70.218 67.571 92.849 - 
 

 

Figure 4. Estimate of ( )g Z  for Model B under case (i) with sample size 300. The solid 

thick line (black) and solid thin line (red) correspond to the true and estimated curves, 
respectively. The dashed lines (blue) are the 95% point-wise confidence bands. 

 
( )( )exp .Y g Z ε=  

The estimated curves of g with 8 and 20 internal knots quadratic P-splines are 
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plotted in Figure 5, which have similar trends to the plot in [13] except a vertical 
shift. We can see that all the four curves are almost identical, which maybe 
caused by the data’s own well fitness to the above model. Scatted plot of Y and 
the corresponding estimated curves of ( )( )exp g Z  are presented in Figure 6, 
which indicate the proposed method fits the data well enough. The number of 
knots has some effects on the estimates of curves, but doesn’t affect the perfor-
mance substantially, which is also supported by the mean and median of abso-
lute prediction errors ˆ

i iY Y−  and squared prediction errors ( )2ˆ
i iY Y−  given 

in the Table 3, where ( )( )ˆ ˆexpi iY g Z= . 
 

 

Figure 5. Estimated curves of ( )g Z  for the ethanol data. The solid (red) and dashed 

(blue) curves correspond to the estimated function curves with 8 and 20 internal knots, 
respectively. 

 
Table 3. Prediction errors and degrees of freedom of the ethanol data. 

 kn = 8 kn = 20 

 MAPE MDAPE MSPE MDSPE DF MAPE MDAPE MSPE MDSPE DF 

BIC 0.240 0.188 0.105 0.035 7.116 0.187 0.128 0.069 0.016 12.488 

GACV 0.242 0.188 0.105 0.035 8.208 0.186 0.126 0.068 0.016 13.613 

GCV 0.241 0.188 0.105 0.035 7.658 0.187 0.128 0.069 0.016 12.488 

BS 0.243 0.197 0.105 0.038 - 0.183 0.1282 0.067 0.016 - 

Note: kn: the nunber of interior knots; MAPE: mean absolute prediction errors; MDAPE: median absolute prediction errors; MSPE: 
mean squared prediction errors; MASPE: median squared prediction errors.  
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Figure 6. Scatted plot of Y and estimated curves of ( )( )exp g Z  for the ethanol data. 

The solid (red) and dashed (blue) curves correspond to the estimated function curves 
with 8 and 20 internal knots, respectively. 

5. Conclusion and Discussions 

In this study, we used the penalized spline method to estimate the nonparame-
tric function in model (1) based on the LPRE loss function. Inspired by the itera-
tively reweighted least squares algorithm, we develop the effective model degree 
of freedom and propose three smoothing parameter selection methods. Some 
asymptotic results are established. Furthermore, numerical simulation studies 
and real data analysis found that the proposed approach works well in several 
settings. As indicated in Section 1, the approaches proposed in this paper may be 
adapted to the partially linear, even additive, single index or varying coefficients 
multiplicative regression models. Our future work will also consider extensions 
to fields with covariates measurement errors, censored data or longitudinal data 
analysis, which are meaningful for practitioners. 
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