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Abstract

In this paper, a semilinear elliptic equation of fractional order is constructed
by combining the semilinear elliptic equation with the fractional order equa-
tion. On this basis, the “standardized” solution, which is often sought by phy-
sicists, is studied. In order to overcome the problem of lack of boundness, we
set up appropriate conditions to prove the existence of the solution by means
of variational theorem and the mountain road theorem.
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1. Introduction

In recent years, many practical problems have been solved successfully through
in-depth research on nonlinear problems of fractional Laplace equations. For
example, there have been studies in finance [1], fluid dynamics [2], quantum
mechanics [3], physics [4], materials science [5], crystal dislocation problems
[6], semi-permeable thin film problems [7], soft film problems [8], and very
small surface problems [9], soft film problems [8] and very small surface prob-
lems [9] have been studied. With the continuous expansion of the fields involved
and the deepening of the problem research, people continue to put forward new
problems and explore solutions. In this paper, we study the following semilinear

fractional elliptic equation on R"

(_A)su—/lu=§ai |U(X)|gi u(x), (1.1)
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where se(0,1) is a fixed constant, AeR, Ue HS(RN) and (—A)S is the

fractional Laplacian operator, defined as

(-A) u(x)=C,PV. Mdy, x,yeR", (1.2)

where C, is a constant, dependent on s can be expressed as

C, =[IR31 |;|(2‘s£§ l)dé] : (1.3)

and P.V. stands the principal value. And Ue H*® (RN ), e Ds? (RN), where
H* (RN ) and D*? (RN ) are defined in (1.9) and (1.12),

" 2N
2. = 1.4
* N-=2s (14)

is the fractional Sobolev critical exponent. Next, let us mention some illuminat-
ing work (1.1) related to this problem. In paper [10], Bartsch Thomas and Sébas-
tien de Valeriola analyzed the case when the relevant function has no lower
bound on the L, unit sphere, and finally proved the existence of the solution.

The nonlinear eigenvalue problems studied are as follows
—Au—g(u)=Au,
.[RN ut =1,

where Ue Hl(RN ) , A€R, and the function g is superlinear and subcritical,

(1.5)

N >2. In this paper, we study the following fractional nonlinear eigenvalue

problem of the form:
(=AY u(x)=4 Za|u )" u(x), AR, xeR", (1.6)

4s
N -2s

where N >2, Se(O,l), for all 1<i<m, with a >0, O<g; < if
N>3 and o; >0 if N =2.In this article, we set
S(a) {UGHS(RN) |u|L2]RN :1}.Forall 1<i<m,if N >3, setthat

4
—<o0; <

42,andif N =1,2, we set that O'i>%.Andset I'H° >R isa

C! -functional

1 s o a'i oj+2
I(u):E‘(—A)zu(x) —jRNiZ:;Gi+2|u(x) dx, (1.7)
[:H°xR >R isa C!-functional, setting
F(ut)=1(H(ut))
. R LN (1.8)
== (-A)zu| —e IRN§—0i+2e2u(x) dx,

Using Ekeland’s ¢ -variational principle, we prove the existence of the Pa-
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lais-Smale sequence.

In this paper, the norm of fractional Sobolev space H® (RN ) is defined

Jux-u(y)

HS(RN):z UELZ(RN)
pe=yf2"

e (R xR" ), (1.9)
and define X={UEHS(RN):jR3V(x)u2<w}, for teR, and xeR", set

H:H°*xR — H® isa continuous map,

tN

H(u,t)(x):e7u(e‘x) (1.10)
endowed the norm on Xby

2
u(x)-u(y C
Julf, =[] %dxdy+7§jﬂwv () dx, @1

and the corresponding inner product is

(09, = OO0 )

Consider the following fractional critical Sobolev space D’ (RN ) is defined
by

dxdy +%IRNV (X)u(x)v(x)dx.

D**(R"):={ue*(R" ):_|u|(x)_|i(:’)| e’(R"xRY)f,  (112)
X—Yy|2
with the norm
2
C, u(x)-u(y
[ulle =5 Mo %dmy, (1.13)

where D’ (RN ) is the completeness of C;’ (RN ) .For 1< p<owo,welet

1
Jul, =(IRN Ju(x)” dx)p . uelP(RY), (1.14)
for any Se (0,1), the embedded D®? (RN) o LZZ (RN) is continuous, exist
for the best fractional critical Sobolev constant

ILICRTC) DY

|X— y|N+Zs

» o (1.15)
* dxj

S(u):=

(oo

m
In this article, we list all the conditions below on &, |t|a' t:
i1

(H1) > a|t|" t iscontinuous and odd.
i

(H2) «,p R, satistying.
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2+£<asﬁ<2—i, if N>3
N 2s

2+£<a£ﬂ, if N=1,2
N
such that
u ai gj+2 n ) o ai oj+2
O<a§—o_i+2|t| séai It t sﬁé—ai+2|t| :

Our main result is shown in the following.
Theorem 1.1. For N >2, under the hypotheses (Hl) and (H2) Equation
(1.1) admits a couple (u A ) eH® (]RN )>< R ofweak solutions such that

cr’c

"UC ||L2(]RN) =1 and ﬂlc <0.

2. Preliminary Lemmas

Lemma 2.1. ([11]) For future reference note that from (H1) and (H2) it im-
mediately follows that, for all 7 € R

oj+2

r_ G ”‘+Z<m—"jli a2 o a8 ifo<w<1
’ §0i+2|r| _§0i+2|m -7 §Ui+2|r  MOsw=
a o a'i oj+2 < o a‘i o—i+2< B n ai Gi+2 if >1

@ ;;;3k| _éaﬁikw| <w EEFEV Cifosl

Lemma 2.2. Fractional-Gagliardo-Nirenberg-Sobolev inequality (see [12]):
for every N >2s and 2< p<2,, there exists a constant Cy,p,S depending
on N, p and s such that

N(p-2)

p_N(p-2)

2 4s P_
de (J'RN |u|2dx)2 ., ueH*(RY).

(~A)2u

JRN Ju’ dx<Cy . [IIRN

It is equivalent to

ul, <Cyps|(-A)u :p's ul,”**, ueH*(RY).

it 7, -3{3-2),

Lemma 2.3. ([11]) I£(H1) and (H2), and let ueS(a) be arbitrary but fixed.
Then we get:

1) "H (u,t) s >t and | (H (u,t))—>—oo as t— +oo

2) "H (u,t) s 0 and | (H (u,t))—>0 as t— —o.

Proof. Since U e S(a), we get

H (u,t)], =1,
and through the derivation, we get
[H (w0 =€ Jull
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Because of N(a;2j>23 and < f,wegetfor t>1
2st 2 N moog N(oj+2)lt] vi2
I(H (ut))="|(-A)2u(x)| —e JRN;ai+2e 2 |u(x) dx
_(m(zJ]jN"‘ (o
R i1 O; +2

Thus, we get that | (H (u,t)) ——00 as t—>+oo. Similarly, when t<0, it
can be obtained by calculation | (H (u, t)) -0 as s—>—0.00
Lemma 2.4. If(H1) and (H2), there exists p, >0 such that

0<ijrpl)F(u)<j£1rf2 F(u)
with
r,={ues(a)ul} <p.|
r, :{u eS ()|l =2pc}.
Proof. Now we’re going to prove that sup F(u)< u|Qf2 there exists p>0,
Ty

V,,V, € S(a), such that ||Vl ZDS =p and ||v2 ZDS =2p. Then, for p>0 small

enough
2 1 m q o-,+2
()= 1(v) DS_E Ds J‘RN;GI+2|V
0 a, oj+2
+.[mN go.l +2 | 2( ) dx
n o'|+2
> 2 .[RN o |V2 dx

|l|

Bylemma 1.1,lemma 1.3and a < f,withany ue$S (a) , we get

o 2g gl
Ns[/i 2]},

oj+2

dx<G(1 {|U|Z +|u|§}

<l ¥

o 22 (o) <l

N
|10'|+2

for ||u

s small enough,

M)

thus

|(v1)—|(v2)z§—CpN(a42)z >0.

IR

Next we are going to prove that 0<supl(u),for uel';,as p>0, we get
uel’y
a-2

_CpN(T) )

1
H(u)2 2 [u o
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Lemma 2.5. If(H,) and (H,), there exist u;,u, €S(a) such that
Dl <p.

2) ||u2 ZDS >2p,

3) 1(u)<0<1(u)

9 7(c)=r(c)
Setting

7(c)= inf maxF(h(t))

her'(o) tefod]
with
F(6) 1< C (0415 (6)< ) h(0) = (8.0).h(1) = (1,.0)}.
We have
7(c)>max{T (u,0),T(u,,0)} = 7 (c) > 0.

Proof. In order to facilitate readers to read better, we have written down the
proof process.

First note that the existence of U;,U, €S(a) is insured by Lemmas 2.1 and
2.2. Now define

7(c)=,inf max1(h(t))

with
r(c)={hec([0,1],5(a)),h(0)=u,h(1)=u,}.
By we have
7(c)>max{l (u),1(u,)}
Moreover

{l (uy)=1(H (u,0))=T(u,0)
I (u,)=1(H(u,,0))=T(u,,0).

Therefore, if 77(C)2 }/(C) holds, our result proves successful. This follows
directly from the observation that: for heT(c), there exists heI'(c) such
that

max (A (1)) = max| (h(t))

Indeed, the setting ﬁ(t) = (h1 (t), A (t)) eS (a)>< R wehave, forall te [O,l]

F(R()=F (R ()R (1) = F(H (R ()R (1)))-
and it suffices to set h(t)=H (ﬁl (t),h, (t)) el(c).O
Of course, if T'(c)cT(c),weget 7(c)<y(c), itis proved that ended.
Lemma 2.6. ([10]) If(H1) and (F2), for a sequence {¢,}c f“(c), such that
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trne[gﬁr(gn(t))sf(c)+%

Thus, there exists a sequence {(un 'S, )} cS(a)xR such that:

D ;7(0)—%sl~(un,sn)s77(c)+%

. 1
2) tl;%m(un,sn)—gn (1)l <=

_, 2
3) || Neepm (UnsSy) S—n,le

_ 2
KI (un’sn)’zn>E*xE Sﬁ"Z"E
for all

ol 8 2 =0

Lemma 2.7. If we fix n, there exists a Palais-Smale sequence (U, )
at the level C, satistying

WS>

|16i

) for G

3 w2 N & i
-;—2|Uk 0+2_?J‘RN§ai |uk|a+2 _)0

For the proof we recall the stretched function from [10]
G:RxE—>R, (s,u)-G(s*u)
Now we define
I = {77 :[0,1]x(S NV, ) >R xS |7 is continuous, odd in u
and such thatmo 7 eI, },
where m(s,u)=s*u and

= 1. S0
ueSnV,

By lemma 2.7, there exists a Palais-Smale sequence {v,} for S(a), that is,
satisfying

oj+2

m a.
! d
J-]RNEO]-%Z X

Vo (%)

and IRN \4A |2 dx are bounded. There exists {v,}<S(a) such that

o) (Va)
there exists {gn}cf(c) of the form g, (t)z((gn)l (t),O)e H®, vte[0,1],

I(v,)>7(c) and

—0 as n—+o.Bylemma26, 7(c)=y(c)

such that (D(gn)e{}/(c)—%,)/(c)—i-%} . Let

0,1 (uy,8,) = (1" (up,),(0.0)).. .

From lemma 2.6, we get thatas n — +w0, 9,1 (u,,s,)—0 with
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a

m
D® +NJ.RN|21:O_I _;_2|V”

a,1 (uy.s,) _||v

o',+2

CIRCER T Y AT

(16)

where v, =H ( S, ) . Thus using the fact that

D® .[RN Izm:

10'|+2

o'|+2

||v dx

v, (x

is also bounded, we see that there exists a constant C >0 independent of n
such that

INT(u,.5,)+0,T (u,.s,)|<C

From (H2) we have

~ ~ N +2 o-,+
Nl(un,sn)+asl(un,sn)=T - LRN “d
N +2 n a; o—,+2
< .[ N .21:0. +2|v dx.
As a result of +2 ||Vn ||2DS — J .Zmllo'l " |V | 2 dx > —-C. And then
since F (un,Sn) is bounded, we can get
||v - _2C+2j iL| (x )U'+2 dx.
i=1 O-|
After sorting it out, we can get
u a oj+2 Na m a. oij+2
N+2)<C ' ) ' "dx>-C
(Vo2 e LS (0 oL S o

o‘,+2

|v dx>-C.

And (N +2——]IRNi

i=1 O i

Now the lower bound « (see (H2)), proves that
m ai
Jon Zgm i ()
Lemma 2.8. If (H1) and (H2), there exists a sequence {Vn} c S(a) such
that:
1) 1(v,)—>7(c)

u a; oj+2 .
2) ||Vn s and LRN iZ::a—Jlr2|v”| " dx areboundedin R

gj+2

dx is bounded and consequently {LRN |an|2 dx} also.

3 [, forall zeT, ={zeH* (v, ), =0}.

HS’

2)ee <l
Proof. We claim {V,} is a Palais-Smale sequence of the type we are looking

for. Clearly {v,} = S(c) andisbounded in £ Point (1) is trivial since

1 (v,)=1(H(u,.s,))=T(u,.,s,). Nowlet h €T, . Wehave

(1'(va) ) oo = [ 90 () VB, (x)dx= [, g (v, (X)), (%) dx
= esn(%] [ wvu, (e x)Vh, (x)dx
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suN
[0 [ezun (e x)] h, (x)dx

N+2

=™ [ Vu, (x)eiS"[T)Vhn (e‘s" X dx
—efgj'RNg (eSNZNun (x)JeanNhn (e‘s" X)dx.

Thus, setting

s,N

h,(x)=H(h,—s,)(x)=e 2 h,(e™x)

where h, €T, .
We see that

(r(v,)h)e :<f’(un,sn),(ﬁn,0)>

If h, €T, , from the definition of T, , we can get (hn ,vn>L2 =0, and then by

*
E xE

saN
taking the derivative, we set y=€%X, so IRN e 2u, (X)hn (e’snx)dx is equal

syN

to .[]RN e7un (esn y) h, (y)dy , that is, <hnvvn>|_2 =0= <ﬁn,un>L2 , then we have
(ﬁn,O) € f(un /S, ). And by Point (3) of Proposition 2.2, if e <2, as nis suf-
ficiently large we get that

By Point (2) of Proposition 2.2, for ne N large since
1

N

Let the minimizing sequence {¢,} cI'(c), substitute into the formula. Notice

30/ =[5, =0 < min

(un'sn)_gn

that the particular choice of the minimizing sequence {¢,} f(C) is used here.

O

3. Proof of Theorem 2.1.

Lemma 3.1. let {V,} =S(a) be the PS sequence obtained in Lemma, there

exists {/1”} c R such that, up to a subsequence:

n q; oj+2
JRNiZ:;ai +2|vn(x)| dx —>¢, >0
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and
LRNZa|v )" Vi (x)dx > ¢, >0.

Proof. By {V,} isbounded in H°, there exists v, € H® such that v, —V,
weaklyin H°.If {v,} converge stronglyto V,,by Lemma 2.7, V, is a critical
point for F restricted to S(a). By 6,I(u,,s,)—>0 and (H2) there exists
g, >0 suchthat —¢, <0 ~(u S, )» we get

1

7(C)+E‘9n:|( )——5 (n n)

ZEJRN Zai v, (x) " dx—(1+%j.[RN Im %Ivn( )

ST

By 7(c)>0 and w—l>0, such that .[RN Z—| | “dx s

|1|

TAx (3.1)

gj+2

dx

bounded and strictly greater than zero, that is, there exists €, >0 such that, up

to a subsequence

o 2= (0 x>, (3.2)

: : ﬂ_ 2)N o a oi+
otherwise, if ¢, =0, then we get (%—1}[@ Z . :L |Vn (x)| “dx -0,

as n— oo, contradiction with )/(C)+%€n - 7(C) >0.

Similarly, from (H2), we conclude that JRsz:ai |Vn(X)|Gi+2 dx is also
i1

bounded and by (17) and (18), we get
O-I+2 4 2 4 n a.i
j Za |v =W7/(c)+ﬁgnJr(ZJerLRN §—0i+2|vn(x)
4 4
il 240
- N }/(C)+[ + NJCl

by calculation as n— oo, we can be expressed as the existence of C, >0, such
that

oj+2

dx

IRN iai |vn (x)|'7i+2 dx —>c,. (3.3)
i=1

|
Lemma3.2. 4, >4 <0 in R.
Proof. Next, we’re going to prove that 4, - 4, in R, by calculation we get

(I (V). Z>(HS)EHS = .[RN (—A)z v, (—A)g zdx — x)|gi v, (X)z(x)
—AHJRNVH (x)z(x)dx

with
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Vo (%)

|v |2{ —f Zl“ mzdx}.

Up to a subsequence, by the definition of S(a), lemma and (3.1), we have that

{Z,} isbounded away from zero for n— +oo. Thus, there exists A, such that

ﬂ’n

g:

- 4.0
Lemma3.3. -AV, -4V, —-g(v,)>0 in E .
Proof. The next thing we have to prove is the compactness result for
E—E", u—>g(u) inthesubspace H; (RN )

Next, the function um— IRV > |u (x)ri+2 dx is weakly continuous. Then

for any weakly convergent sequence U,, when U, — U, we obtain

JRNi 2
=.[]RNJ- Zai
<_[RN maxZa

oj+2

dx

(" 06 2o (0)
X)+(1=t)u(x)|" (tu, (x)+(1-t)u(x))(u, (x)—u(x))dtdx
(X)+(@-t)u(x)" tu, (x)+(L1-t)u(x) un(x)—u(x)|dx

0',+2

te[O l

<CJ.u Qgi<{|tu +(1-t)u x| +|tu (1—t)u(x)|ﬂ71}|un(x)—u(x)|dx

(
_CRN{(|un(x)|+|u |) +(|n ||u |) 71}|un(x)—u(x)|dx

<|Jun ],

e (A P
p-1

a-1

using (H2) and (2.1). Now from the compactness of the inclusion

H

HRY)cLP(RY) for 2< p<N2N if N>3 or p>2 if N=2 (see
—ZS

[13]), we see that ||un —u||La —0 and ||un —U||Lﬂ —0.

From the previous steps 1 to 3, we obtain that there is —Av, =4V, > g(V,).

-1
By 4 <0, and we deduce that v, >(-A°-4.) g(v,) in H*(R"). And by

vn

—V,€S(a) in H®,so we prove the Theorem 1.1.00
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