
Open Access Library Journal
2024, Volume 11, e11367

ISSN Online: 2333-9721
ISSN Print: 2333-9705

DOI: 10.4236/oalib.1111367 Mar. 29, 2024 1 Open Access Library Journal

XML Attacks towards Different Targeted
Operating Systems

Xueying Pan, Sharon Martin

Department of Computer Science and Engineering, Oakland University, Oakland, USA

Abstract
This paper is to study how Extensible Markup Language (XML) code injec-
tion attacks are widespread over web and cloud applications, databases, and
multiple types of systems within major corporations that can be equated to
system vulnerabilities. The attacks can be on the Application layer, Transport
layer, or at the core of the Operating System. In this paper, we have explained
a common translation tool translating web page information into other file
types as XSLT can unknowingly inject malicious code into the system which
could reach the code and render the system resources useless. By analyzing
the specific XML elements, attributes, or structures that were found to be
vulnerable to exploitation, we identify the root causes of kind of vulnerabili-
ties including inadequate input validation and insecure XML parsing. We of-
fer some examples of how exploitation techniques could be leveraged to ma-
nipulate XML messages or execute malicious code. From the successful ex-
ploitation of XML, we have assessed the potential impact on data integrity,
confidentiality, and availability based on the sensitivity of the affected web
systems or data. Illustration of attack scenarios could outline how hackers ex-
ploit the identified vulnerabilities to obtain their objectives. We discussed
some mitigation strategies and defensive measures to reduce exploitation
risks. We should aim at improving XML security in the design of more secure
XML processing libraries, developing advanced threat detection methods, and
integrating security mechanisms into XML-based standards and protocols.

Subject Areas
Web Vulnerability Attack, Data Security, Operating System Risk

Keywords
XML Security, XML Injection, XSLT, Operating System Security

How to cite this paper: Pan, X.Y. and
Martin, S. (2024) XML Attacks towards
Different Targeted Operating Systems. Open
Access Library Journal, 11: e11367.
http://doi.org/10.4236/oalib.1111367

Received: February 27, 2024
Accepted: March 26, 2024
Published: March 29, 2024

Copyright © 2024 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1111367
http://www.oalib.com/journal
http://doi.org/10.4236/oalib.1111367
http://creativecommons.org/licenses/by/4.0/

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 2 Open Access Library Journal

1. Introduction

Exploits to manipulating data or compromising personal information are be-
coming widespread. Former researchers have found poor awareness of cyber se-
curity and lacking adequate time to test and QA web applications that both con-
tribute to XML injection attacks, but they did not clearly illustrate how vulnera-
bilities could be exploited over real operating systems. [1] These attacks can be
on the Application layer or deeper at the O/S level. Once infiltrated, the hacker
can effectively work through the entire system leaving their mark that could be
time bombed or dominant until an action is taken by an Input/output device.
Our research will start with a translation tool commonly used on web applica-
tions and move to other areas of the system that can be exploited. There is a cost
trade-off between securing data in a computer system and processing speed of
transactions. This balance is consistently under scrutiny for program effective-
ness, user expectations, and privacy breaches. As of late, there have been several
data breaches published involving personal information. Man-in-the-middle at-
tacks are quite prevalent where a hacker injects malicious code within the system
and can exploit Admin information, including password information, and then
use that information to look at files and stored customer information.

2. Types of XML Attacks

Server or client-side attacks can look benign at the surface, however digging
deeper, it can be uncovered that the attacker has compromised the core of the
operating system, which could influence processing speed, temperature, and
shared resources. Unix, Linux, Windows, cloud-based systems, and hosted en-
vironments are all vulnerable to attacks, the most prevalent attack being
brute-force which is an injection attack or Denial of Service (DOS) that denies
services from the system and can attack the operating system rendering it use-
less. [2] Operating system security is vital but hard to achieve. Operating systems
mainly run processes and allocate resources. Generally, one does not think about
having an operating system compromised, but it can occur. When it does the
novice user probably would not notice, and detection systems would have to be
used to determine compromises. [3]

There are different types of XML attacks. First of all, if there is a file that has
contents in the external entity and responds to an application request, this would
be defined as retrieving documents by exploiting the XML external entity (XXE)
injection attack. Secondly, when an intruder retrieves some sensitive data from
performing a server-side request forgery attack, this way could be classified as
making HTTP requests to some seriously vulnerable URLs that the application
server could access to exploit an XML external entity vulnerability in a back-end
targeted system. Thirdly, if a hacker could be able to exploit blind XML external
entity injection attack for exfiltrating confidential information that is mainly
transferred from an application server to a system which is controlled by the at-
tacker, we could define this to be exploiting blind XML external entity exfiltrat-

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 3 Open Access Library Journal

ing data out-of-band. The final one is an attacker launches blind XXE vulnera-
bility for triggering an XML parsing error message which includes some of the
sensitive information that the attacker wants to retrieve. [4] (Figure 1)

3. Vulnerable Functions

Demonstration of a compromised system using a Linux virtual machine, we
used a commonly used web application developers’ tool; Extensible Markup
Language (XML) to illustrate how easy it is to inject malicious code into the
translation process. XML itself is quite outdated but is still widely used by de-
velopers for clients who would like to customize their information on invoices,
reports, and web pages. There are already documented vulnerabilities with XML
including two XML Billion Laughs (BIL), this vulnerability is known for insert-
ing thousands of LOL messages into the system each time a line of code runs it
exponentially adds LOL into the system compromising the CPU utilization and
resources until the system is rendered useless. This is an example of a code injec-
tion in the web application however quickly affecting the processor speed and
resources of the CPU. [5]

To retrieve data from a file system in the server-side application, an attacker
needs to make modifications to the submitted XML via two different methods.
The first one is the attacker editing a DOCTYPE element to define an external
entity which includes the path to the targeted file. the other one is to exploit de-
fined XXE when introducing an information value of an XML, which is used to
make a returned response in the application server.

For instance, assuming a sugar application checks for the production level of a
product by using the below XML to the MySQL database server:

<?xml v e r s i o n = ”1. 0”
e n c o d i n g = ”UTF 8”?>
<Production Check ><p r o d u c t I d>128
</p r o d u c t I d>
</Production Check>

Figure 1. Inserting code with XSLT.

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 4 Open Access Library Journal

The MySQL database in the bWAPP application server does not have specific
defenses against XML external entity attacks so hackers could have the ability to
exploit this kind of vulnerability to retrieve various root passwords such as Linux
root password and Apache password.

We could see how to submit XXE payload for retrieving Linux root passwords
from two different file paths including /etc/password and

/etc/shadow below:
<?xml v e r s i o n = ”1. 0 ” e n c o d i n g =”UTF 8”?>
<!DOCTYPE foo [<!ENTITY xxe
SYSTEM ” f i l e : / / / e t c / shadow”>]>
<Production Check ><p r o d u c t I d > &xxe ; </ p r o d u c t I d >
</ Production Check >
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g = ”UTF 8”?><!DOCTYPE foo
[<!ENTITY xxe SYSTEM
” f i l e : / / / e t c / passwd”>]>
<Production Check ><p r o d u c t I d > &xxe ; </ p r o d u c t I d >
</ Production Check >
Because XML external entity injection attack has defined xxe to point to the

targeted value of file contents in either /etc/password or
/etc/shadow and take especial entity within a defined value of productid.

Therefore, the bWAPP application server could have responded to the following
file contents:

Invalid product ID: root:x:0:0: root:/root:/bin/bash
daemon:x:1:1:daemon:
/usr/sbin:/usr/sbin/nologin bin:x:2:2:bin:/bin:/usr/sbin
/ n o l o g i n , , , , , ,
As captured request and response in Figure 2.
There have been instances where people have explored the potential vulnera-

bilities associated with Extensible Markup Language (XML) and its use in trans-
lation processes. Florian as a PhD student discovered an accidental XML injec-
tion attack on his blog which he could hack a web server of the University via
XML code injection. His personally identifying information had been displayed
along with similar data of other users by simply deleting one number from the
ID field of the applicant. There are some vulnerable surfaces’ examples including
applications that rely on XML-based protocols, applications that store XML
documents in a database, and applications that support XML-based document
formats and data import, etc. XML injection study found that a threat actor
could bypass web app authentication measures of a user, read an organization’s
stored sensitive data, modify XML files of a user, and carry out XML-based
denial of service attacks. [1]

4. Exploiting an XML Attack

In our project, we use two different ways to perform an XML attack. The first is

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 5 Open Access Library Journal

Figure 2. The XML external entity injection attack [4].

using Bee-box software and bWAPP web application to exploit a typical XML
attack which is always launched by an attacker to verify that manipulation is
possible. Bee-box software mainly offers kind of ways to hack and deface the
bWAPP website and we would conduct various penetration tests for people to
discover and prevent web vulnerabilities. [6] After successfully collecting the IP
address for a targeted hostname, the attacker could be able to launch an XML
injection attack. During this process, I will be going to explain step-by-step in-
structions with clear screenshots to show our project’s results. Our XML attack
needs to get an IP address for a database server or web application server so that
we select Bee-box software which has a pre-installed bWAPP database server on
the virtual Linux operating system and do not need to figure out some of the
configuration files for the Linux VM machine to connect to the bWAPP data-
base server. On the other hand, Bee-box allows us to explore all bWAPP vulne-
rabilities and hack the bWAPP website to get root access. To make XML attack
work on the bWAPP website, we will need to set the security level to be “low”
mode on the login page of the bWAPP website which could keep itself an inse-
cure web environment and automatically turn off some mitigation mechanisms
of their website.

Now let’s start our XML external entity attack towards the first virtual Linux
OS machine. The first step is to select a low-security level on the login page of
the bWAPP website. At the same time, we could run a specific command ¡ifcon-
fig¿ to get an IP address for the targeted hostname as shown in Figure 3.

Next, we are going to log in bWAPP website by using the default credentials
as Figure 4 shown: After having successfully logged in bWAPP website at
http://localhost/bWAPP/login.php, we could choose one of the XML attacks
from dropdown options of various vulnerabilities as Figure 5.

As we mentioned earlier, Bee-box as a Linux VM machine has pre-installed with
bWAPP so that we could directly use it to hack the bWAPP website to get root
access by exploring one of the above specific XML external entities vulnerabilities.

https://doi.org/10.4236/oalib.1111367
http://localhost/bWAPP/login.php

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 6 Open Access Library Journal

Figure 3. An IP address for the targeted hostname.

Figure 4. Default credentials for logging in
bWAPP website.

Figure 5. The XML external entity injection
attack from Bee-box VM machine.

The second way is we think using XAMPP-VM software with the bWAPP tool

in the MAC operating system because XAMPP is a crossing platform, which
provides kind of local database, application, and web servers such as Apache,
MySQL, PHP, and Perl on our current physical computer. What’s more, it has
automatically disabled some security features for different people like penetra-
tion testers or students to work on their PC works without accessing to internet.
[8]. (Figure 6)

From Figure 7, we could use XAMPP to automatically assign an IP address
for our local host at 192.168.64.2 and then click on Volumes tap to go directly
inside of configuration location for resetting kind of PHP files before trying to
communicate with the bWAPP website as Figure 8.

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 7 Open Access Library Journal

Figure 6. XAMPP tool for setting up a
local database server (bWAPP) [7].

Figure 7. XAMPP tool for assigning an IP address for
a local host.

Figure 8. XAMPP tool for setting up a local database server (bWAPP).

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 8 Open Access Library Journal

To connect to the bWAPP database local server on the MacOS computer, we
have to first reset some of the PHP configuration files that are used for matching
our local bWAPP database information including database username, database
password, database hostname, and database name.

Figures 9-12 show updated configuration files before successfully logging in
to the bWAPP website on the MacOS. [9]

Once above all configuration files have been correctly reset, we can open the
bWAPP website at http://192.168.64.2/bWAPP/login.php.

Like the first XML exploiting method we mentioned before, we could enter
the same default credentials to log into the bWAPP website as Figure 13. Then,
we go to select one of the XML attack options after logging in bWAPP portal as
Figure 14 shows.

From Figure 14, we can observe bWAPP website is an insecure web applica-
tion server on the local machine when having the security level set to low mode
since there is an insecure alert message at the top of the URL address bar and the
security level information is listed at the top right corner of bWAPP main page.
The bWAPP website has over 100 vulnerabilities which could be used for testing
security issues in the different hosts supported by XAMPP. (Figure 14)

5. XML Exploitation Results

To analyze XML exploitation results, we could use a professional web vulnera-
bility scanner, which is called Burp Suite Free Edition. [10] The main reasons are
explained below: [11].

1) Attacking web application or web services tool B. Doing penetration testing
on the targeted web application C. Capturing requests and responses after
launching an XML attack D. Scoping our targeted application properly E. Hav-
ing the ability to trigger potential security vulnerability toward a vulnerable op-
erating system F. Digging deep into exploitation results and validating our find-
ings After having the Burp suite free edition installed on our current MacOS, we
could use an intruder tool to carry out an automated XML attack against web
applications. Next, we manually manipulate and reissue an individual HTTP
request and analyze the corresponding application by selecting the repeater tool
from it. (Figures 15-18)

To decode the targeted application information, we could use the Decoder
feature which is one of Burp suite free edition tools as below in Figure 16.

We have found a document type definition (DTD) contained in the XML
documents that enables definition functioning in the XML entities via offering a
substitution string in generating a URL. The XML parser accessed the contents
of the URL and transformed them back into the XML documents for further
processing. During submission of an XML file which may have defined an ex-
ternal entity with a path location of a file, a hacker could first make a processing
application to read the contents of a local file and then force the application to
generate outbound requests to web servers that the hacker is unable to reach di-
rectly but could be able to bypass firewall restrictions or hide the source of XML

https://doi.org/10.4236/oalib.1111367
http://192.168.64.2/bWAPP/login.php

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 9 Open Access Library Journal

Figure 9. Modified configuration file in install.php for bWAPP (da-
tabase).

Figure 10. Modified configuration file in config.inc.php for bWAPP
(database).

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 10 Open Access Library Journal

Figure 11. Modified configuration file in the connecti.php for
bWAPP (database).

Figure 12. Modified configuration file in Settings.php for bWAPP
(database).

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 11 Open Access Library Journal

Figure 13. Using the same Default credentials for bWAPP
website login page at http://192.168.64.2/bWAPP/login.php
on MacOS machine.

Figure 14. The XML external entity injection attack from XAMPP-VM
machine with bWAPP installed on the local MacOS.

Figure 15. The XML injection payloads inserted into the web-based re-
quest on the intruder tool in the Burp Suite Free Edition.

https://doi.org/10.4236/oalib.1111367
http://192.168.64.2/bWAPP/login.php

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 12 Open Access Library Journal

Figure 16. Decoding application information on the decoder tool in the
Burp Suite Free Edition.

Figure 17. Manual manipulating HTTP request and application res-
ponses analyzing via the Repeater tool in the Burp Suite Free Edition.

Figure 18. Application responses analyzing on the Repeater tool in the
Burp Suite Free Edition.

attacks to make application response with sensitive data in the returned error
message. The hacker uses XML injection to exploit vulnerabilities in the
processing application and deploys malicious payloads to get unauthorized
access to sensitive stored data which allows the hacker to construct queries to
modify XML documents based on the XML-enabled database. What’s more, the

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 13 Open Access Library Journal

hacker takes advantage of entering improperly formatted queries on the applica-
tion’s front end so that the unvalidated input would trick the web system into
passing the information onto web servers. [1]

On the other hand, due to insecure web environments, limited access to sys-
tem resources may have been decreased which could cause too many resources
could be accessed by attackers, such as memory, network connections, CPU, or
access points. A hacker would be able to use XML injection to add themselves to
the table of a user database of the web application. The hacker uses the web ap-
plication to build a node that would be added to the XML-enabled database that
offers the hacker access to read whatever data are accessible to the profile which
has been given administration privileges. One known vulnerability has been
posted by the National Institute of Standards and Technology (NIST) as
CVE-2022-25251. The hacker could send XML messages to a specific port when
they bypass the web application’s authentication for reading the targeted web
system’s configuration data. [1] Finally, a degradation of the quality of authenti-
cation could be triggered by weaknesses of limitation of accessing web applica-
tions or web services if originally not addressed in designing or deploying a se-
cure architecture of system resources.

When an XML external entity reference is not properly restricted, the XML
parser may consume excessive CPU cycles or fixed memory via a URL that di-
rects to a big-size file. If the file referred to by the URL includes too many nested
or recursive entity references, it could make the parsing process very slow due to
too much resource consumption in the CPU and memory.

6. Mitigating and Detecting XML Attacks

Before diving into mitigation strategies and the detection of XML attacks it is
prudent to understand the basics of a computer security model strategy. A
computer security model should always have three main goals that need to be
achieved: Confidentially-personal data needs to be held in strict confidence and
not compromised to others. Integrity of system operations, expected results of
processes should be accurate; when requesting a system process the results
should be accurate; and should not collide with other processes running concur-
rently. Availability - the system resources should be available for use when the
system is needed. This includes but is not limited to having the CPU not domi-
nated by one resource or process. Through scheduling the proper prioritization
should be given to each of the processes to run the system efficiently with mi-
nimal resources and power. [3] When one of the components of the security
model is compromised the main goal of the computer is jeopardized. Proper mi-
tigation techniques and detection components are crucial to have a system that
has integrity, is available, and can be used with confidence. Mitigation tech-
niques can be viewed as cost avoidance and embarrassment. Quite often an ex-
ploit is found through code that is open to the general public, unsecured, and
without proper restrictions. The exploitation described above can be mitigated if
the developer is aware of the logistics of the translator tool commonly used in

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 14 Open Access Library Journal

web application development. As described and demonstrated with the XML ex-
ploitation above, the XML External Entities (XXE). [5]

Using Extensible Stylesheet Language Translator (XSLT) methods can target
production systems halting daily operations. It is a web security vulnerability
that allows a hacker to interfere with an application’s processing of XML data.
Accessing external entities allows hackers to modify references in the parsers
and obtain personal information. Disabling the use of external style sheets and
inserting the style sheets locally would prevent this from happening. Other op-
tions to mitigate the risks of an XML attack would be to

1) Avoid user-provided XML translation documents, 2) Do not generate
translation documents from untrusted input. If there is a variable that is needed
then include the variable in the data file and not have it inputted manually, 3)
Disable all dangerous functionality implemented by the translation library,
which includes embedded scripting extensions that allow reading or writing ex-
ternal files. [12]

One instance of revealing password information can be avoided by eliminat-
ing the external references within the files. This sample code from the vpnmen-
tor.com blog

<!ENTITY xxe SYSTEM file:
/ / / e t c / p a s s w d >]>&xxe ;
(vpnmentor . com) is an example
where user or Administrator password information can be divulged. Disabling

the document type definition (DTD) is one way to protect against an XML at-
tack. The DTD can be declared inside an XML document and does not have to
use an external reference thereby eliminating the potential vulnerability. Anoth-
er way to eliminate the EEX vulnerability is to upgrade the parser to a more
modern library that does not have known vulnerabilities.

A denial of Service (DOS) attack a “Billion Silent Laughs” mentioned above a
well-documented XML vulnerability where an XML blob is used to create an
entity called “LOL” and uses entity expansion to consume a large amount of
memory and CPU power or could bring down the entire system. A mitigation
strategy is to define a maximum length size on the XML local entity expansion,
prohibiting the server from consuming too many resources by using XML pars-
ing. Even though we are speaking of a 3GB file it can still slow the server and
CPU speed down considerably, and it did not find the file can continue to ex-
pand rendering the computer useless. Penetration testing is commonly used in
many types of industries and can avoid or elevate putting insecure code into
production environments. Unfortunately, Penetration testing can be expensive
and smaller companies opt out of such endeavors. Knowing the most significant
vulnerabilities and testing for those is better than the absence of testing. Watch-
ing for spikes in CPU memory load or an increase in memory utilization would
be key to discovering an exploit. Targeting encapsulated code; and elimination
of external references and libraries; which would prohibit the exploit from hap-
pening would be the goal.

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 15 Open Access Library Journal

7. Detecting an XML Attack using Modern Techniques

Detecting an XML attack before it happens would be ideal. Recently, there has
been development work in the area of signature-based detection systems, which
evaluate the payload and identify an attack through contexts. Indirect attacks on
the CPU happen when Web Applications are attacked and exploited. Prevention
of application attacks intrinsically helps protect the operating system. Most at-
tacks begin with receiving untrusted XML information. A good remediation
strategy to avoid XML attacks would be to not accept untrusted, unverified XML
information. Although easy to say hard to institute, as inexperienced developers
unknowingly accept untrusted information. In a recently published article by
MicroSoft professionals, they described and demonstrated how client-side XML
exploitations can occur. In the same article, they recommended three configura-
tions to avoid attacks. [13] 1) Disable DTD processing, and configure the parser
to not process DTD’s. By default, this setting in a .net framework should be
DTD-prohibited. 2) Tighten up Error Handling and ensure exception messages
are clear. In general application error should be handled by the application itself
and return a generic message to the user. If the error message returns explicit in-
structions the attackers have enough information to exploit the system in other
ways. 3) Set Content-Disposition for XML Downloads. If uploading and down-
loading using XML is a must for the application set the HTTP Con-
tent-Disposition response header. The header forces the user to download the
needed file instead of having the browser access the file directly. [13]

7.1. Automated Testing Tools for XMLi

Thorough testing of XML applications will prohibit attacks but cannot guarantee
that that will not happen. In a published document on the automatic tests to Ex-
ploit XML injection vulnerabilities, the authors go through extensively how to
test the XML code to validate there are no weaknesses in the accessing of libra-
ries or external entities with the Service Oriented Architecture that is generally
used to manipulate files on the backend of the web application. [5] XML uses
several modular tools, one of them is a Services Oriented Architecture (SOA)
that moves or manipulates files. Web applications receive input from users on
the front end and manipulate data by calling on other services such as SOA to
translate data. The user data has to be properly validated to prevent XML at-
tacks. This is very time-consuming for the processor and takes vital resources if
each file external to the web application has to be verified by the processing of
that file. [5]

7.2. Strategy Based Detection Systems

As we demonstrated there is potential to generate an attack on XML web appli-
cations that could influence system resources and utilization. These are detri-
mental to systems that are running constantly. One was to protect Web services
applications through a signature-based detection system. This approach uses a

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 16 Open Access Library Journal

signature on the payload that identifies an attack through a context. These sig-
natures are known to have a low rate of false positives and can alert a system
Administrator of a potentially fault file. However, there is a downside to using a
signature-based detection model. It does not recognize unknown attacks. So, it
will not help in a zero-day attack situation. [14] An alternative to signa-
ture-based detection is a knowledge-based detection system. This approach
would have previously known and cataloged behavior, in which the system
would access and routinely process the normal class of files. and when a detec-
tion of an abnormal file would be known, it would quarantine the file until fur-
ther action could be taken. This approach can detect new attacks however, it
does produce a lot of false positives. This approach would not be the best use of
the system resources as it has to classify the files The authors of the signa-
ture-based and knowledge-based detection system were trying to shorten the gap
between the zero-day attacks and having the detection system function appro-
priately, eliminating the high rate of false positives by introducing an Ontology
that is composed of classes and properties. We will not go into all the details of
the approach in this paper, but if the reader would like more information, it can
be found in the reference section. [14] (Figure 19)

8. Conclusions

Although this paper explicitly focuses on XSLT translation tool exploits; It is
worth mentioning that there are other ways to infect the system besides through
the translation tool. Since XML is the most widely used web application scripting
language more visibility is given to such vulnerabilities. However, if the web ap-
plication has a downloadable component, a boot sector virus infection is feasible.
The following description and diagram show how a virus copies a boot sector on
the CPU and replaces a boot block with itself, the virus is soon replicated, this is
known as a logic block bomb and can proliferate quickly before any system de-
tection software can act. This system boot virus decreases physical memory and
attaches itself to a disk read-write interrupt. [15]

The paper explored one aspect of web applications, as mentioned if more time
was placed on security upfront there might be fewer exploits. However, security
architecture comes with a price of higher cost more consumption of resources,
and potentially slower processing speed. There is an inverse relationship be-
tween security and fast processing time.

As web applications continue to more prevalent with increased functionality,
the security architecture of the application must be considered before investing
resources into the application that might be insecure. The paper explored what
happens to the system when a scripting language with known vulnerabilities uses
external entities and translation tools for data conversion. As web applications
get more sophisticated a strategy-based approach is needed to keep the integrity,
confidentiality, and availability of applications intact. Continued research on this
topic should be considered as systems advance and computers even handheld
ones are used for daily transactions.

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 17 Open Access Library Journal

Figure 19. Virus in the boot sector.

9. Future Work

Detection systems can discover known vulnerabilities but have a shortfall in
zero-day attacks. Factors in place of having a detection system alert for an at-
tack would be to have monitoring tools on the hardware to alert if a system’s
behavior is inappropriate. Although detection systems are available today, it
was mentioned in our research that they produce a lot of false positives lead-
ing to unnecessary investigations. Advanced monitoring tools from the server
side in a complex network and the client side would allow system adminis-
trators time to react before the system is breached. A spike in core speed,
temperature, or GPU usage might alert the operating system to quarantine
processes and inform the user of unexpected processing behavior would be a
research project worth exploring. Exploring intruder detection systems on
Operation systems would be a consideration for future work. Additionally, an
analysis of cost, processing speed, and security architecture should be consi-
dered when looking at the intruder detection strategy. There could be a factor
of AI that would help grow the knowledge-based techniques that learn user
behaviors.

Author Contribution

This research paper was a collaborative effort of both authors, after agreeing on a
topic to explore the work was divided to optimize the background of each team
member. Xueying focused on the actual injection attack using web-based tools

https://doi.org/10.4236/oalib.1111367

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 18 Open Access Library Journal

and researched how the code could be injected maliciously. Sharon focused on
how to detect and mitigate the injection and also researched what injections
would do to the overall system and related components. The future works and
the detection of malicious code was included in the research.

Conflicts of Interest

The authors declare no conflicts of interest.

References
[1] Casey Crane (2022) XML Injection Attacks: What to Know about XPath, XQuery,

XXE and More.
https://www.thesslstore.com/blog/xml-injection-attacks-what-to-know-about-xpath
-xquery-xxe-more/

[2] Bassil, Y. (2012) Windows and Linux Operating Systems from a Security Perspec-
tive. https://arxiv.org/abs/1204.0197S

[3] Security for Operating Systems.
https://lasr.cs.ucla.edu/classes/111_security_chapters/Security_for_Operating_Syste
ms.pdf

[4] Portswigger Web Security (2024) XML External Entity (XXE) Injection.
https://portswigger.net/web-security/xxe

[5] Jan, S., Panichella, A., Arcuri, A. and Briand, L. (2019) Automatic Generation of
Tests to Exploit XML Injection Vulnerabilities in Web Applications. IEEE Transac-
tions on Software Engineering, 45, 335-362.
https://doi.org/10.1109/TSE.2017.2778711

[6] SOURCEFORGE (2014) Installation of bWAPP and Bee-Box.
https://sourceforge.net/projects/bwapp/files/

[7] Apache Friends Community (2017) XAMPP-VM for Mactell Us What You Think.
https://www.apachefriends.org/blog/new_xampp_20170628.html

[8] Create Element Ltd (2023) Install and Configure XAMPP on a MAC.
https://power-plugins.com/developer-guides/install-and-configure-xampp-on-a-ma
c/

[9] ITSEC GAMES (2013) bWAPP Installation.
http://itsecgames.blogspot.com/2013/01/bwapp-installation.html

[10] Fahlsteft, H. (2018) Setting up Burp Suite Community Edition.
https://medium.com/@hkanfahlstedt/setting-up-burp-suite-community-edition-e53
20868026f

[11] Portswigger Web Security (2024) Burp Suite Tools.
https://portswigger.net/burp/documentation/desktop/tools

[12] Silberschatz, A. and Galvin, P. (1994) Operating System Concepts. 4th Edition, Ad-
dison-Wesley, Boston.

[13] Lundeen, R., Ou, J. and Rhodes, T. (2011) Microsoft Office 365 Pentest Team. New
Ways I’m Going to Hack Your Web App.
https://media.blackhat.com/bh-ad-11/Lundeen/bh-ad-11-Lundeen-New_Ways_Hac
k_WebApp-WP.pdf

[14] Rosa, T., Santin, A. and Malucelli, A. (2013) Mitigating XML Injection 0-Day At-
tacks through Strategy-Based Detection Systems. IEEE Security Privacy, 11, 46-53.
https://doi.org/10.1109/MSP.2012.83

https://doi.org/10.4236/oalib.1111367
https://www.thesslstore.com/blog/xml-injection-attacks-what-to-know-about-xpath-xquery-xxe-more/
https://www.thesslstore.com/blog/xml-injection-attacks-what-to-know-about-xpath-xquery-xxe-more/
https://arxiv.org/abs/1204.0197S
https://lasr.cs.ucla.edu/classes/111_security_chapters/Security_for_Operating_Systems.pdf
https://lasr.cs.ucla.edu/classes/111_security_chapters/Security_for_Operating_Systems.pdf
https://portswigger.net/web-security/xxe
https://doi.org/10.1109/TSE.2017.2778711
https://sourceforge.net/projects/bwapp/files/
https://www.apachefriends.org/blog/new_xampp_20170628.html
https://power-plugins.com/developer-guides/install-and-configure-xampp-on-a-mac/
https://power-plugins.com/developer-guides/install-and-configure-xampp-on-a-mac/
http://itsecgames.blogspot.com/2013/01/bwapp-installation.html
https://medium.com/@hkanfahlstedt/setting-up-burp-suite-community-edition-e5320868026f
https://medium.com/@hkanfahlstedt/setting-up-burp-suite-community-edition-e5320868026f
https://portswigger.net/burp/documentation/desktop/tools
https://media.blackhat.com/bh-ad-11/Lundeen/bh-ad-11-Lundeen-New_Ways_Hack_WebApp-WP.pdf
https://media.blackhat.com/bh-ad-11/Lundeen/bh-ad-11-Lundeen-New_Ways_Hack_WebApp-WP.pdf
https://doi.org/10.1109/MSP.2012.83

X. Y. Pan, S. Martin

DOI: 10.4236/oalib.1111367 19 Open Access Library Journal

[15] David, T. (2017) XSLT Server Side Injection Attacks, Context Blog Vulnerabilities
and Exploits, Web Applications.

https://doi.org/10.4236/oalib.1111367

	XML Attacks towards Different Targeted Operating Systems
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Types of XML Attacks
	3. Vulnerable Functions
	4. Exploiting an XML Attack
	5. XML Exploitation Results
	6. Mitigating and Detecting XML Attacks
	7. Detecting an XML Attack using Modern Techniques
	7.1. Automated Testing Tools for XMLi
	7.2. Strategy Based Detection Systems

	8. Conclusions
	9. Future Work
	Author Contribution
	Conflicts of Interest
	References

