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Abstract 
In this paper, I study to solve functional inequalities and equations of type 
Cauchy-Jensen with 3k-variables in a general form. I first introduce the con-
cept of the general Cauchy-Jensen equation and next, I use the direct method 
of proving the solutions of the Jensen-Cauchy functional inequalities relative 
to the general Cauchy-Jensen equations and then I show that their solutions 
are mappings that are additive mappings calculated and finally apply the de-
rivative setup on fuzzy algebra also the results of the paper. 
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1. Introduction 

Let G  be an m-divisible group where { }\ 0m∈  and X , Y  be a normed 
space on the same field  , and :f →G X  ( :f →G Y ) be a mapping. I use 
the notation ⋅ X

 ( ⋅ Y
) for corresponding the norms on X  and Y . In this 

paper, I investigate functional inequalities and equations when when G  be an 
m-divisible group where m∈  and X  is a normed space with norm ⋅ X

 
and that Y  is a Banach space with norm ⋅ Y

. 
In fact, when G  be an m-divisible group where m∈  and X  is a 

normed space with norm ⋅ X
 and that Y  is a Banach space with norm ⋅ Y
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I solve and prove the Hyers-Ulam-Rassias type stability of following functional 
inequalities and equations. 

 ( ) ( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

x y
f x f y k f z kf z

k= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑

Y Y

 (1) 

and  

 ( ) ( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

x y
f x f y k f z kf z

k= = = = =

+ 
+ + = + 

 
∑ ∑ ∑ ∑ ∑  (2) 

Where k is a positive integer. 
The study of the functional equation stability originated from a question of S. 

M. Ulam [1], concerning the stability of group homomorphisms. Let ( ),∗G  be 
a group and let ( ), ,d′

G  be a metric group with metric ( ),d ⋅ ⋅ . Geven 0ε > , 
does there exist a 0δ >  such that if :f ′→G G  satisfies:  

( ) ( ) ( )( ),d f x y f x f y δ∗ <  

for all ,x y∈G  then there is a homomorphism :h ′→G G  with  

( ) ( )( ),d f x h x ε< , 

for all x∈G , if the answer, is affirmative, I would say that equation of 
homomophism ( ) ( ) ( )h x y h y h y∗ = 

 is stable. The concept of stability for a 
functional equation arises when we replace a functional equation with an 
inequality which acts as a perturbation of the equation. Thus the stability question 
of functional equations is how the solutions of the inequality differ from those of 
the given function equation. Hyers gave a first affirmative answer the question 
Ulam as follows: 

In 1941 D. H. Hyers [2] Let 0ε ≥  and let :f →1 2E E  be a mapping between 
Banach space such that 

( ) ( ) ( ) ,f x y f x f y ε+ − − ≤  

for all ,x y∈ 1E  and some 0ε ≥ . It was shown that the limit 

(2 )( ) = lim 2

n

nn

f xT x
→∞

 

exists for all x∈ 1E  and that :T →1 2E E  is that unique additive mapping 
satisfying  

( ) ( ) , .f x T x xε− ≤ ∀ ∈ 1E  

Next in 1978 Th. M. Rassias [3] provided a generalization of Hyers’ Theorem 
which allows the Cauchy difference to be unbounded: 

Consider , ′E E  to be two Banach spaces, and let :f ′→E E  be a mapping 
such that ( )f tx  is continous in t for each fixed x. Assume that there exist 

0θ ≥  and [ )0,1p∈  such that  

( ) ( ) ( ) ( ) , , .p pf x y f x f y x y x yε+ − − ≤ + ∀ ∈  

then there exists a unique linear :L ′→E E  satifies  
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( ) ( ) 2 , .
2 2 pf x L x x xθ

− ≤ ∈
−

E  

Next J. M. Rassias [4] following the spirit of the innovative approach of Th. M. 
Rassias for the unbounded Cauchy difference proved a similar stability theorem 
in which he replaced the factor p px y+  by p px y  for ,p q∈  with 

1p q+ ≠ . 
Next in 1992, a generalized of Rassias’ Theorem was obtained by Găvruta [5]. 
Let ( ),+G  be a group Abelian and E  a Banach space.  
Denote by [ ): 0,φ × → ∞G G  a function such that  

 ( ) ( )
0

, 2 2 ,2n n n

n
x y x yφ φ

∞
−

=

= < ∞∑  

for all ,x y∈G . Suppose that :f →G E  is a mapping satisfying  

( ) ( ) ( )f x y f x f y ε+ − − ≤ , ,x y G∀ ∈ . 

There exists a unique additive mapping :T →G E  such that  

( ) ( )  ( ),f x T x x xφ− ≤ , ,x y G∀ ∈ . 

Generally speaking for a more specific problem, when considering this famous 
result, the additive Cauchy equation  

( ) ( ) ( )f x y f x f y+ = +  

is said to have the Hyers-Ulam stability on ( ),1 2E E  with 1E  and 2E  are 
Banach spaces if for each :f →1 2E E  satisfying  

( ) ( ) ( )f x y f x f y ε+ − − ≤  

for all ,x y∈ 1E  for some 0ε > , there exists an additive :h →1 2E E  such that 
f h−  is bounded on 1E . The method which was provided by Hyers, and which 

produces the additive h, was called a direct method. 
Afterward, Gilány showed that if satisfies the functional inequality  

 ( ) ( ) ( ) ( )12 2f x f y f xy f xy−+ − ≤  (3) 

Then f satisfies the Jordan-von Newman functional equation  

 ( ) ( ) ( ) ( )12 2f x f y f xy f xy−+ = +  (4) 

Gilányi [6] and Fechner [7] proved the Hyers-Ulam stability of the functional 
inequality. 

Recently, the authors studied the Hyers-Ulam stability for the following 
functional inequalities and equation  

 ( ) ( ) ( )2 2
2

x yf x f y f y f z+ + + ≤ + 
 

 (5) 

 ( ) ( ) ( )2 2
2

x yf x f y f y f z+ + + = + 
 

 (6) 

in Banach spaces. 
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In this paper, I solve and prove the Hyers-Ulam stability for inequality (1.1) is 
related to Equation (1.2), ie the functional inequalities and equation with 3k 
variables. Under suitable assumptions on spaces G  and X  or G  and Y , I 
will prove that the mappings satisfy the (1.1) - (1.2). Thus, the results in this 
paper are generalization of those in [1]-[33] for inequality (1.1) is related to 
Equation (1.2) with 3k variables. 

The paper is organized as follows:  
In the section preliminary, I remind some basic notations such as: 
Concept of the divisible group, definition of the stability of Cauchy-Jenen 

functional inequalities and functional equation, Solutions of the equation, func- 
tional inequalities and functional equation, the crucial problem when constructing 
solutions for Cauchy-Jensen inequalities. 

Section 3: Establish a solution to the generalized Cauchy-Jensen functional 
inequalities (2.2) when I assume that G be a m-divisible abelian group and X is a 
normed space.  

Section 4: Stability of functional inequalities (1.1) related to the Cauchy-Jensen 
equation when I assume that G be a m-divisible abelian group and Y is a Banach 
space.  

Section 5: Establish solutions to functional inequalities (1.1) based on the 
definition when I assume that G be a m-divisible abelian group and Y is a Banach 
space.  

Section 6: The stability of derivation on fuzzy-algebras. 

2. Preliminaries 
2.1. Concept of Divisible Group 

A group G  is called divisible if for every x∈G  and every positive integer n 
there is a y∈G  so that ny x= , i.e., every element of G  is divisible by every 
positive integer. A abelian group G  is called divisible if for every x∈G  and 
every n∈  there is some y∈G  so that x ny= . divisible by every positive 
integer. Let G  be an n-divisible abelian group where n∈  (i.e.,  

:a na→ →G G  is a surjection).  
Denote by  

( ) { }, | :M f f= →G X G X  

( ) { }, : | : supxL f f f∞
∈∞

= → = < ∞G XG X G X  

The sets ( ) ( ), , ,rM MG Y G X  and ( ),rM +G  can be defined similarly 
where 

( ){ }1 2, , , : , 1, ,r
r jx x x x j k= ∈ = G G  

2.2. Definition of the Stability of Functional Inequalities and  
Functional Equation 

Given mappings ( ) ( ): , ,rE M M +→ G X G , : rϕ →G  and :ψ +→G . If  
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( )( ) ( )1 2 1 2, , , , , ,r rE f x x x x x xϕ≤ 
 

for all 1 2, , , rx x x ∈ G  implies that there exists ( ),g M∈ G X  such that 

( ) 0E g ≤  and ( ) ( ) ( )f x g x xψ
∞

− ≤ , for all x∈G , then we say that the 
inequality ( ) 0E f ≤  is ( ),ϕ ψ -stable in ( ),M G X . In this case, we also say 
that the solutions of the inequality ( ) 0E f ≤  is ( ),ϕ ψ -stable in ( ),M G X . 
Given mappings ( ) ( ): , ,rE M M +→ G X G , : rϕ →G  and :ψ +→G  if  

( )( ) ( )1 2 1 2, , , , , ,r rE f x x x x x xϕ
∞
≤   

for all 1 2, , , rx x x ∈ G , implies that there exists ( ),g M∈ G X  such that 

( ) 0E g =  and ( ) ( ) ( )f x g x xψ
∞

− ≤ , for all x∈G , then we say that the 
inequality ( ) 0E f ≤  is ( ),ϕ ψ -stable in ( ),M G X . In this case, we also say 
that the solutions of the inequality ( ) 0E f =  is ( ),ϕ ψ -stable in ( ),M G X .  

It is well known that if an additive function :f →   satisfies one of the 
following conditions:  

1) f is continuous at a point;  
2) f is monotonic on an interval of positive length;  
3) f is bounded on an interval of positive length;  
4) f is integrable;  
5) f is measurable;  
then f is of the form ( )f x cx=  with a real constant c. 

2.3. Solutions of the Equation 

The functional equation  

( ) ( ) ( )f x y f x f y+ = +  

is called the Cauchy equation. In particular, every solution of the Cauchy 
equation is said to be an additive mapping. 

The functional equation  

( ) ( )1 1
2 2 2

x yf f x f y+  = + 
 

 

is called the Jensen equation. In particular, every solution of the Jensen equation 
is said to be an Jensen additive mapping. 

The functional equation  

( ) ( ) ( )2 2
2

x yf x f y f z f z+ + + = + 
 

 

is called the Cauchy-Jensen equation. In particular, every solution of the 
equation is said to be an additive mapping. 

2.4. Solutions of the Functional Inequalities 

The functional inequalities  

( ) ( ) ( )2 2
2

x yf x f y f z f z+ + + ≤ + 
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is called the Cauchy-Jensen inequalities. In particular, every solution of the 
inequalities is said to be an additive mapping 

2.5. The Crucial Problem When Constructing Solutions for  
Cauchy-Jensen Inequalities 

Suppose a mapping :f →G X , the equation  

 ( ) ( ) ( )
1 1 1 1 1

k k k k k
j j

j j j j
j j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + = + 

 
∑ ∑ ∑ ∑ ∑  (7) 

is said to a generalized Cauchy-Jensen equation. 
And function inequalities  

 ( ) ( ) ( )
1 1 1 1 1

k k k k k
j j

j j j j
j j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑  (8) 

is said to a generalized Cauchy-Jensen function inequalitiess Note: case 2m =  
and 1k =  so (7) it is called a classical Cauchy-Jensen equation, (8) it is called a 
Cauchy-Jensen function inequalities. 

3. Establish a Solution to the Generalized Cauchy-Jensen  
Functional Inequality 

Now, I first study the solutions of (8). Note that for inequalities, G  be a 
m-divisible group where { }\ 0m∈  and X  be a normed spaces. Under this 
setting, I can show that the mapping satisfying (8) is additive. These results are 
give in the following.  

Lemma 1. Let :f →G X  be a mapping such that satisfies 

 ( ) ( ) ( )
1 1 1 1 1

k k k k k
j j

j j j j
j j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑

X X

 (9) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G  if and only if :f →G X  is additive.  
Proof. Prerequisites 
Assume that :f →G Y  satisfies (9) Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 
by ( )0, ,0,0, ,0,0, ,0  

 in (9), I get  

( ) ( )2 0 0
X X

k m f m f+ ≤  

( ) ( )2 0 0
X

k m m f+ − ≤  

So ( )0 0f = . 
Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  
( ), , ,0, ,0, , ,mz mz z z− −  

 in (9), I get ( ) ( ) 0kf mz kmf z− + ≤  and so  

 ( ) ( )f mz mf z− = −  (10) 

for all z∈G . 
Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  

1 1, , , , , , , ,j j j j
k k

x y x y
x x y y

m m
+ + 

− − 
 

    in (9) and (10) I have 
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( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1

1 1 1

=1 =1
0 0

k k k

j j j
j j j

k k k

j j j j
j j j

k k
j j j j

j j

f x f y m f z

f x f y f x y

x y x y
mf f

m m

= = =

= = =

+ +

= + − +

+ + 
≤ − = = 

 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

X

X

X
X

 (11) 

Therefore  

 ( ) ( ) ( )
1 1 1

k k k

j j j j
j j j

f x f y f x y
= = =

+ = +∑ ∑ ∑  (12) 

Finally we replacing ( )1 1, , , , ,k kx x y y 
 by ( ), , , , ,u u v v 

 in (12) so  

( ) ( ) ( )f u f v f u v+ = + . 

Sufficient conditions: 
Suppose :f →G Y  is additive. Then  

 ( ) ( )
1 1 1 1

k k k k

j j j j
j j j j

f x y f x f y
= = = =

 
+ = + 

 
∑ ∑ ∑ ∑  (13) 

and so  

( )
1 1

k k

j j
j j

f p x p f x
= =

 
= 

 
∑ ∑  

for all p∈  and 1 2, , , rx x x ∈ G . 
Therefore 

 
( ) ( ) ( )

( )
1 1 1

1 1 1 1

k k k

j j j
j j j

k k k k
j j j j

j j
j j j j

f x f y m f z

x y x y
mf m f z mf z

m m

= = =

= = = =

+ +

+ +   
= + = +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑
 (14) 

So I have something to prove 

 ( ) ( ) ( )
1 1 1 1 1

k k k k k
j j

j j j j
j j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑

Y Y

 (15) 

 
From the proof of the lemma 2, I get the following corollary: 
Corollary 1. Suppose a mapping :f →G X , The following clauses are 

equivalent  
1) f is additive.  

2) ( ) ( ) ( )1 1 1 1 1
k k k k kj j

j j j jj j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + = + 

 
∑ ∑ ∑ ∑ ∑ ,  

, ,j j jx y z∀ ∈G , 1, ,j k=  . 

3) ( ) ( ) ( )1 1 1 1 1
k k k k kj j

j j j jj j j j j

x y
f x f y m f z mf z

m= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑  

1 1 1, , , , , , , ,k k kx x y y z z∀ ∈   G . 
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Note: Clearly, a vector space is a m-divisible abelian group, so Corollary 3.2 is 
right when G  is a vector space. 

Through the Lemma 2 proof, I have the remark: 
Remark: When the letting m = 2k (means that m is always even) and G  is 

an m-divisible abelian gourp then G  must be a 2-divisible abelian gourp.  

4. Stability of Functional Inequalities Related to the  
Cauchy-Jensen Equation 

Now, I first study the solutions of (1.1). Note that for inequalities, G  be a 
m-divisible group where { }\ 0m∈  and Y  be a Banach spaces. Under this 
setting, I can show that the mapping satisfying (1.1) is additive. These results are 
give in the following. 

Theorem 2. For 3: kφ +→G  be a function such that  

( )
( ) ( ) ( ) ( ) ( ) ( )( )1 1 1

1lim 2 , , 2 , 2 , , 2 , , 2 , , 2 0
2

n n n n n n
k k knn

k x k x k y k y k z k z
k

φ
→∞

=     (16) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G .  
And  

 

 ( )

( )
( ) ( ) ( ) ( )( )

1 1

1 1
1 11

0

, , , , ,

1 2 , , 2 ,0, ,0, 2 , , 2
2

k k

n n n n
k kn

n

x x z z

k x k x k z k z
k

φ

φ
∞

+ +

+
=

= < ∞∑

 

  

 (17) 

for all 1 1, , , , , ,k k jx x z z z ∈  G . Suppose that an odd mapping :f →G Y  
satisfies  

 
( ) ( ) ( )

( )

1 1 1

1 1 1
1 1

2

2 , , , , , , , ,
2

k k k

j j j
j j j

k k
j j

j k k k
j j

f x f y k f z

x y
kf z x x y y z z

k
φ

= = =

= =

+ +

+ 
≤ + + 

 

∑ ∑ ∑

∑ ∑   

Y

Y

 (18) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . 
Then there exists a unique additive mapping :ψ →G Y  such that  

 ( ) ( )  ( ), , , , ,f x x x x x xψ φ− ≤  

Y
 (19) 

for all x∈G . 
Proof. Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by ( )0, ,0,0, ,0,0, ,0  
 

in (18), we get  

 ( ) ( )22 2 0 0.k k k f+ − ≤
Y

 (20) 

so ( )0 0f = . 
Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  
( )2 , ,2 ,0, ,0, , ,kx kx x x− −  

 in (18), I get  

 ( ) ( ) ( )22 2 2 ,2 , ,2 ,0,0, ,0, , , ,kf kx k f x kx kx kx x x xφ− ≤ − − −  

Y
 (21) 

( ) ( ) ( )2
1 12 2 ,2 , ,2 ,0,0, ,0, , , ,

2 2
f x f kx kx kx kx x x x

k k
φ− ≤ − − −  

Y
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Hence  

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( ) ( ) ( ) ( )( )

1 1
1

1 1
2

1

1 12 2
2 2

1 12 2
2 2

1 1 2 , , 2 ,0,0, ,0, 2 , , 2
2 2

0

l m
l m

Y

m j j
j j

j l
Y

m j j j j
j

j l

f k x f k x
k k

f k x f k x
k k

k x k x k x k x
k k

φ

−
+

+
=

+ +

= +

−

≤ −

≤ − −

=

∑

∑   

 (22) 

for all nonnegative integers m and l with m l>  and all x∈G . It follows from 

(22) that the sequence 
( )

( )( )1 2
2

n
n f k x

k

  
 
  

 is a cauchy sequence for all x∈G . 

Since Y  is complete space, the sequence 
( )

( )( )1 2
2

n
n f k x

k

  
 
  

 coverges. 

So one can define the mapping :ψ →G Y  by  

( )
( )

( )( )1: lim 2
2

n
nn

x f k x
k

ψ
→∞

=  

for all x∈G . Moreover, letting 0l =  and passing the limit m →∞  in (22), I 
get (19). 

Now, It follows from (18) I have  

( ) ( ) ( )

( )
( )( ) ( )

( )( ) ( )
( )( )

( )
( )( ) ( )( ) ( )( )

( )
( ) ( )

( ) ( )

1 1 1

1 1 1

1 1 1

1 1

1

2

1 1 1lim 2 2 2 2
2 2 2

1lim 2 2 2 2
2

1lim 2 2 2
22

2 , , 2

k k k

j j j
j j j

k k kn n n
j j jn n nn j j j

k k kn n n
j j jnn j j j

k kn nj j
jnn j j

n n

x y k z

f k x f k y k f k z
k k k

f k x f k y k f k z
k

x y
kf k k z

kk

k x k x

ψ ψ ψ

φ

= = =

→∞ = = =

→∞ = = =

→∞ = =

+ +

= + +

= + +

 + 
≤ +   

+

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑



Y

Y

Y

Y

( ) ( ) ( ) ( )( )1 1

1 1

, 2 , , 2 , 2 , , 2

2
2

n n n n
k k k

k k
j j

j
j j

k y k y k z k z

x y
kf z

k= =






+ 
= + 

 
∑ ∑

 

Y

(23) 

So I have  

 ( ) ( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

x y
x y k z k z

k
ψ ψ ψ ψ

= = = = =

+ 
+ + ≤ + 

 
∑ ∑ ∑ ∑ ∑

Y Y

 (24) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . 
Hence from Lemma 1 and corollary 1 it follows that ψ  is an additive 
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mapping. 
Finally I have to prove that ψ  is a unique additive mapping. 
Now, let :ψ ′ →G Y  be another generalized Cauchy-Jensen additive mapping 

satisfying (19). Then I have  

 

( ) ( )
( )

( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )

( )
 ( ) ( ) ( ) ( )( )

1 2 2
2

1 2 2 2
22

12 2 , , 2 ,0, ,0, 2 , , 2
2

n n
n

n n n
n n

n n n n
n

x x k x k x
k

xf k x k x f k x
k

k x k x k x k x
k

ψ ψ ψ ψ

ψ ψ

φ

′ ′− = −

  ′≤ − + −     

≤   

Y Y

Y Y

 (25) 

which tends to zero as n →∞  for all x X∈ . So we can conclude that  
( ) ( )x xψ ψ ′=  for all x∈G . This proves the uniquence of ψ ′ .  

 
From Theorem 2 I have the following corollarys. 
Corollary 2. For G  is a normed space and , 0, 0, 0p r q θ≠ > > . Suppose 
:f →G Y  be a function such that  

 
( ) ( ) ( )

1 1 1

1 1 1 1 1

2

2
2

k k k

j j j
j j j

k k kk k p q rj j
j j j j

j j j j j

f x f y k f z

x y
kf z x y z

k
θ

= = =

= = = = =

+ +

+ 
≤ + + ⋅ ⋅ ⋅ 

 

∑ ∑ ∑

∑ ∑ ∏ ∏ ∏

Y

Y

 (26) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G  then f í a additive mapping.  
Corollary 3. For G  is a normed space and 0 , 1, 0, 0p r q θ< < ≠ > . Suppose 
:f →G Y  be a function such that  

 
( ) ( ) ( )

1 1 1

1 1 1 1 1

2

2
2

k k k

j j j
j j j

k k k k kp q rj j
j j j j

j j j j j

f x f y k f z

x y
kf z x y z

k
θ

= = =

= = = = =

+ +

+   
≤ + + + +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

Y

Y

 (27) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . Then there exists a unique additive 
mapping :ψ →G Y  such that  

 ( ) ( ) ( )
( ) ( )

2 1
2 2 2 2

p
p r

p k

k
f x x k x x

k k k k
ψ θ

 
 − ≤ +
 − − 

Y
 (28) 

for all x∈G .  
Theorem 3. For 3: kφ +→G  be a function such that  

( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 1 1 1 1 1lim 2 , , , , , , , , 0
2 2 2 2 2 2

n
k k kn n n n n nn

k x x y y z z
k k k k k k

φ
→∞

 
 − − =
 
 

    (29) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G , and  
 ( )

( )
( ) ( ) ( ) ( )

1 1

1 11 1
0

, , , , ,

1 1 1 12 , , ,0,0, ,0, , , ,
2 2 2 2

k k

n
k kn n n n

n

x x z z

k x x z z
k k k k

φ

φ φ
∞

+ +
=

 
 = < ∞
 
 

∑

 

   

 (30) 
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for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . 
Suppose that be an odd mapping :f →G Y  satisfies  

 
( ) ( ) ( )

( )

1 1 1

1 1 1
1 1

2

2 , , , , , , , ,
2

k k k

j j j
j j j

k k
j j

j k k k
j j

f x f y k f z

x y
kf z x x y y z z

k
φ

= = =

= =

+ +

+ 
≤ + + 

 

∑ ∑ ∑

∑ ∑

Y

Y

  

 (31) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . 
Then there exists a unique additive mapping :ψ →G Y  such that  

 ( ) ( )  ( ), , , , ,f x x x x x xψ φ− ≤
Y

 
 (32) 

for all x∈G . 
Proof. Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by ( )0, ,0,0, ,0,0, ,0  
 

in (31), I get  

 ( ) ( )22 2 0 0.k k k f+ − ≤
Y

 (33) 

so ( )0 0f = . 
Replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by ( )2 , ,2 ,0, ,0, , ,kx kx x x− −  
 

in (31), I get  

 ( ) ( ) ( )22 2 2 ,2 , ,2 ,0,0, ,0, , , ,kf kx k f x kx kx kx x x xφ− ≤ − − −
Y

    (34) 

( ) 12 , , , ,0,0, ,0, , , ,
2 2 2 2
x x x xf x kf x x x
k k k k k

φ   − ≤ − − −   
   Y

    

The remainder is similar to the proof of Theorem 2. This completes the proof. 
 

From Theorem 2 andTheorem 2. I have the following corollarys. 
Corollary 4. For G  is a normed space and , 0, 0, 0p r q θ≠ > > . Suppose 
:f →G Y  be a function such that  

 
( ) ( ) ( )

1 1 1

1 1 1 1 1

2

2
2

k k k

j j j
j j j

k k kk k p q rj j
j j j j

j j j j j

f x f y k f z

x y
kf z x y z

k
θ

= = =

= = = = =

+ +

+ 
≤ + + ⋅ ⋅ ⋅ 

 

∑ ∑ ∑

∑ ∑ ∏ ∏ ∏

Y

Y

 (35) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G , then f is a additive mapping.  
Corollary 5. For G  is a normed space and 0 , 1, 0, 0p r q θ< < ≠ > . Suppose 
:f →G Y  be a function such that  

 
( ) ( ) ( )

1 1 1

1 1 1 1 1

2

2
2

k k k

j j j
j j j

k k k k kp q rj j
j j j j

j j j j j

f x f y k f z

x y
kf z x y z

k
θ

= = =

= = = = =

+ +

+   
≤ + + + +   

   

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

Y

Y

 (36) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   G . Then there exists a unique additive 
mapping :ψ →G Y  such that  

 ( ) ( ) ( )
( ) ( )

2 1
2 2 2 2

p
p r

p k

k
f x x k x x

k k k k
ψ θ

 
 − ≤ +
 − − 

Y
 (37) 
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for all x∈G .  

5. Establish Solutions to Functional Inequalities Based on  
the Definition 

Now, I first study the solutions of (1). We first consider the mapping 

( ) ( )*: , ,rE M M→G Y G   

as 

( )( )

( ) ( ) ( )

1 1 1

1 1 1 1 1

, , , , , , , ,

2 2
2

k k k

k k k k k
j j

j j j j
j j j j j

E f x x y y z z

x y
f x f y k f z kf z

k= = = = =

+ 
= + + − + 

 
∑ ∑ ∑ ∑ ∑

  

 

then the inequalities 0Ef ≤  is ( ),φ φ -stable in ( ),M G Y  where ( ),φ φ  is as 
Theorem 2 and Theorem 3. 

Note that for inequalities, G  be a m-divisible group where { }\ 0m∈  and 
Y  be a Banach spaces. Under this setting, we can show that the mapping 
satisfying (1) is additive. These results are give in the following. 

Theorem 4. For 3: kφ +→G   be a function such that  

( )
( ) ( ) ( ) ( ) ( ) ( )( )1 1 1

1lim 2 , , 2 , 2 , , 2 , , 2 , , 2 0
2

n n n n n n
k k knn

k x k x k y k y k z k z
k

φ
→∞

=    (38) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   , and 

 

 ( )

( )
( ) ( ) ( ) ( )( )(

( ) ( ) ( ) ( )( ))

1 1

1 1
1 11

0

1 1
1 1

, , , , ,

1 2 , , 2 ,0, ,0, 2 , , 2
2

2 , , 2 ,0, ,0, 2 , , 2

k k

n n n n
k kn

n

n n n n
k k

x x z z

k x k x k z k z
k

k x k x k z k z

φ

φ

φ

∞
+ +

+
=

+ +

= − −

+ − − < ∞

∑

 

  

  

 (39) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   . 
Suppose that a mapping :f →G Y  satisfies ( )0 0f =  for all x∈G , and  

 
( ) ( ) ( )

( )
1 1 1 1 1

1 1 1

2 2
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

x y
f x f y k f z kf z

k

x x y y z zφ

= = = = =

+ 
+ + − + 

 

≤

∑ ∑ ∑ ∑ ∑
Y

  

 (40) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   . 
Then there exists a unique additive mapping :ψ →G Y  such that  

 ( ) ( )  ( ), , , , ,f x x x x x xψ φ− ≤
Y

 
 (41) 

for all x∈G . 
Proof. I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  
( )2 , ,2 ,0, ,0, , ,kx kx x x− −  

 in (40), I get  

 ( ) ( ) ( )22 2 2 ,2 , ,2 ,0,0, ,0, , , ,kf kx k f x kx kx kx x x xφ+ − ≤ − − −
Y

    (42) 

continue I replace x by −x in (42), I have  

 ( ) ( ) ( )22 2 2 , 2 , , 2 ,0,0, ,0, , , ,kf kx k f x kx kx kx x x xφ− + ≤ − − −
Y

    (43) 
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put  

 ( ) ( ) ( )
2

f x f x
g x

− −
=  (44) 

So since (45), (43) and (44), I have  

 
( ) ( ) ( )(

( ))
2

1 12 2 ,2 , ,2 ,0,0, ,0, , , ,
2 2

2 , 2 , , 2 ,0,0, ,0, , , ,

f x f kx kx kx kx x x x
k k

kx kx kx x x x

φ

φ

− ≤ − − −

+ − − −
Y

  

  

 (45) 

Hence  

( )
( )( ) ( )

( )( )

( )
( )( ) ( )

( )( )

( )
( ) ( ) ( ) ( )( )(

( ))

1 1
1

1 1
2

1

1 12 2
2 2

1 12 2
2 2

1 1 2 , , 2 ,0,0, ,0, 2 , , 2
2 2

2 , 2 , , 2 ,0,0, ,0, , , ,

0

l m
l m

m j j
j j

j l

m j j j j
j

j l

f k x f k x
k k

f k x f k x
k k

k x k x k x k x
k k

kx kx kx x x x

φ

φ

−
+

+
=

+ +

= +

−

≤ −

≤ − −

+ − − −

=

∑

∑

Y

Y

  

  

 (46) 

for all nonnegative integers m and l with m l>  and all x∈G . It follows from 

(46) that the sequence 
( )

( )( )1 2
2

n
n f k x

k

  
 
  

 is a cauchy sequence for all x∈G . 

Since Y  is complete space, the sequence 
( )

( )( )1 2
2

n
n f k x

k

  
 
  

 coverges. 

So one can define the mapping :ψ →G Y  by  

( )
( )

( )( )1: lim 2
2

n
nn

x f k x
k

ψ
→∞

=  

for all x∈G . Moreover, letting 0l =  and passing the limit m →∞  in (46), I 
get (41). 

Now, It follows from (40)we have 

 

( ) ( ) ( )

( )
( )( )

( )
( )( )

( )
( )( ) ( ) ( )

( )
( )( ) ( )( ) ( )( )

1 1 1 1 1

1 1

1 =1 =1

1 1 1

2 2
2

1 1lim 2 2
2 2

12 2 2 2 2
22

1lim 2 2 2 2
2

k k k k k
j j

j j j j
j j j j j

k kn n
j jn nn j j

k k kn n nj j
j jn

j j j

k k kn n n
j j jnn j j j

x y
x y k z kf z

k

f k x f k y
k k

x y
k f k z kf k k z

kk

f k x f k y k f k z
k

ψ ψ ψ
= = = = =

→∞ = =

=

→∞ = = =

+ 
+ + − + 

 

= +

+ 
+ − + 

 

= + +

∑ ∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

Y

Y

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
1 1

1 1 1

2 2 2
2

2 , , 2 , 2 , , 2 , 2 , , 2 0

k kn nj j
j

j j

n n n n n n
k k k

x y
kf k k z

k

k x k x k y k y k z k zφ

= =

+ 
− + 

 

≤ =

∑ ∑
Y

  

 (47) 
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So I have  

 ( ) ( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

x y
x y k z k z

k
ψ ψ ψ ψ

= = = = =

+ 
+ + = + 

 
∑ ∑ ∑ ∑ ∑  (48) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   . 
Hence from Lemma 2 and corollary 1, it follows that ψ  is an additive 

mapping. 
Finally I have to prove that ψ  is a unique additive mapping. 
Now, let :ψ ′ →G Y  be another generalized Cauchy-Jensen additive 

mapping satisfying (41). Then we have  

 

( ) ( )
( )

( )( ) ( )( )

( )
( )( ) ( )( ) ( )( )

( )
 ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )( )(

( ) ( ) ( ) ( )( ))

1 1
1 11

=0

1 1
1 1

1 2 2
2

1 2 2 2
22

12 2 , , 2 ,0, ,0, 2 , , 2
2

1 2 , , 2 ,0, ,0, 2 , , 2
2

2 , , 2 ,0, ,0, 2 , , 2

n n
n

n n n
n n

n n n n
n

n n n n
k kn

n

n n n n
k k

x x k x k x
k

xf k x k x f k x
k

k x k x k x k x
k

k x k x k z k z
k

k x k x k z k z

ψ ψ ψ ψ

ψ ψ

φ

φ

φ

∞
+ +

+

+ +

′ ′− = −

  ′≤ − + −     

≤

= − −

+ − − < ∞

∑

Y Y

Y Y

  

  

  

 (49) 

which tends to zero as n →∞  for all x X∈ . So we can conclude that  
( ) ( )x xψ ψ ′=  for all x∈X . This proves the uniquence of ψ ′ .  
From Theorem 4 I have the following corollarys. 
Corollary 6. For G  is a normed space and , 0, 0, 0p r q θ≠ > > . Suppose 
:f →G Y  be a function such that ( )0 0f =  and  

 
( ) ( ) ( )

1 1 1 1 1

1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

k k kp q r
j j j

j j j

x y
f x f y k f z kf z

k

x y zθ

= = = = =

= = =

+ 
+ + − + 

 

≤ ⋅ ⋅ ⋅

∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y  (50) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G    then f is an additive mapping.  
Corollary 7. For G  is a normed space and 0 , 1, 0, 0p r q θ< < ≠ > . Suppose 
:f →G Y  be a function such that ( )0 0f =  and  

 
( ) ( ) ( )

1 1 1 1 1

=1 =1 =1

2 2
2

k k k k k
j j

j j j j
j j j j j

k k kp q r
j j j

j j j

x y
f x f y k f z kf z

k

x y zθ

= = = = =

+ 
+ + − + 

 

 
≤ + + 

 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y  (51) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   . Then there exists a unique additive 
mapping :ψ →G Y  such that  

 ( ) ( ) ( )
( ) ( )

2 1
2 2 2 2

p
p r

p k

k
f x x k x x

k k k k
ψ θ

 
 − ≤ +
 − − 

Y
 (52) 

for all x∈G .  
Theorem 5. For 3: kφ +→G   be a function such that  
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( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 1 1 1 1 1lim 2 , , , , , , , , , 0
2 2 2 2 2 2

n
k k kn n n n n nn

k x x y y z z
k k k k k k

φ
→∞

 
  =
 
 

     (53) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   .  
And  
 ( )

( ) ( ) ( ) ( ) ( ) ( )( )(
( ) ( ) ( ) ( )( ))

1 1

1 1 1 1
1 1

0

1 1
1 1

, , , , ,

2 2 , , 2 ,0, ,0, 2 , , 2

2 , , 2 ,0, ,0, 2 , , 2

k k

n n n n n
k k

n

n n n n
k k

x x z z

k k x k x k z k z

k x k x k z k z

φ

φ

φ

∞
− − − + + +

=

− − + +

= − −

+ − − < ∞

∑

 

  

  

 (54) 

for all 1 1, , , , ,k kx x z z ∈G  . 
Suppose that a mapping :f →G Y  satisfies ( )0 0f =  for all  

1 1 1, , , , , , , ,k k kx x y y z z ∈G   . 
And  

 
( ) ( ) ( )

( )
1 1 1 1 1

1 1 1

2 2
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

x y
f x f y k f z kf z

k

x x y y z zφ

= = = = =

+ 
+ + − + 

 

≤

∑ ∑ ∑ ∑ ∑
Y

  

 (55) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   .  
Then there exists a unique additive mapping :ψ →G Y  such that  

 ( ) ( )  ( ), , , , ,f x x x x x xψ φ− ≤
Y

   (56) 

for all x∈G .  
The proof is similar to theorem 4. 
Corollary 8. For G  is a normed space and , 0, 0, 0p r q θ≠ > > . Suppose 
:f →G Y  be a function such that ( )0 0f =  and  

 
( ) ( ) ( )

1 1 1 1 1

1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

k k kp q r
j j j

j j j

x y
f x f y k f z kf z

k

x y zθ

= = = = =

= = =

+ 
+ + − + 

 

≤ ⋅ ⋅ ⋅

∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y  (57) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G    then f í a additive mapping.  
Corollary 9. For G  is a normed space and 0 , 1, 0, 0p r q θ< < ≠ > . Suppose 
:f →G Y  be a function such that ( )0 0f =  and  

 
( ) ( ) ( )

1 1 1 1 1

=1 =1 =1

2 2
2

k k k k k
j j

j j j j
j j j j j

k k kp q r
j j j

j j j

x y
f x f y k f z kf z

k

x y zθ

= = = = =

+ 
+ + − + 

 

 
≤ + + 

 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y  (58) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈G   . Then there exists a unique additive 
mapping :ψ →G Y  such that  

 ( ) ( ) ( )
( ) ( )

2 1
2 2 2 2

p
p r

p k

k
f x x k x x

k k k k
ψ θ

 
 − ≤ +
 − − 

Y
 (59) 

for all x∈G .  
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6. The Stability of Derivation on Fuzzy-Algebras 

Lemma 6. Let ( ),Y   be a fuzzy normed vector space and :f →X Y  be a 
mapping such that  

( ) ( ) ( )
1 1 1 1 1

2 , 2 ,
2 2

k k k k k
j j

j j j j
j j j j j

x y tN f x f y k f z t N kf z
k k= = = = =

 +   
+ + ≥ +         

∑ ∑ ∑ ∑ ∑  (60) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈Y    and all 0t > . Then f is Cauchy additive. 
Proof. I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by ( )0, ,0,0, ,0,0, ,0  
 

in (60), I have  

 ( ) ( )( ) ( ) ( )2
22 2 0 , 0 , 2 0 , 1

22 2
t tN k k f t N f N kf

kk k
   + = ≥ =   +   

 (61) 

for all 0t > . By N5 and N6, ( )0 , 1
2
tN f
k

  = 
 

. It follows N2 that ( )0 0f = . 

Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  
 by ( ), , , , , ,0, ,0y y y y− −  

 
in (60), I have  

 ( ) ( )( ) ( ) ( ) ( ) 2, , 2 0 ,
2 2

t tN kf y kf y t N f y f y N kf
k k k

   − + = − + ≥   +   
 (62) 

It follows N2 that ( ) ( ) 0f y f y− + = . 
So  

( ) ( )f y f y− = −  

Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  
 by  

( )2 , , 2 ,0, ,0, ,0, ,0z z z− −  
 in (60), we have  

( ) ( )( ) ( ) ( ) ( ) 22 2 , 2 2 , 2 0 ,
2 2

t tN kf z kf z t N f z f z N kf
k k k

   − + = − + ≥   +   
 (63) 

It follows N2 that ( ) ( )2 2 0f z f z− + = . 
So  

( ) ( )2 2f z f z=  

for all 0t >  and for all z∈X . 
Next I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  

1 2, , , , , , , 0, ,0
2

x yx x y y z z+ = − = 
 
    in (60), we have 

 
( ) ( ) ( ) ( ) ( )

( ) 2

, 2 ,
2

2 0 ,
2 2

t x y tN f x f y f x y N f x f y f
k k

tN kf
k k

 +    + − + = + + −    
    

 ≥  + 

 (64) 

for all 0t > . and for all ,x y∈X  Thus  

( ) ( ) ( )f x f y f x y+ = +  

for all ,x y∈X , as desired.  
 

Theorem 7. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
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1
2

L
k

<  

 
( )

( )

1 1 1

1 1 1

, , , , , , , ,

2 , ,2 ,2 , ,2 ,2 , ,2
2

k k k

k k k

x x y y z z
L kx kx ky ky kz kz
k

ψ

ψ≤

  

  

 (65) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈X    and ( )0 0f = . 
Let :f →X X  be a mapping sattisfying 

 
( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz qf x qf y k qf z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

 (66) 

 
( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

 (67) 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t >  and for all 0q > . Then  

 ( ) ( )
( )

lim 2
2

n
nn

xH x N k f
k→∞

 
 = −
 
 

 (68) 

exists each x∈X  and defines a fuzzy derivation :H →X X , such that  

 ( ) ( )( ) ( )
( ) ( )1

1
,

1 , , ,0, ,0k

L t
N f x H x t

L L x xψ
−

− ≥
− +  

 (69) 

for all 0t >  and for all 0q > . 
Proof. Letting 1q =  and I replacing ( )1 1 1, , , , , , , ,k k kx x y y z z  

 by  
( ),0, ,0,0, ,0,0, ,0x   

 in (84), I get 

 ( ) ( )
2 ,

2 1 , ,0,0, ,0,0, ,0
x tN kf f x t
k xϕ

   − ≥   +     

 (70) 

for all x∈X . Now I consider the set  
 { }: :h= →X Y  

and introduce the generalized metric on S as follows:  

 

( ) ( ) ( )( )

( )

, : inf : ,

, , 0 ,
,0, ,0,0, ,0,0, ,0

d g h N g x h x t

t x t
t x

β β

ϕ

+


= ∈ −


≥ ∀ ∈ ∀ > 
+ 

X
  


 (71) 

where, as usual, inf φ = +∞ . That has been proven by mathematicians ( ),d  
is complete (see [32]). 

Now I cosider the linear mapping :T →   such that  

( ) : 2
2
xTg x kg
k

 =  
 

 

for all x∈X . Let ,g h∈  be given such that ( ),d g h ε=  then 
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( ) ( )( ) ( )
, , , 0.

,0, ,0,0, ,0,0, ,0
tN g x h x t x t

t x
ε

ϕ
− ≥ ∀ ∈ ∀ >

+
X

  

 

Hence  

 

( ) ( )( )

( )

( )

, 2 2 ,
2 2

,
2 2 2

2

, ,0,0, ,0,0, ,0
2 2

2

,0, ,0, ,0,0, ,0
2 2

, , 0.
, , , , , ,

x xN g x h x t N kg kh L t
k k

x x LN g x h x t
k k k

Lt
k

Lt x
k k

Lt
k

Lt L x
k k

t x t
t x x x x x

ε ε

ε

ϕ

ϕ

ϕ

    − = −    
    

    = −    
    

≥
 +  
 

≥
+

= ∀ ∈ ∀ >
+

X

  

  

 

 (72) 

So ( ),d g h ε=  implies that ( ),d Tg Th L ε≤ ⋅ . This means that  

( ) ( ), ,d Tg Th Ld g h≤  

for all ,g h∈ . It folows from (70) that I have. 
For all x∈ . So ( ), 1d f Tf ≤ . By Theorem 1.2, there exists a mapping 
:H →X Y  satisfying the fllowing:  
1) H is a fixed point of T, i.e., 

 ( )1
2 2
xH H x
k k

  = 
 

 (73) 

for all x∈X . The mapping H is a unique fixed point T in the set  

( ){ }: ,g d f g= ∈ < ∞  . 

This implies that H is a unique mapping satisfying (73) such that there exists a 
( )0,β ∈ ∞  satisfying 

( ) ( )( ) ( )
, , .

,0, ,0,0, ,0,0, ,0
tN f x H x t x

t x
β

ϕ
− ≥ ∀ ∈

+
X

  

 

2) ( ), 0ld T f H →  as l →∞ . This implies equality  

( )
( )

( )lim 2
2

l
ll

xN k f H x
k→∞

 
 − =
 
 

 

for all x∈ . 

3) ( ) ( )1, ,
1

d f H d f Tf
L

≤
−

. which implies the inequality.  

4) ( ) 1,
1

d f H
L

≤
−

. 

This follows that the inequality (70) is satisfied.  
By (85)  
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( )
( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1
1

1 1 1

1 1

1 1 1

2 2
2 2 2

2 2 2 ,
2 2

, , , , , , , ,
2 2 2 2 2 2

k k kp pj j j j
p p p

j j j

k kp pj j
p p

j j

k k k
p p p p p p

qx qy qz x
N k f k qf

k k k

y z
k qf k k qf t

k k
t

x y zx y zt
k k k k k k

ψ

+

+
= = =

= =

    +
    + −

       
   
   − −

        

≥
 
 +
 
 

∑ ∑ ∑

∑ ∑

  

 (74) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈X   , for all 0t >  and for all q∈ . So 

 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )

( ) ( )
( )

1
1

1 1 1

1 1

1 1 1

2 2
2 2 2

2 2 2 ,
2 2

2

, , , , , , , ,
2 2

k k kp pj j j j
p p p

j j j

k kp pj j
p p

j j

p

p

k k kp p

qx qy qz x
N k f k qf

k k k

y z
k qf k k qf t

k k
t
k

t L x x y y z z
k k

ψ

+

+
= = =

= =

    +
    + −

       
   
   − −

        

≥
+

∑ ∑ ∑

∑ ∑

  

 (75) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈X   , for all 0t >  and for all q∈ .  
Since  

( )

( ) ( )
( )1 1 1

2
lim 1

, , , , , , , ,
2 2

p

pn

k k kp p

t
k

t L x x y y z z
k k

ψ
→∞

=
+   

 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈    , 0t∀ > , q∈ . So 

( ) ( ) ( )
1 1 1 1 1

2 2 , 1
2

k k k k k
j j

j j j j
j j j j j

qx qy
N kH qz qH x qH y k qH z t

k= = = = =

 + 
+ − − − =     

∑ ∑ ∑ ∑ ∑

(76) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈X   , 0t∀ > , q∈ . So  

( ) ( ) ( )
1 1 1 1 1

2 2 0
2

k k k k k
j j

j j j j
j j j j j

qx qy
kH qz qH x qH y k qH z

k= = = = =

+ 
+ − − − = 

 
∑ ∑ ∑ ∑ ∑  (77) 

Thus the mapping  
:H →X X  

is additive and R -linear by (85) I have  

 

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

2
2

1 1 1

1 1

1 1

2 2
2 2

2 ,
2

, , , , , ,0, ,0
2 2 2 2

k k k
p pj j j

jp p
j j j

k k
p j

j p
j j

k k
p p p p

x y x
N k f k f y

k k

y
x k f t

k
t

x yx yt
k k k k

ψ

= = =

= =

    ⋅
    − ⋅

       
 
 − ⋅

    

≥
 
 +
 
 

∏ ∏ ∏

∏ ∏

  

 (78) 

https://doi.org/10.4236/oalib.1111241


L. V. An 
 

 

DOI: 10.4236/oalib.1111241 20 Open Access Library Journal 
 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t > . 

 

( )
( )

( )
( )

( )
( )

( )

( ) ( )
( )

2
2

1 1 1

1 1

2

1 12

2 2
2 2

2 ,
2

2

, , , , , ,0, ,0
2 2

k k k
p pj j j

jp p
j j j

k k
p j

j p
j j

p

p

k kp p

x y x
N k f k f y

k k

y
x k f t

k

t
k

t L x x y y
k k

ψ

= = =

= =

    ⋅
    − ⋅

       
 
 − ⋅

    

≥
+

∏ ∏ ∏

∏ ∏

  

 (79) 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t >  Since  

 ( )

( ) ( )
( )

2

1 12

2
lim 1

, , , , , ,0, ,0
2 2

p

pp

k kp p

t
k

t L x x y y
k k

ψ
→∞

=
+   

 (80) 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t >  Thus  

 ( ) ( )
1 1 1 1 1

, 1
k k k k k

j j j j j j
j j j j j

N f x y f x y x f y t
= = = = =

  
⋅ − ⋅ − ⋅ =     

∏ ∏ ∏ ∏ ∏  (81) 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t >  Thus  

 ( ) ( )
1 1 1 1 1

0
k k k k k

j j j j j j
j j j j j

f x y f x y x f y
= = = = =

 
⋅ − ⋅ − ⋅ = 

 
∏ ∏ ∏ ∏ ∏  (82) 

So the mapping :H →X X  is a fuzzy derivation, as desired. 
 

Theorem 8. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
1L <  

 ( ) 1 1 1
1 1 1, , , , , , , , 2 , , , , , , , ,

2 2 2 2 2 2
k k k

k k k
x y zx y zx x y y z z k

k k k k k k
ψ ψ  ≤  

 
      (83) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈X    and ( )0 0f = . 
Let :f →X X  be a mapping sattisfying 

 
( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz qf x qf y k qf z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

 (84) 

 
( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

 (85) 

for all 1 1, , , , ,k kx x y y ∈X  , for all 0t >  and for all 0q > . Then  
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 ( )
( )

( )( )1lim 2
2

n
nn

x N f k x
k

β
→∞

= −  (86) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
Such that  

 ( ) ( )( ) ( )
( ) ( )1

1
,

1 , , ,0, ,0k

L t
N f x H x t

L L x xψ
−

− ≥
− +  

 (87) 

for all 0t >  and for all 0q > .  

7. Conclusion 

In this article, I introduced the concept of the general Jensen Cauchy functional 
equation, then I used a direct method to show that the solutions of the 
Jensen-Cauchy functional inequality are additive maps related to the functional 
equation, Jensen-Cauchy. Then apply the derivative setup on fuzzy algebra. 
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