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Abstract 
In this study thermal treatment of bauxite residue is studied to produce two 
economic viable products: pig iron and inorganic polymer building material 
with fire resistant properties. The first campaign was successfully completed 
in the EAF 1 MW in Mytilineos plant, Ag. Nikolaos. The pyrometallurgical 
BR slag produced, was then used for the production of geopolymer fire resis-
tant products. 
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1. Introduction 

The Bayer Process for the production of alumina from bauxite ore is characte-
rized by low exergy efficiency and results in the production of significant 
amounts of dust-like, high alkalinity bauxite residues known as red mud. Cur-
rently red mud is produced almost at 1 to 1 mass ratio to metallurgical alumina 
and is disposed into sealed or unsealed artificial impoundments (landfills), lead-
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ing to important environmental issues. Until the mid 1970s, marine discharge 
and landfilling were primarily used to dispose bauxite residue. So called dry 
stacking (even though residues are not entirely dry) and dry cake disposal have 
become the industry norm. Dry stacking involves thickening the bauxite residue 
to 48% - 55% solids, which subsequently is pumped through a sloped pipeline. 
Then, de-watering/air drying occurs before the next thin layer is released at the 
disposal area [1]. Bauxite residue emitted as a slurry-type paste of pH > 11, a 
high fine silt to clay size proportion, and a high sodium content. This leads to a 
preference for particle dispersion [2], and as a result difficulties in handling and 
storing residue [3] [4]. Dry cake disposal involves thickening and pressure filtra-
tion, before using dump trucks to transfer residues to the storage area [1]. Pres-
sure filtration not only results in a residue with lower water content, but also 
reduces losses of entrapped NaOH. This makes thickened/filtered residue more 
suitable for safer storage, transport and utilization in other industries (e.g. ce-
ment, iron). The current best practice in the industry is disposal in engineered 
bauxite residue disposal areas (BRDAs), using dry stacking and “mud farming” 
to aid dewatering for compaction/consolidation of residue at reduced alkalinity 
and leachate treatment [5] [6] [7] [8]. The proposed process utilizes an electric 
arc furnace (EAF) to achieve carbothermic reduction of the red mud waste 
without any pretreatment, producing pig iron and slag suitable for inorganic 
polymer-fire resistant building products. 

2. Bauxite Residue Treatment 
2.1. Current Management of Bauxite Residue in Greece 

Mytilineos SA-Metallurgy Business Unit, Alumina and Aluminium plant (for-
mer Aluminium of Greece), is the only alumina refinery in Greece, processing 
each year about 1.8 Mt of bauxite ore (originating mainly from Greek bauxite 
mines), for the production of more than 800 kt of alumina and 750 ktons of BR. 
In 2006, the plant installed its first high-pressure filter press in Europe which 
produced a relatively dry BR. During the period 2006-2011 a total of 4 filter 
presses were installed and since 2012 all BR produced is filter-pressed and stored 
as a “dry” (moisture < 26%) by-product in an appropriate industrial landfill 
(Figure 1). 

2.2. Pyrometallurgical Processing 

The proposed bauxite residue treatment comprises four stages as shown sche-
matically in Figure 2. The first stage is the residue drying stage, necessitated by 
the high remaining moisture content of residues (up 25% w/w), even when the 
best available upstream technology (filter press drying) is used for bauxite resi-
due handling. This stage could occur in a double skin rotary kiln, using the heat 
content of the EAF hot off-gases or using waste heat from the alumina refinery 
itself (i.e. spent steam form the Bayer process). The second stage of the process 
focuses on EAF feed material preparation: dried bauxite residue, coke fines and 
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appropriate fluxes are mixed in order to adjust the properties of the produced 
slag. This mixture is fed into the EAF, where raw materials undergo reductive 
smelting and are transformed into three distinct fluid phases: liquid slag, liquid 
pig iron and off-gases. The off-gases after heat exchange in the bauxite residue 
dryer are sent to a bag-house unit to remove dust particles prior to releasing 
them to the atmosphere. The dust collected is recycled in the feed material. The 
liquid pig iron and slag phases are separated by sequential pouring (or by conti-
nuous tapping) and the liquid slag is left to cool. 
 

 
(a) 

 
(b) 

Figure 1. Filter press in operation and BR discharge (a); site of BR disposal in the plant 
(b). 
 

 

Figure 2. The proposed production scheme. 
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Iron recovery from BR has been thoroughly investigated, and the developed 
technologies have been reviewed in several publications [9] [10] [11] [12]. The 
pyrometallurgical recovery of iron from the BR valorises approximately half of 
the Greek BR stream and at the same time alters the properties of the remaining 
material (slag) in such a way that it can be further processed, resulting in a zero 
solid/liquid waste process. Solid state reduction roasting [13] [14] [15] and re-
ductive smelting [11] [16] are perhaps the most promising ones for producing 
either high-grade magnetite (Fe3O4) or metallic Fe. Through carbothermic re-
duction smelting using an electric arc furnace (EAF), the iron content of BR can 
be extracted as pig iron and sold as steel scrap substitute (price 300-EUR/t) to 
the secondary steel industry. BR trace elements like V, Cr, and Ni, which are of 
great value to the iron/steel industry, are collected in the produced melting iron 
phase. The EAF carbothermic smelting technology was developed in the 
EC-funded ENEXAL project [17] (Figure 3). The pig iron produced was suitable 
for the secondary steel industry as a 15 wt% scrap substitute in EAF processing. 
Larger BR pig iron utilization as scrap substitute would be disruptive to steel mill 
operations, as the minor elements of the BR pig iron (Cr, V, S, P, …) would 
produce steel outside of the required specifications for typical applications like 
steel rebars. However, given the size of the iron and steel market, the secondary 
steel industry could absorb all the BR pig iron even at low-scrap substitute rates. 
The overall exergy efficiency of the new bauxite exploitation schema increases 
from 3% in the conventional Bayer Process to 6 to 9% depending on the method 
used to produce the electricity needed to power the Electric Arc Furnace. Addi-
tionally, as the novel process enables the single step co-production of two highly 
valuable by-products (pig iron and pyrometallurgical slag), it has the potential to 
significantly increase the versatility and profit margin of the alumina producing 
industry. 
 

 

Figure 3. ENEXAL flow sheet for 1 t of BR processing in dust treating EAF (batch 
processing trials, BR filter cake dried to below 2% in static bed dryer, dust collected in the 
bag filters has similar composition with the feed and can be recycled in the EAF. 
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As red mud is generally characterized by high iron content many attempts 
have been made to produce pig iron from red mud, but so far no economically 
viable solution has been found. The extremely fine particles of red mud require 
agglomeration prior to feeding in conventional reactors; their high alkaline na-
ture is unsuitable for blast furnace reductive smelting and the low, when com-
pared to iron ores, content in iron oxides makes the production of pig iron a cost 
ineffective process [18].  

The treatment has the capability of processing finely sized materials, notably 
below 1 mm in particle size (dust like), without any dusty material loss in the 
off-gas stream. As seen in Figure 4, the feeder can deliver the dusty raw mate-
rials directly into the “arc zones” of each of its three electrodes, where flash 
smelting takes place. This feeder is below the off-gas suction tube thereby pre-
venting loss of material, and it feeds the reactor with small batches at appropri-
ate time intervals in order to allow enough time for ventilation of the off-gases 
produced from the previous batch. The operation of the is controlled by a PLC 
control system, which, based on system-dependent programmable parameters 
predicted accurately by a proprietary thermodynamic model, can control im-
pedance of the electric arc produced by the electrodes through the control of the 
positioning of the electrodes within the furnace influencing the energy input, the 
arc stability, the solid charge melting pattern and the electrode consumption. 
Therefore, this EAF technology is ideal for processing the dust-like red mud 
without any pretreatment or substantial energy losses, thus providing the pro-
posed process with a significant industrial advantage. 

Red mud chemical analysis used in the present work is given in Table 1. 
Using carbon as a reducing agent, the red mud can undergo reductive smelt-

ing in the EAF producing pig iron and a slag. The pig iron produced in this way 
would amount to approximately 35% of the initial red mud charge, therefore pig 
iron production alone would not solve the industry’s waste disposal, as 65% of 
the red mud would still have to be disposed as EAF slag, while the expected 
turnover from selling such amounts of pig iron would not suffice to make for an 
economically viable process. 
 

 

Figure 4. Schematic diagram and photograph of the innovative EAF melt reduction. 
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Table 1. Red mud used in the present work. 

Weight used 1000 kg 

Chemical species in % wt./wt 

Al2O3 18.76 

Fe2O3 44.38 

CaO 11.88 

SiO2 6.13 

TiO2 5.54 

Na2O 2.20 

H2O(cry) 9.77 

Moisture 1.00 

Total 99.66 

 
In order to design the process, the following operational parameters have to 

be established: melt temperature, required amount of coke and required amount 
of fluxes. As shown in the Ellingham diagram presented in Figure 5, the oxida-
tion of carbon to CO(g) can reduce H2O, Fe2O3, Na2O, K2O at temperatures high-
er than 1000˚C, it can reduce SiO2 and TiO2 at temperatures higher than 1700˚C, 
MgO at temperatures higher than 1800˚C, while Al2O3 and CaO cannot be re-
duced at temperatures lower than 2000˚C. As the melting point of pure iron is 
1537˚C the furnace operational temperature should be in the range of 1500˚C < 
T < 1700˚C in order to effectively reduce the iron in the red mud while avoiding 
silicon and titanium reductions. The furnace operational temperature for this 
study is therefore set at 1600˚C - 1700˚C and the reactions that are thermody-
namically expected to take place and consume carbon are presented below: 
 ( ) ( ) ( )2 3 l g 1600 CFe O 3C 2Fe CO G 483.493 kJ+ = + ∆ = −



 (1) 

 ( ) ( ) ( ) ( )2 g 2 g g 1600 CH O C H CO G 197.551 kJ+ = + ∆ = −


 (2) 

 ( ) ( ) ( )2 g g 1600 CNa O C 2Na CO G 86.499 kJ+ = + ∆ = −


 (3) 

 ( ) ( ) ( )2 g g 1600 CK O C 2K CO G 260.111 kJ+ = + ∆ = −


 (4) 

The evolution of Na(g) and K(g) according to Equations (3) and (4) are highly 
unlikely as these oxides are in reality part of aluminosilicates complexes which 
are not as easily reduced. For instance, if sodium in red mud is found as nephe-
line (a logical assumption as nepheline is a part of cancrinite), then its reduction 
is thermodynamically unlikely. 

 ( ) ( ) ( )4 2 5 2g g 1600 C2NaAlSiO C 2Na Al SiO SiO CO G 38.671 kJ+ = + + + ∆ =


 (5) 

Therefore, according to Equations (1) and (2) and the red mud chemical 
analysis given in Table 1 the amount of carbon required to reduce all iron and 
hydrogen content found in 1000 kg of red mud is 172.24 kg. To account for all 
possible side reactions an excess of 10% carbon will be used in the process 
(189.46 kg/1000kg red mud). 

https://doi.org/10.4236/oalib.1111029


E. Balomenos et al. 
 

 

DOI: 10.4236/oalib.1111029 7 Open Access Library Journal 
 

 

Figure 5. Ellingham diagram calculated from HSC Chemistry 6 software. 

2.3. 1st Campaign 

MYTILINEOS carried out the first bauxite residue smelting campaign in its pilot 
pyrometallurgical plant equipped with a 1 MVA electric arc furnace (EAF). The 
smelting tests utilized Bauxite Residue (BR), metallurgical coke and lime as raw 
materials, with the aim of producing cast iron and slag suitable for the creation 
of the “MudFire” construction materials. The recipe used adds relative to BR 
30%wt and 18%wt Coke. At this loading, the C:Fe molar ratio is set at 2.2 (the 
stoichiometric demand is 1.5 for the reduction of Fe2O3 only, the excess being 
added to account for the other reduction taking place, including Na, Si, V, H2, 
Cr, Ni, etc.) and the molar ratio of CaO to Al2O3 is set to 3.4. In each test 300 kg 
of dry KB, 90 kg of CaO, 80 kg of starter slag (from previous test) and 54 kg of 
coke are melted at 1600˚C - 1700˚C and 90 kg of pig iron and 300 kg of slag are 
produced. Five tests were performed during this first campaign and the test re-
sults are detailed in the tables and graphs below. Average furnace energy con-
sumption was 2233 kWh/t BR. A total of 487 kg of cast iron and 1259 kg of slag 
were produced. (Table 2 and Table 3) 

3. Results 

The pyrometallurgical slag produced was analysed to check the mineralogical 
phases produced so to proceed with the production of secondary building mate-
rials such as pavers and fire resistant boards using the novel inorganic polymer 
technology [19] [20]. In following graphs (Figures 6-11) XRD analysis from 
run#1 and #2 is presented. 

The milled pyrometallurgical BR slag was treated further with geopolymer 
technology for the production of fire resistant building materials such as tiles, 
bricks and porous boards. 
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Figure 6. Mineralogical analysis of pyrometallurgical slag of test run #1. 
 

 

Figure 7. Mineralogical analysis of pyrometallurgical slag of test run #2. 
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Figure 8. Elemental balance of raw materials used in test run #1. 
 

 

Figure 9. Elemental balance of products produced from test run #1. 
 

  
 

 

Figure 10. Photos from the 1st campaign. 
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Table 2. Chemical analysis of pig iron and pyrometallurgical slag produced per run. 

TEST 
 #1 #2 #3 #4 #5 

 
% w/wt 

Pig iron 
(MS & XRF) 

Fe 89.79 89.50 94.60 95.10 95.00 

C 4.01 3.40 4.00 4.00 4.00 

S 0.00 0.00 0.11 0.00 0.02 

P 0.19 0.21 0.01 0.50 0.01 

Si 3.98 4.74 0.17 0.08 0.12 

Mn 0.07 0.07 0.11 - 0.02 

Cr 0.41 0.43 0.04 0.00 0.03 

Mo 0.00 0.00 0.30 0.27 0.32 

Ti 1.01 1.03 0.00 - - 

V 0.21 0.20 0.17 0.01 0.06 

Al 0.11 0.14 0.14 0.06 0.12 

NI 0.21 0.27 0.02 0.04 0.01 

TOTAL 100.00 100.00 0.03 0.26 0.24 

Weight (kg) 91.30 140.00 76.50 84.00 87.00 

% Fe recovery 90.77 89.21 80.14 87.72 91.30 

Pyrometallurgical slag 
(XRF) 

Fe2O3 1.10 1.14 2.50 1.54 1.34 

SiO2 11.49 14.78 14.24 12.76 11.57 

CaO 44.13 40.41 39.26 41.57 44.33 

Al2O3 30.71 31.09 31.05 30.17 28.22 

Cr2O3 0.00 ND 0.06 0.06 0.03 

TiO2 7.43 7.21 6.78 7.11 7.18 

V2O5 0.04 0.03 0.07 0.13 0.10 

Na2O 0.41 0.70 1.48 1.80 1.41 

-SO3 0.48 0.45 0.50 0.52 0.55 

TOTAL 95.79 95.80 95.94 95.65 94.73 

Weight (kg) 248.00 320.00 245.00 191.00 255.00 

 
Table 3. Mineralogical phases of pyrometallurgical slag per test run. 

XRD 
samples 

Ca12Al14O33 
Mayenite 

Ca2SiO4 
Calcio Olivine 

Ca2SiO4 
Larnite 

Ca2Al2SiO7 
Gehlenite 

CaAl2O4 
Krotite 

CaTiO3 
Perovskite 

H3BO3 Sassolite 
(flux added for XRF pellet) 

Values in wt% 

#1 29.00 20.00 8.00 16.00 15.00 12.00 - 

#2 16.00 - 10.00 61.00 - 13.00 - 

#3 3.00 - 19.00 65.00 - 12.00 1.00 

#4 17.00 - 25.00 33.00 7.00 13.00 5.00 

#5 38.00 - 25.00 16.00 - 15.00 6.00 
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(a)                         (b) 

 
(c) 

Figure 11. (a) crucibles and the slag, (b) slag after first crushing and (c) milled pyrome-
tallurgical BR slag (d90 < 500 μm). 

4. Light Weight Inorganic Polymers with Thermally Treated  
BR 

The thermally treated bauxite residue is a good candidate to produce inorganic 
polymer building materials. The most common type of such secondary building 
materials are pavement blocks and fire resistant panels for the protection of the 
concrete and the building envelope [21] [22]. 

In our study we produce light weight porous materials from thermal treated 
bauxite residue using 1 wt% fine aluminium powder (Alfa Aesar, 325 mesh, 
99.5%) as chemical foaming agent [23] [24]. Thermally treated bauxite residue 
was milled to d90 80 μm before mixed with the liquid phase to a 2.9 solid to liq-
uid ratio. The 2.9 solid to liquid ratio gave the best workable paste with enough 
water for the foaming agent to react and the lowest amount of water so to avoid 
cracking and bending during curing. As alkaline activator we use sodium hy-
droxide (Merck 99.5% purity, flakes) at [6M] giving the best mechanical proper-
ties (other molarities checked were 4.5, 5.5, 6.0, 6.5, 7.0 and 7.5 M [25]. 

After 48 h curing in 60˚C the specimens were demoulded, tested for water 
stability, compressive and flexural strength at 7, 14 and 28 days. Finally, speci-
men was tested for its fire resistance according to ISO 834 fire curve in a small 
scale test (40 × 40 × 4 cm specimen fixed on 20 cm thick concrete slab with anc-
hor fix. [26] [27] [28] (Figure 12).  
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Figure 12. ISO 834 fire test results of inorganic porous polymer. 
 

The 28 days compressive strength and flexural strength was 4.3 MPa and 0.9 
MPa respectively, density 1.135 Kg/m3 and specimen succeeded all fire test crite-
ria (max interface temperature 159˚C, lower than 180˚C fail temperature), no 
concrete spalling, specimen retained integrity and no creeping or deformation 
was observed. 

5. Conclusions 

This manuscript mainly investigated thermal treatment of bauxite residue to 
produce two economic viable products: pig iron and inorganic polymer building 
material with fire resistant properties. After performing the investigation, the 
corresponding results can be obtained. 

The bauxite residue smelting pilot plant successfully produced pig iron as well 
as pyrometallurgical slag rich in aluminum, silicon and calcium oxides. Al-
though the unit is still in the pilot phase, the initial tests are considered success-
ful and promising for further investigation and development. The chemical and 
mineralogical analysis of the resulting slag show an enrichment of the slag in 
aluminum and silicon, making it even more attractive for its use in the produc-
tion of structural geopolymers. 

Although the energy consumption for the co-production of pig iron and py-
rometallurgical slag initially shows an increase in the environmental footprint, 
the final benefit from the reduction/reuse of bauxite residue as well as the possi-
ble profit from the production of commercial products leads to a neutral result. 
Also, the fututr use of renewable energy sources to generate electricity for the 
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operation of the electric arc furnace will further reduce CO2 emissions, always in 
combination with the process optimization effort. 
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