Considerable Development of the Type Additive-Quadratic $g(\lambda)$-Functional Inequalities with $3 \boldsymbol{k}$-Variable in $\left(\alpha_{1}, \alpha_{2}\right)$-Homogeneous F-Spaces

Ly Van An
Faculty of Mathematics Teacher Education, Tay Ninh University, Tay Ninh, Vietnam
Email: lyvanan145@gmail.com, lyvananvietnam@gmail.com

How to cite this paper: An, L.V. (2023) Considerable Development of the Type Additive-Quadratic $g(\lambda)$-Functional Inequalities with $3 k$-Variable in $\left(\alpha_{1}, \alpha_{2}\right)$-Homogeneous F-Spaces. Open Access Library Journal, 10: e10970.
https://doi.org/10.4236/oalib. 1110970

Received: November 6, 2023
Accepted: December 26, 2023
Published: December 29, 2023

Copyright © 2023 by author(s) and Open Access Library Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this article, I use the direct method to study two general functional inequalities with multivariables. First, I prove that the $g(\lambda)$-function inequalities (1) and (2) are additive in $\left(\alpha_{1} ; \alpha_{2}\right)$-homogeneous F-spaces. After that, I continue to prove that the $g(\lambda)$-function inequality (1) and (2) are quadratic in the $\left(\alpha_{1} ; \alpha_{2}\right)$-homogeneous F-space. That is the main result in this paper.

Subject Areas

Mathematics

Keywords

Additive $g(\lambda)$-Functional Inequality, $\left(\alpha_{1} ; \alpha_{2}\right)$-Homogeneous F-Space, Additive-Quadratic $g(\lambda)$-Functional Inequality, $\left(\alpha_{1}, \alpha_{2}\right)$-Homogeneous F-Space

1. Introduction

Let \mathbf{X} and \mathbf{Y} be a normed spaces on the same field \mathbb{K}, and $f: \mathbf{X} \rightarrow \mathbf{Y}$. I use the notation $\|\cdot\|$ for all the norm on both \mathbf{X} and \mathbf{Y}. In this paper, I investisgate some additive-quadraic λ-functional inequality in $\left(\alpha_{1} ; \alpha_{2}\right)$-homogeneous F spaces.

In fact, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2} -homogeneous F-spaces, I solve and prove the Hyers-Ulam-Rassias type stability
of two forllowing additive-quadratic $g(\lambda)$-functional inequality.

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{1}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{align*}
$$

and when I change the role of the function inequality (1), I continue to prove the following function inequality.

$$
\begin{align*}
& \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \tag{2}\\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& \mathbf{H}=\{h: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, h(\lambda)=\lambda\} \tag{3}
\end{align*}
$$

where $g \in \mathbf{H}$.
The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms.

The functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{4}
\end{equation*}
$$

is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{5}
\end{equation*}
$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [6] for mappings $f: E_{1} \rightarrow E_{2}$,
where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [7] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group.

Recently, the I has studied the additive function inequalities or quadratic function inequalities of mathematicians around the world see [1]-[24], on spaces as complex Banach spaces, non-Archimedan Banach spaces or homogeneous F-space let me give two general additive-quadratic functional inequalities and show their solutions exist on $\left(\alpha_{1}, \alpha_{2}\right)$-homogeneous F-space.

In this article, I successfully built quadratic functional inequalities with the number of variables more than 3 on F-homogeneous space and I showed their solutions. This is a great step forward in the field of functional equations. Application to solve problems in many spaces with no limit on the number of variables.

The paper is organized as followns: In section preliminarier I remind a basic property such as I only redefine the solution definition of the equation of the additive function and F^{*}-space.

Section 3: is devoted to prove the Hyers-Ulam stability of the addive $g(\lambda)$ -functional inequalities (1) when when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

Section 4: is devoted to prove the Hyers-Ulam stability of the addive $g(\lambda)$ -functional inequalities (2) when when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

Section 5: is devoted to prove the Hyers-Ulam stability of the quadratic $g(\lambda)$ -functional inequalities (1) when when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

Section 6: is devoted to prove the Hyers-Ulam stability of the quadratic $g(\lambda)$ -functional inequalities (2) when when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces.

2. Preliminaries

2.1. F^{*}-Spaces

Let \mathbf{X} be a (complex) linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:

1) $\|x\|=0$ if and only if $x=0$;
2) $\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
3) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
4) $\left\|\lambda_{n} x\right\| \rightarrow 0, \quad \lambda_{n} \rightarrow 0$;
5) $\left\|\lambda_{n} x\right\| \rightarrow 0, \quad x_{n} \rightarrow 0$.

Then $(\mathbf{X},\|\cdot\|)$ is called an F^{*}-space. An F-space is a complete F^{*}-space. An F-norm is called β-homgeneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in \mathbf{X}$ and for all $t \in \mathbb{C}$ and $(\mathbf{X},\|\cdot\|)$ is called α-homogeneous F-space.

2.2. Solutions of the Inequalities

The functional equation The functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{6}
\end{equation*}
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{7}
\end{equation*}
$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping.

3. Hyers-Ulam-Rassias Stability Additive $g(\lambda)$-Functional Inequalities (1) in α-Homogeneous F-Spaces

Now, I first study the solutions of (1). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, I can show that the mapping satisfying (1) is additive. These results are give in the following.

Where: $\alpha_{1}, \alpha_{1} \in \mathbb{R}^{+}$and $\alpha_{1}, \alpha_{1} \leq 1$.
Lemma 1. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an odd mapping satilies

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathrm{Y}} \\
& \leq \| \lambda\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{8}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (8).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (8), we have

$$
\|(4 k-2) f(0)\| \leq|g(\lambda)|^{\alpha_{2}}\|2 k f(0)\| \leq 0
$$

therefore
So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($\left.k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x\right)$ in (8), we have

Thus

$$
\begin{gather*}
\|f(2 k x)-2 k f(x)\| \leq 0 \\
f\left(\frac{x}{2 k}\right)=\frac{1}{2 k} f(x) \tag{9}
\end{gather*}
$$

for all $x \in \boldsymbol{X}$.

From (8) and (9) I infer that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{10}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& =|g(\lambda)|^{\alpha_{2}} \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, and so

$$
\begin{equation*}
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)=2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right) \tag{11}
\end{equation*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$.
Next we replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, \cdots, k x, k x, \cdots, k x, z, \cdots, z)$ in (11), we have

$$
\begin{equation*}
f(k x+k z)+f(k x-k z)=2 k f(x) \tag{12}
\end{equation*}
$$

for all $x, z \in \mathbf{X}$.
Now letting $p=k x+k z, q=k x-k z$ when that in (12), we get

$$
\begin{equation*}
f(p)+f(q)=2 k f\left(\frac{p+q}{2 k}\right)=2 k \cdot \frac{1}{2 k} f(p+q)=f(p+q) \tag{13}
\end{equation*}
$$

for all $p, q \in \mathbf{X}$. So f is an additive mapping. as we expected. The couverse is obviously true.

Corollary 1. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \\
& =g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{14}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive.
Note! The functional equation (14) is called an additive λ-functional equation.

Theorem 2. Assume for $r>\frac{\alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{15}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique additive mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}} \theta\|x\|^{r} \tag{16}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (15).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (15), we have

$$
\|(4 k-2) f(0)\| \leq\|2 k g(\lambda) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 k g(\lambda)|^{\alpha_{2}}\right)\|f(0)\|
$$

So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($\left.k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x\right)$ in (15) we have

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq\left(2 k^{\alpha_{1} r+1}+1\right) \theta\|x\|^{r} \tag{17}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|f(x)-2 k f\left(\frac{x}{2 k}\right)\right\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} \tag{18}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|(2 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(2 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|(2 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(2 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \tag{19}\\
& \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}} \theta \sum_{j=1}^{m-1} \frac{(2 k)^{\alpha_{2} j}}{(2 k)^{\alpha_{1} r j}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (19) that the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty}(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (19), we get (16).

Form $f: \mathbf{X} \rightarrow \mathbf{Y}$ is even, the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is even.
It follows from (15) that

$$
\begin{align*}
& \| \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)-\sum_{j=1}^{k} \phi\left(-z_{j}\right) \| \\
& =\lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n} \| f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right) \\
& +f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \\
& -\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)-\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} z_{j}\right) \| \\
& \leq \lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n}|g(\lambda)|^{\alpha_{2}} \| 2 k f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{(2 k)^{n+1}} \sum_{j=1}^{k} z_{j}\right) \\
& +2 k f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{(2 k)^{n+1}} \sum_{j=1}^{k} z_{j}\right)-3 \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \\
& -\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)-\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} z_{j}\right) \| \\
& +\lim _{n \rightarrow \infty} \frac{(2 k)^{\alpha_{2} n}}{(2 k)^{\alpha_{1} n r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \\
& =|g(\lambda)|^{\alpha_{2}} \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \tag{20}\\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \text { for all } x_{j}, y_{j}, z_{j} \in X \text { for all } j=1 \rightarrow n .
\end{align*}
$$

$$
\begin{aligned}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{aligned}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, So by Lemma 1 it follows that the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, Suppose $\phi^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (16). Then we have

$$
\begin{align*}
\left\|\phi(x)-\phi^{\prime}(x)\right\| & =(2 k)^{\alpha_{2} n}\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)\right\| \\
& \leq(2 k)^{\alpha_{2} n}\left(\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{\left.(2 k)^{n}\right)}\right)\right\|\right) \\
& \leq \frac{2 \cdot(2 k)^{\alpha_{2} n} \cdot\left(2 k^{\alpha_{1} r+1}+1\right)}{(2 k)^{\alpha_{1} n r}}\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right) \tag{21}
\end{align*}\|x\|^{r} \quad \text {. }
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $\phi(x)=\phi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves thus the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique mapping satisfying (16) as we expected.

Theorem 3. Assume for $r<\frac{\alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{22}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique additive mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} \tag{23}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (22).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (22), we have

$$
\|(4 k-2) f(0)\| \leq\|2 k g(\lambda) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 k g(\lambda)|^{\alpha_{2}}\right) \| f(0) \mid
$$

So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($\left.k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x\right)$ in (22) we have

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq\left(2 k^{\alpha_{1} r+1}+1\right) \theta\|x\|^{r} \tag{24}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2 k} f(2 k x)\right\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}} \theta\|x\|^{r} \tag{25}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|\frac{1}{(2 k)^{l}} f\left((2 k)^{l} x\right)-\frac{1}{(2 k)^{m}} f\left((2 k)^{m} x\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|\frac{1}{(2 k)^{j}} f\left((2 k)^{j} x\right)-\frac{1}{(2 k)^{j+1}} f\left((2 k)^{j+1} x\right)\right\| \tag{26}\\
& \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}} \theta \sum_{j=1}^{m-1} \frac{(2 k)^{\alpha_{1} r j}}{(2 k)^{\alpha_{2} j}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (26) that the sequence $\left\{\frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{\frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty} \frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (26), we get (23).

The rest of the proof is similar to the proof of Theorem 2.

4. Stability Additive $g(\lambda)$-Functional Inequalities (2) in

$\left(\alpha_{1}, \alpha_{2}\right)$-Homogeneous F-Spaces

Now, we study the solutions of (2). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, I can show that the mapping satisfying (2) is additive. These results are give in the following.

Lemma 4. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an odd mapping satilies

$$
\begin{align*}
& \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathrm{Y}} \tag{27}\\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathrm{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (27).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (27), we have

$$
\|2 k f(0)\| \leq|g(\lambda)|^{\alpha_{2}}\|(4 k-2) f(0)\|
$$

So $f(0)=0$.
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(2 k x, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (27), we have

Thus

$$
\begin{gather*}
\left\|4 k f\left(\frac{x}{2 k}\right)-2 f(x)\right\| \leq 0 \\
f\left(\frac{x}{2 k}\right)=\frac{1}{2 k} f(x) \tag{28}
\end{gather*}
$$

for all $x \in \mathbf{X}$.
From (27) and (28) we infer that

$$
\begin{aligned}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& \quad-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \quad \leq|g(\lambda)|^{\alpha_{2}} \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \tag{29}\\
& \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \text { for all } x_{j}, y_{j}, z_{j} \in \mathbf{X} \text { for } j=1 \rightarrow n \text {, and so }
\end{align*}
$$

$$
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)=2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, as we expected. The couverse is obviously true.

Corollary 2. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \\
& =g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \tag{30}\\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is additive.
Note! The functional equation (30) is called an additive λ-functional equation.
Theorem 5. Assume for $r>\frac{\alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that $f(0)=0$ and

$$
\begin{align*}
& \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathrm{Y}} \\
& \leq \| \lambda\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \tag{31}\\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathrm{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique additive mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{(2 k)^{\alpha_{1} r}}{(2 k)^{\alpha_{1} r}-(4 k)^{\alpha_{2}}} \theta\|x\|^{r} . \tag{32}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (38).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (38), we have

$$
\|2 f(0)\| \leq|\lambda|^{\alpha_{2}}\|(4 k-2) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 \lambda|^{\alpha_{2}}\right)\|f(0)\| \leq 0
$$

So $f(0)=0$.
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(2 k x, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (38) we have

$$
\begin{equation*}
\left\|4 f\left(\frac{x}{2 k}\right)-\frac{1}{k} f(x)\right\|_{\mathbf{Y}} \leq(2 k)^{\alpha_{1} r} \theta\|x\|^{r} \tag{33}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|4 k f\left(\frac{x}{2 k}\right)-f(x)\right\| \leq(2 k)^{\alpha_{1} r} k^{\alpha_{2}} \theta\|x\|^{r} \tag{34}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|(4 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(4 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|(4 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(4 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \tag{35}\\
& \leq(2 k)^{\alpha_{1} r} k^{\alpha_{2}} \theta \sum_{j=1}^{m-1} \frac{(4 k)^{\alpha_{2} j}}{(2 k)^{\alpha_{1} j}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (35) that the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty}(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (35), we get (39). Form $f: \mathbf{X} \rightarrow \mathbf{Y}$ is even, the mapping

$$
\phi: \mathbf{X} \rightarrow \mathbf{Y}
$$

is even. It follows from (38) that

$$
\begin{align*}
& \| 2 \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -\frac{3}{2 k} \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)+\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(z_{j}\right)-\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(-z_{j}\right) \| \\
& =\lim _{n \rightarrow \infty}(4 k)^{\alpha_{2} n} \| 2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{n+2}}+\frac{1}{(2 k)^{n+1}} \sum_{j=1}^{k} z_{j}\right) \\
& +2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k)^{n+2}}-\frac{1}{(2 k)^{n+1} \sum_{j=1}^{k} z_{j}}\right)-\frac{3}{2 k} \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{(2 k)^{n+1}}\right) \\
& +\frac{1}{2 k} \sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{(2 k)^{n+1}}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(\frac{z_{j}}{(2 k)^{n}}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(\frac{-z_{j}}{(2 k)^{n}}\right) \| \\
& \leq \lim _{n \rightarrow \infty}(4 k)^{\alpha_{2} n}|g(\lambda)|^{\alpha_{2}} \| 2 f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right) \\
& +2 f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \\
& -\frac{1}{2 k} \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} z_{j}\right) \| \\
& +\lim _{n \rightarrow \infty} \frac{(4 k)^{\alpha_{2} n}}{(2 k)^{\alpha_{1} n r}} \theta\left(\sum_{j=1}^{k}\left\|_{x_{j}}^{r}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \\
& =\| \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)-2 \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right) \\
& -\sum_{j=1}^{k} \phi\left(z_{j}\right)-\sum_{j=1}^{k} \phi\left(-z_{j}\right) \| \tag{36}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$.

$$
\begin{aligned}
& \| 2 \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -\frac{3}{2 k} \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)+\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(z_{j}\right)-\frac{1}{2 k} \sum_{j=1}^{k} \phi\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-2 \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)-\sum_{j=1}^{k} \phi\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{aligned}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, So by Lemma 4.1 it follows that the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is additive. Now we need to prove uniqueness, Suppose $\phi^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is also a quadratic mapping that satisfies (39). Then we have

$$
\begin{align*}
& \left\|\phi(x)-\phi^{\prime}(x)\right\|=(4 k)^{\alpha_{2} n}\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)\right\| \\
& \leq(4 k)^{\alpha_{2} n}\left(\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|\right) \tag{37}\\
& \leq \frac{2 \cdot(4 k)^{\alpha_{2} n} \cdot(2 k)^{\alpha_{1} r}}{(2 k)^{\alpha_{1} n r}\left((2 k)^{\alpha_{1} r}-(4 k)^{\alpha_{2}}\right)} \theta\|x\|^{r}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $\phi(x)=\phi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves thus the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique mapping satisfying (39) as we expected.

Theorem 6. Assume for $r<\frac{2 \alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, $f(0)=0$ and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \| 2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -\frac{3}{2 k} \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+\frac{1}{2 k} \sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(z_{j}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \tag{38}\\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique addtive mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{(2 k)^{\alpha_{1} r}}{(4 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} \tag{39}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
The proof is similar to theorem 5.

5. Hyers-Ulam-Rassias Stability Quadratic $g(\lambda)$-Functional

Inequalities (1) in (α_{1}, α_{2})-Homogeneous F-Spaces

Now, we first study the solutions of (1). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, we can show that the mapping satisfying (1) is quadratic. These results are give in the following.

Lemma 7. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{40}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratic.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (40).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (40), we have

$$
\|(4 k-2) f(0)\| \leq|\lambda|^{\alpha_{2}}\|2 k f(0)\| \leq 0
$$

therefore
So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($\left.k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x\right)$ in (40), we have

Thus

$$
\begin{gather*}
\|f(2 k x)-2 k f(x)\| \leq 0 \\
f\left(\frac{x}{2 k}\right)=\frac{1}{2 k} f(x) \tag{41}
\end{gather*}
$$

for all $x \in \mathbf{X}$.
From (40) and (41) we infer that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| \lambda\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{42}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& =|\lambda|^{\alpha_{2}} \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, and so

$$
\begin{equation*}
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)=2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+2 \sum_{j=1}^{k} f\left(z_{j}\right) \tag{43}
\end{equation*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$.
As we expected. The couverse is obviously true.
Corollary 3. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \\
& =g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{44}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratic.
Note! The functional equation (44) is called an quadratic $g(\lambda)$-functional equation.

Theorem 8. Assume for $r>\frac{2 \alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping such that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{45}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique quadratic mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}} \theta\|x\|^{r} \tag{46}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (45).
We replacing ($x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}$) by ($0, \cdots, 0,0, \cdots, 0,0, \cdots, 0$) in (45), we have

$$
\|(4 k-2) f(0)\| \leq\|2 k g(\lambda) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 k g(\lambda)|^{\alpha_{2}}\right)\|f(0)\|
$$

So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by ($\left.k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x\right)$ in (45) we have

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq\left(2 k^{\alpha_{1} r+1}+1\right) \theta\|x\|^{r} \tag{47}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|f(x)-2 k f\left(\frac{x}{2 k}\right)\right\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} \tag{48}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|(2 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(2 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|(2 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(2 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \tag{49}\\
& \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{1} r}} \theta \sum_{j=1}^{m-1} \frac{(2 k)^{\alpha_{2} j}}{(2 k)^{\alpha_{1} r^{j}}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (49) that the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges.

So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty}(2 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (49), we get (46).

Form $f: \mathbf{X} \rightarrow \mathbf{Y}$ is even, the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is even.
It follows from (45) that

$$
\begin{aligned}
& \| \phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+\phi\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} \phi\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} \phi\left(z_{j}\right)-\sum_{j=1}^{k} \phi\left(-z_{j}\right) \| \\
& =\lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n} \| f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right)
\end{aligned}
$$

$$
\begin{align*}
& +f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} z_{j}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \\
& -\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)-\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} z_{j}\right) \| \\
& \leq \lim _{n \rightarrow \infty}(2 k)^{\alpha_{2} n}|g(\lambda)|^{\alpha_{2}} \| 2 k f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{(2 k)^{n+1}} \sum_{j=1}^{k} z_{j}\right) \\
& +2 k f\left(\frac{1}{(2 k)^{n}} \sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{(2 k)^{n+1}} \sum_{j=1}^{k} z_{j}\right)-3 \sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right) \\
& \left.-\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} \frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(\frac{1}{(2 k)^{n}} z_{j}\right)-\sum_{j=1}^{k} f\left(-\frac{1}{(2 k)^{n}} z_{j}\right) \right\rvert\, \\
& +\lim _{n \rightarrow \infty} \frac{(2 k)^{\alpha_{2} n}}{(2 k)^{\alpha_{1} n r}} \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right) \\
& =|g(\lambda)|^{\alpha_{2}} \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \tag{50}\\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \text { for all } x_{j}, y_{j}, z_{j} \in X \text { for all } j=1 \rightarrow n \text {. } \\
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, So by Lemma 7 it follows that the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratc. Now we need to prove uniqueness, Suppose $\phi^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is also an additive mapping that satisfies (46). Then we have

$$
\begin{align*}
& \left\|\phi(x)-\phi^{\prime}(x)\right\|=(2 k)^{\alpha_{2} n}\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)\right\| \\
& \leq(2 k)^{\alpha_{2} n}\left(\left\|\phi\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{(2 k)^{n}}\right)\right\|+\left\|\phi^{\prime}\left(\frac{x}{(2 k)^{n}}\right)-f\left(\frac{x}{\left.(2 k)^{n}\right)}\right)\right\|\right) \tag{51}\\
& \leq \frac{2 \cdot(2 k)^{\alpha_{2} n} \cdot\left(2 k^{\alpha_{1} r+1}+1\right)}{(2 k)^{\alpha_{1} n r}\left((2 k)^{\alpha_{1} r}-(2 k)^{\alpha_{2}}\right)} \theta\|x\|^{r}
\end{align*}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $\phi(x)=\phi^{\prime}(x)$ for all $x \in \mathbf{X}$. This proves thus the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique mapping satisfying (46) as we expected.
Theorem 9. Assume for $r<\frac{\alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)\right. \tag{52}\\
& \left.-3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique quadratic mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} \tag{53}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (52).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (52), we have

$$
\|(4 k-2) f(0)\| \leq\|2 k g(\lambda) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 k g(\lambda)|^{\alpha_{2}}\right)\|f(0)\|
$$

So $f(0)=0$.
Next replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(k x, \cdots, k x, k x, \cdots, k x, x, \cdots, x)$ in (52) we have

$$
\begin{equation*}
\|f(2 k x)-2 k f(x)\| \leq\left(2 k^{\alpha_{1} r+1}+1\right) \theta\|x\|^{r} \tag{54}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2 k} f(2 k x)\right\| \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}} \theta\|x\|^{r} \tag{55}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|\frac{1}{(2 k)^{l}} f\left((2 k)^{l} x\right)-\frac{1}{(2 k)^{m}} f\left((2 k)^{m} x\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|\frac{1}{(2 k)^{j}} f\left((2 k)^{j} x\right)-\frac{1}{(2 k)^{j+1}} f\left((2 k)^{j+1} x\right)\right\| \tag{56}\\
& \leq \frac{2 k^{\alpha_{1} r+1}+1}{(2 k)^{\alpha_{2}}} \theta \sum_{j=1}^{m-1} \frac{(2 k)^{\alpha_{1} r j}}{(2 k)^{\alpha_{2} j}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (56) that the sequence $\left\{\frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{\frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)\right\}$ coverges.
So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty} \frac{1}{(2 k)^{n}} f\left((2 k)^{n} x\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (56), we get (53).

The rest of the proof is similar to the proof of Theorem 5.

6. Stability Quadratic λ-Functional Inequalities (2) in $\left(\alpha_{1}, \alpha_{2}\right)$-Homogeneous F-Spaces

Now, we study the solutions of (2). Note that for these inequalities, when \mathbf{X} is a α_{1}-homogeneous F-spaces and that \mathbf{Y} is a α_{2}-homogeneous F-spaces. Under this setting, we can show that the mapping satisfying (2) is quadratic. These results are give in the following.

Lemma 10. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \tag{57}\\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratic.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (57).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (57), we have

$$
\|2 k f(0)\| \leq|g(\lambda)|^{\alpha_{2}}\|(4 k-2) f(0)\|
$$

So $f(0)=0$.
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(2 k x, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (57), we have

Thus

$$
\begin{gather*}
\left\|4 k f\left(\frac{x}{2 k}\right)-2 f(x)\right\| \leq 0 \\
f\left(\frac{x}{2 k}\right)=\frac{1}{2 k} f(x) \tag{58}
\end{gather*}
$$

for all $x \in \mathbf{X}$.
From (57) and (58) we infer that

$$
\begin{align*}
& \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& =\| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \tag{59}\\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq|g(\lambda)|^{\alpha_{2}} \| f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right) \\
& -2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, and so

$$
f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)=2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+2 \sum_{j=1}^{k} f\left(z_{j}\right)
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, as we expected. The couverse is obviously true.

Corollary 4. Let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be an even mapping satilies

$$
\begin{align*}
& 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \tag{60}\\
& =g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for $j=1 \rightarrow n$, if and only if $f: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratic.
Note! The functional equation (60) is called a quadratic $g(\lambda)$-functional equation.

Theorem 11. Assume for $r>\frac{2 \alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a even mapping such that $f(0)=0$ and

$$
\begin{align*}
& \| 2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 k f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right) \\
& -3 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \tag{61}\\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique quadratic mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{(2 k)^{\alpha_{1} r}}{(2 k)^{\alpha_{1} r}-(4 k)^{\alpha_{2}}} \theta\|x\|^{r} \tag{62}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
Proof. Assume that $f: \mathbf{X} \rightarrow \mathbf{Y}$ satisfies (61).
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (61), we have

$$
\|2 f(0)\| \leq|g(\lambda)|^{\alpha_{2}}\|(4 k-2) f(0)\|
$$

therefore

$$
\left(|4 k-2|^{\alpha_{2}}-|2 g(\lambda)|^{\alpha_{2}}\right)\|f(0)\| \leq 0
$$

So $f(0)=0$.
Replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(2 k x, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (61) we have

$$
\begin{equation*}
\left\|4 f\left(\frac{x}{2 k}\right)-\frac{1}{k} f(x)\right\|_{\mathrm{Y}} \leq(2 k)^{\alpha_{1} r} \theta\|x\|^{r} \tag{63}
\end{equation*}
$$

for all $x \in \mathbf{X}$. Thus

$$
\begin{equation*}
\left\|4 k f\left(\frac{x}{2 k}\right)-f(x)\right\| \leq(2 k)^{\alpha_{1} r} k^{\alpha_{2}} \theta\|x\|^{r} \tag{64}
\end{equation*}
$$

for all $x \in \mathbf{X}$.

$$
\begin{align*}
& \left\|(4 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(4 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\| \\
& \leq \sum_{j=1}^{m-1}\left\|(4 k)^{j} f\left(\frac{x}{(2 k)^{j}}\right)-(4 k)^{j+1} f\left(\frac{x}{(2 k)^{j+1}}\right)\right\| \tag{65}\\
& \leq(2 k)^{\alpha_{1} r} k^{\alpha_{2}} \theta \sum_{j=1}^{m-1} \frac{(4 k)^{\alpha_{2} j}}{(2 k)^{\alpha_{1} j j}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers p, l with $p>l$ and all $x \in \mathbf{X}$. It follows from (65) that the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ is a cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ coverges.
So one can define the mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
\phi(x):=\lim _{n \rightarrow \infty}(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (65), we get (62). The rest of the proof is similar to the proof of Theorem 8.

Theorem 12. Assume for $r<\frac{2 \alpha_{2}}{\alpha_{1}}, \theta$ be nonngative real number, $f(0)=0$ and Suppose $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping such that

$$
\begin{align*}
& \| 2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}+\frac{1}{2 k} \sum_{j=1}^{k} z_{j}\right)+2 f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{(2 k)^{2}}-\frac{1}{2 k} \sum_{j=1}^{k} z\right)_{j} \\
& -\frac{3}{2 k} \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)+\frac{1}{2 k} \sum_{j=1}^{k} f\left(-\frac{x_{j}+y_{j}}{2 k}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(z_{j}\right)-\frac{1}{2 k} \sum_{j=1}^{k} f\left(-z_{j}\right) \|_{\mathbf{Y}} \\
& \leq \| g(\lambda)\left(f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} \frac{x_{j}+y_{j}}{2 k}-\sum_{j=1}^{k} z_{j}\right)\right. \tag{66}\\
& \left.-2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{2 k}\right)-\sum_{j=1}^{k} f\left(z_{j}\right)-\sum_{j=1}^{k} f\left(-z_{j}\right)\right) \|_{\mathbf{Y}} \\
& +\theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in X$ for all $j=1 \rightarrow n$. Then there exists a unique quadratic mapping $\phi: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\|f(x)-\phi(x)\| \leq \frac{(2 k)^{\alpha_{1} r}}{(4 k)^{\alpha_{2}}-(2 k)^{\alpha_{1} r}} \theta\|x\|^{r} . \tag{67}
\end{equation*}
$$

for all $x \in \mathbf{X}$.
The proof is similar to theorem 8 and 9.

7. Conclusion

In this article, I construct two general functional inequalities with multivariables on homogeneous space and show that their solutions are additive-quadratic maps.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Ulam, S.M. (1960) A Collection of Mathematical Problems (Tracts in Pure and Applied Mathematics). Interscience Publishers, New York.
[2] Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3] Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064
[4] Rassias, T.M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[5] Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211
[6] Skof, F. (1983) Proprieta' locali e approssimazione di operatori. Rendiconti del Seminario Matematico e Fisico di Milano, 53, 113-129.
https://doi.org/10.1007/BF02924890
[7] Cholewa, P.W. (1984) Remarks on the Stability of Functional Equations. Aequationes Mathematicae, 27, 76-86. https://doi.org/10.1007/BF02192660
[8] Park, C.K. (2015) Additive β-Functional Inequalities and Equations. Journal of Mathematical Inequalities, 9, 17-26. https://doi.org/10.7153/jmi-09-02
[9] Park, C.K. (2015) Additive β-Functional Inequalities in Non-Archimedean Normed Spaces. Journal of Mathematical Inequalities, 9, 397-407. https://doi.org/10.7153/jmi-09-33
[10] Park, C.K., Ghasemi, K., Ghaleh, S.G. and Jang, S.Y. (2013) Approximate n-Jordan *-Homomorphisms in C*-Algebras. Journal of Computational Analysis \& Applications, 15, 365-368.
[11] Park, C.K., Najati, A. and Jang, S.Y. (2013) Fixed Points and Fuzzy Stability of an Additive-Quadratic Functional Equation. Journal of Computational Analysis and Applications, 15, 452-462.
[12] Rolewicz, S. (1972) Metric Linear Spaces, Monografie Matematyczne. Polish Scientific Publishers, Warsaw.
[13] Shagholi, S., Gordji, M.E. and Bavand Savadkouhi, M. (2011) Nearly Ternary Cubic Homomorphism in Ternary Frechet Algebras. Journal of Computational Analysis and Applications, 13, 1106-1114.
[14] Shagholi, S., Gordji, M.E. and Bavand Savadkouhi, M. (2011) Stability of Ternary Quadratic Derivation on Ternary Banach Algebras. Journal of Computational Analysis
and Applications, 13, 1097-1105.
[15] Shin, D.Y., Park, C.K. and Farhadabadi, S. (2014) On the Superstability of Ternary Jordan C*-Homomorphisms. Journal of Computational Analysis and Applications, 16, 964-973.
[16] Shin, D.Y., Park, C.K. and Farhadabadi, S. (2014) Stability and Superstability of J^{\star}-Homomorphisms and J^{\star}-Derivations for a Generalized Cauchy-Jensen Equation. Journal of Computational Analysis and Applications, 17, 125-134.
[17] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the Type Functional Equation with $2 k$-Variable in Non-Archimedean Space. Asia Mathematika, 5, 69-83.
[18] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the Additive Functional Equation Inequalities with 2 n -Variables on an Approximate Group and Ring Homomorphism. International Journal of Mathematics Trends and Technology (IJMTT), 66, 51-63. https://doi.org/10.14445/22315373/IJMTT-V66I9P509
[19] Van An, L. (2021) Generalized Hyers-Ulam-Rassias Type Stability of the with 2k-Variable Quadratic Functional Inequalities in Non-Archimedean Banach Spaces and Banach Spaces. International Journal of Mathematics Trends and Technology (IJMTT), 67, 183-197. https://doi.org/10.14445/22315373/IJMTT-V67I9P521
[20] Van An, L. (2021) Generalized Hyers-Ulam Type Stability of the 2k-Variables Quadratic β-Functional Inequalities and Function in γ-Homogeneous Normed Space. International Journal of Mathematics and Its Applications, 9, 81-93.
[21] Van An, L. (2023) Generalized Stability of Functional Inequalities with 3k-Variables Associated for Jordan-Von Neumann-Type Additive Functional Equation. Open Access Library Journal, 10, e9681.
[22] Van An, L. (2020) Generalized Hyers-Ulam Type Stability of the 2 k -Variable Additive β-Functional Inequalities and Equations in Complex Banach Space. International Journal of Mathematics Trends and Technology, 66, 134-147. https://doi.org/10.14445/22315373/IJMTT-V66I7P518
[23] Van An, L. (2022) Generalized Stability Additive λ-Functional Inequalities with 3 k -Variable in a-Homogeneous F-Spaces. International Journal of Analysis and Applications, 20, Article 43. https://doi.org/10.28924/2291-8639-20-2022-43
[24] Van An, L. (2023) The Fekete-Szegö Problem of Analytic Functions Based on the De-Ferential Opertor and Certain Subclasses. Journal of Advances in Mathematics, 22, 40-52. https://rajpub.com/index.php/jam https://doi.org/10.24297/jam.v22i. 9499

