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Abstract 

In this paper, we study the spectral properties of a family of discrete one-dimen- 
sional quasi-periodic Schrödinger operators (depending on a phase theta). In 
the perturbative regime and in large disorder, under some conditions on v 
and a diophantine rotation number, we prove by using KAM theory that this 
operator satisfies both Anderson and dynamical localization for all [ )0,2θ ∈ π . 
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1. Introduction 

The spectral theory of Schrödinger operators with random or almost periodic 
potentials has been an area of very active study since the late 1970’s. From the 
beginning, it has been understood and emphasized that these two classes of 
models share an important property, namely that the potentials can be generated 
dynamically. On the one hand, this makes a unified proof of basic spectral re-
sults possible, such as the almost sure constancy of the spectrum and the spectral 
type, since they hold as soon as the dynamical framework is fixed and an ergodic 
measure is chosen. On the other hand, by the very nature of the dynamical defi-
nition of the potentials, it comes as no surprise that tools from dynamics will 
enter the spectral analysis of these operators. 
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1.1. Quasi-Periodic Schrödinger Operator on ( )2
  

Consider the one-dimensional quasi-periodic Schrödinger operator  

( ) ( ) ( )1 1: , ,n n nn
H u u u v n u nθ ε θ ω+ −= − + + + ∈               (1) 

where ω  is a real number and v is a smooth function on [ )0,2π . 
We may assume the following on the data: 

- Diophantine condition on the frequency ω : That is:  

{ }: inf 2 \ 0 ,
m

n n m n
n τ

κω ω
∈

= − ≥ ∈π ∀


                 (2) 

for some constants 0κ >  and 1τ > . 
- v is a function of class 1 , satisfies: 

( )0 , .v cθα θ θ< ≤ ∂ ≤ < ∞ ∀                      (3) 

1.2. Anderson Localization 

We say that an operator satisfies Anderson localization if it has pure point spec-
trum with exponentially decaying eigenfunctions. 

1.3. Dynamical Localization 

Another localization criterion stronger than Anderson localization, this is called 
dynamical localization. Consider the evolution equation in time associated to 
Hθ ,  

( ), e itHi H t
t

θ
θ θ

ψ ψ ψ ψ−∂
= =

∂
                    (4) 

where ( )2ψ ∈  . We say that Hθ  satisfies, 
 The dynamical localization (D. L), if for a.e θ , 

( ) ( ) 22sup 1 , .
t n

n t nθψ
∈

 + < +∞ 
 
∑


                  (5) 

 The strong dynamical localization (Strong D.L), if,  

[ ) ( ) ( ) 22
0,2

sup 1 , d .
t n

n t nθψ θ
∈

π

 + < +∞ 
 
∑∫


               (6) 

The main result of this paper is the following: 
Under the assumptions ((2) and (3)), we prove the following:  
Theorem 1. 1) Assume that ω  and v are as above, then there exists a con-

stant ( )0 0 , ,ε ε α κ τ=  such that: 
If 0ε ε<  then Hθ  is pure point with a set of exponential decaying eigen-

functions which form an orthonormal basis of ( )2
   for all θ . 

2) Assume that (2) and (3) are hold, then for a.e ω  the operator Hθ  satis-
fies the strong dynamical localization (D.L) for all θ .  

Remark. 
This result improves in some way the previous one by Eliasson, such that dy-

namical localization is proven with an appropriate potential. To my knowledge, 
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there are no results on the spectral properties of Schrödinger operators with 
discontinuous potential. The ideas presented in this paper can be used to obtain 
new results for several models with discontinuities.  

Let us review now, some of the results in the literature that are most relevant 
to this paper: 
 In [1], L.H. Eliasson considered the operator Hθ  given by (1) with fre-

quency ω  satisfying a Diophantine condition and the function v satisfying 
a Gevrey-class regularity and a transversality condition. Under these assump-
tions, he proved using KAM methods that for 0ε ε<  where 0ε  depends 
on the function v and on the Diophantine condition on ω  the operator 
Hθ  has pure point spectrum for a.e. θ ∈ . Moreover, this implies, using Ko-
tani’s theory (see [2]) that the Lyapunov exponent is nonzero for a.e. energy 
E. The author has also suggested that the argument could be modified to ob-
tain exponential decay of the eigenfunctions, but without proof. 

 J. Bourgain and M. Goldstein considered (see [3]) the operator Hθ  given by 
(1) where ω  satisfies a Diophantine condition and v is a non-constant ana-
lytic function. They also assumed that the Lyapunov exponent is positive for 
a.e. ω  and for all E. The authors proved that the operator Hθ  satisfies 
Anderson localization with exponential decay of the eigenfunctions at almost 
Lyapunov rate for every θ  and for a.e. ω . Their result is nonperturbative 
-the constant 0ε  depends only on the potential v. In this paper we use the 
KAM approach which is a perturbative method—the constant 0ε  depends 
on v and ω -with different conditions on v, also we prove the Dynamical lo-
calization which is stronger than Anderson localization. 

 For the quasi-periodic model, and unlike Anderson’s case, there were fewer 
results that were found for this kind of localization. However, several results 
on the (D.L.) were published for the random model, for more references see 
[4] [5]. 

In the case of quasi-periodic models, this localization phenomenon (D.L) im-
plies Anderson localization, and which also implies by the RAGE theorem that 
the spectrum is purely punctual (see [6]). In view of this, these models are natu-
ral candidates for (D.L). In this context, F. Germinet and S. Jitomirskaya (see 
[7]), have improved the results of [8] and [9], by proving the strong (D.L) of the 
operator ( )( )cos 2 nλ θ ωπ−∆ + + , for all 2λ >  and diophantine ω . Later, in 
2004, J. Bourgain and S. Jitomirskaya announced (without demonstration) this 
result for the quasi-periodic Schrödinger operators, see [10] for more details. 
 Quasi-periodic operators have been heavily studied over the years; we direct 

the reader to the survey [11] for a guide on the literature. 

1.4. Idea of Proof 
1.4.1. KAM Theory 
KAM theory is the perturbative theory, initiated by Kolmogorov, Arnold and 
Moser in the 1950s, of quasi-periodic motions in conservative dynamical sys-
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tems. This theory deals with the persistence, under perturbation, of quasi-periodic 
motions in Hamiltonian dynamical systems. An important example is given by 
the dynamics of nearly integrable Hamiltonian systems. In general, the phase 
space of a completely integrable Hamiltonian system of n degrees of freedom is 
foliated by invariant n-dimensional tori (possibly of different topology). KAM 
theory shows that, under suitable regularity and non-degeneracy assumptions, 
most (in measure theoretic sense) of such tori persist (slightly deformed) under 
small Hamiltonian perturbations. The union of persistent n-dimensional tori 
(Kolmogorov set) tends to fill the whole phase space as the strength of the per-
turbation is decreased. The major technical problem arising in this context is 
due to the appearance of resonances and small divisors in the associated formal 
perturbation series.  

1.4.2. Application to the Schrödinger Operators 
The method of proof is a refinement of an already refined KAM method devel-
oped by Eliasson in a series of fundamental papers in the theory of quasi-periodic 
Schrodinger operators (especially [1]). The method consists of an infinite sequence 
of transformations aiming at conjugating the infinite dimensional matrix de-
fined by the operator on ( )2

  :  

( ) ( )
( )

( )
( )

0

0

v
D F v

v

θ ω ε
θ ε θ ε θ ε

ε θ ω

 
 − − 
 + = − −
 

− + 
 
 





 

to a diagonal matrix ( ),D θ ε∞ , by an orthogonal matrix made up of a complete 
set of eigenvectors. An iterative procedure that permits us to construct a such 
matrix,  

( )* *
1 1 1 1j j j jU U D F U U D Fε + ++ = +   

that conjugate D Fε+  closer and closer to a diagonal matrix  
( )( )diagj jD v kθ ω= + . 

In the perturbative regime, these matrices are perturbations of diagonal ma-
trices and the problem is to diagonalize them completely or partially, i.e. to show 
that they have some point spectrum. The unperturbed matrices have a dense 
point spectrum so that their eigenvalues are, up to any order of approximation, 
of infinite multiplicity, which is a very delicate situation to perturb. For matrices 
with strong decay of the off-diagonal elements, this difficulty can be overcome if 
the eigenvectors are sufficiently well clustering. One way to handle this is to 
control the almost multiplicities of the eigenvalues. The eigenvalues are given by 
functions of one or several parameters and in order to control the almost mul-
tiplicities it is necessary that these functions are not too flat. If the parameter 
space is one-dimensional and if the quasi-periodic frequencies satisfy some Di-
ophantine condition, then it turns out that this control of the derivatives of ei-
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genvalues is not only necessary, but also sufficient for the control of the almost 
multiplicities. If the parameter space is higher-dimensional this control is more 
difficult to achieve and not yet well understood.  

2. Iterative Study 

This section is organized in the following way: 
- A first part devoted to the study of the first step of the iteration described in 

the previous paragraph. Under some conditions on v and ω  we construct the 
matrices 1 2,U F  and 1D  which satisfy the estimates of Lemma 2. 

- In the second part and after a suitable choice of parameters, an inductive 
proposition, Proposition 3 is introduced in order to prove the first result in 
Theorem 1, which is a simple consequence of Lemma 4. 

- At the end we give the proof of Theorem 1(2). 
Consider now the symmetric infinite-dimensional matrix that depends on the 

parameter θ , ( ) ( )D Fθ θ+  with,  

( )
( )

( )
( )

0

0

v
D v

v

θ ω
θ θ

θ ω

 
 − 
 =
 

+ 
 
 





. 

For the formulation of the first step of iteration we shall assume the following: 
- The rotation number ω  and the potential v satisfy (2) and (3). 

- 
e with 0

.

i jj
i

j
i

F

F

ρ

θ

ε ρ

ε

− − ≤ >

∂ ≤

. 

- Consider the equation:  

( )e eX XD F D F− ′ ′+ = +                      (7) 

where the matrices X, D′  and F ′  are defined in the following way: 

Let 1: aN
ε ρ

=  for 
10
4

a
τ

< < .  

1) The matrix X is defined by 
0 if or

otherwise

j
i

j
j i

i
i j

X i j i j N

FX
v v

 = = − >



= − −

 and satisfies the 

equation:  

[ ], ND X F D D′= − +                      (8) 

where ( ) if
0 otherwise

j
j iN

i

F i j N
F

 − ≤= 


. 

2) ( )i i
ii

D D F′ − = .  
3) ( ) ( ) ( ) ( )( ) ( ) ( )e eX XF D F Dθ θθ θ θ θ−′ ′= + − .  

Lemma 2. Let 
10
4

a bτ< + <  and bσ ε= .  
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If 
( )

1
11

62
a bττκε αρ

− ++ ≤  
 

 then: 

1)  

a) e : ei j i jj
i

NX A
τ

ρ ρε
ακ

− − − −≤ = .  

b) 
2

1 e
NX

τ

ρε
ακ −≤

−
.  

c) ( )
72e e

j i jX

i

AI ρ

σρ
′− −± − ≤  where 

2
σρ ρ ρ′ = − .  

2)  

a) 
25216 e i jj

i
AF ρ

σρ
′− − 

′ ≤  
 

.  

b) 
252 2 216 :
1 e 1 e

AF ρ ρε
σρ ′ ′− −

 
′ ′≤ =  − − 

.  

3)  
a) ( ) :vθ θ α ε α′ ′∂ ≥ − =  where ( ) ( )( )diagD v nθ θ ω′ ′= + .  
b) ( )j

iFθ θ ε′ ′∂ ≤ .  
c) ( ) :v c cθ θ ε′ ′∂ < + = .  

4) ( )i

i
D D ε′ − ≤ .  

Proof. 
1(a): Let i j≠  and i j N− ≤ , we have:  

j
j i

i
i j

FX
v v

= −
−

 therefore e i jj
i

i j

X
v v

ρε − −≤
−

 

since ( ) ( ) ( )infi jv v v i v j v i j
i j

θ τ

ακθ ω θ ω ω− = + − + ≥ ∂ − ≥
−

, then it fol-

lows that  

e .i jj
i

NX
τ

ρε
ακ

− −≤  

1(b): Using 1(a) we obtain:  

2e e
1 e

i j ij
i

i i i

AX A Aρ ρ
ρ

− − −
−

∈ ∈ ∈

≤ ≤ ≤
−∑ ∑ ∑

  
              (9) 

Thus from the generalized Young inequality [12] (page 9), (9) implies an es-
timate of X in the operator norm on ( ) ( )2 2→   . 

1(c): By lemma 8A  (Eliasson [13]) and for all n∈  we deduce that:  

5

times

2( ) e ,
n

i jj
i

n

AX X ρ

σρ
′− − 

≤  
 




 

hence ( )
72e e

j i jX

i

AI ρ

σρ
′− −± − ≤ . 

2(a): Let : N
NF F F= −  then we have:  
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( )
( )

( ) ( )

( ) ( )

( )

2
, 1,1

0

e e

e e e e

,
! !

.
! !

X X

X N X X X
N

n m
N N N

m n
m n

n m

N
m n

F D F D

D F F D

X XX F XDX XF X D F
n m

X XF
n m

−

− −

+ ≥
≠

+ ≥

′ ′= + −

′= + + −

−
 = − − + + 

−
+

∑

∑





. 

Now we have to estimate the elements of all matrices which constitute the 
matrix F ′ . 

(*)1 

( ) ( )
( )

( ) ( )
2

5

, 2

2 e

2 e e

2 e

j jN k N
i ki k I

k i k j

k I

k i k jk i k j

k I

i j

X F X F

A

A

A

ρ

σρ
ρ

ρ

ε

ε

ε
σρ

∈

− − + −

∈

− − + −′− − + −

∈

′− −

  ≤ 

≤

≤

≤

∑

∑

∑
 

where { }; andI k k i N k j N= ∈ − ≤ − ≤ . 
In the same way we get: 
(*)2 

( ) ( )
252 ej j i jk

ii k
k I

AXDX X DX ρ

σρ
′− −

∈

 
≤ ≤  

 
∑ . 

(*)3 

( )
252 ej i j

i

AXFX ρ

σρ
′− − 

≤  
 

. 

(*)4 

( ) ( )

( ) ( ) ( )
25

2
, 1,1

23 1 e
! !

j
n m

i jN

m n
m n i

X X AD F
n m

ρε
σρ

′− −

+ ≥
≠

 
−   + ≤ +  

  
 

∑ . 

(*)5 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

0 0

0

1

0

1

2

1
! ! ! !

1
! !

1e
! !

3 e e .

a

a

jn m k jn m
N Ni km n m n k

i

k jn m
Ni km n k k N

k jn m

im n k k N

i j

X XF X F X
n m n m

X F X
n m

X X
n m

ε

ε
ρ

ε

ε
σρ

+ ≥ + ≥ ∈

+ ≥ ∈ − >

−

+ ≥ ∈ − >

−

′− −

 −
  ≤
 
 

≤

≤

≤

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑











 








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This gives 
25216 e .i jj

i
AF ρ

σρ
′− − 

′ ≤  
 

 

2(b):  
25

25

216 e

216 e

i jj
i

i i

i

i

AF

A

ρ

ρ

σρ

σρ

′− −

∈ ∈

′−

∈

 
′ ≤  

 

 
≤  

 

∑ ∑

∑

 



. 

therefore  
252 216

1 e
j

i
i

AF ρσρ ′−
∈

 
′ ≤   − 

∑


                   (10) 

It follows from the generalized Young inequality [12] (page 9) that (10) im-
plies the desired estimate of F ′  in the operator norm on ( ) ( )2 2→   . 

3(a): Since ( )i i
ii

D D F′ − =  then i
i i iv v F′ = +  therefore i

i i iv v Fθ θ θ′∂ = ∂ + ∂  
thus  

: .i
i i iv v Fθ θ θ α ε α′ ′∂ ≥ ∂ − ∂ ≥ − =  

3(b): In order to estimate j
iFθ ′∂ , we have to find an upper bound of j

iXθ∂ . 

We have 
( )2

j
i jj ji

i i
i j i j

v vFX F
v v v v

θ θθ
θ

∂ − ∂∂
∂ = − +

− −
 then  

2

1.

j
i i j

N NX v v

C

τ τ

θ θ θε ε
ακ ακ

ε

 
∂ ≤ + ∂ − ∂ 

 

≤

, 

which implies: 
(*)1  

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )
3

1 1

1
2

,

.

j j kN k N N j
i kk ii k

j j kk N k N N j
i i kk k ik

kN j
ki

j kN k j N
i kk ik

X F X F F X

X F X F F X

F X

C F X X C F

M

θ θ

θ θ θ

θ

ε ε ε ε

ε

∈

∈

∈

  ∂ = ∂ −    

≤ ∂ + ∂ + ∂

+ ∂

≤ + + +

≤

∑

∑

∑







 

In the same way we get: 
(*)2  

( ) 3
2

2 .j

i
XDX Mθ ε∂ ≤  

(*)3  

( ) 3
3

2 .j

i
XFX Mθ ε∂ ≤  
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(*)4  

( ) 1 2
11

1 2 1
n

n n

jn j
ii

X X X X
−

− −∈ ∈ ∈

= ∑ ∑ ∑  



     

  . 

Since ( ) jk

i
X  is bounded for all k n<  then ( ) 2

3 2jn

i
X Cθ ε∂ ≤  therefore  

( ) ( )

( ) ( ) 4
2

3 2

, 1,1
! !

j
n m

N

m n
m n i

X XD F M
n mθ ε

+ ≥
≠

 
− ∂ + ≤ 

 
 

∑  

and  

( )
5

0

3 2

! !

jn m

N
m n

i

X XF M
n mθ ε

+ ≥

 −
 ∂ ≤
 
 
∑   

where all constants iM  and iC  depend on , ,N α κ  and τ . It follows that  

( ) ( )2
1 5

34 max , , .j
iF M Mθ ε ε′ ′∂ ≤ ≤  

3(c):  

.v v cθ θ ε ε′∂ ≤ ∂ + ≤ +  

4) By construction of D′  the result follows immediately.   

3. Induction 

Let a, b such that 
10
4

a bτ< + <  and consider 1ε ε= , 1ρ ρ= , 1α α= ,  

1A A= , 1D D= , 1F F=  and for all 1n ≥  we define the sequences  

( )
( )

( )

1
1 1

1

25

1

1 1

1

216

2

n
n n n a

n n n

bn
n n n

n n

n n
n n n n n

N
A N

A

τ

ε
κα ε ρ

ε σ ε
σ ρ

σ ρ
ρ ρ α α ε

+
+ +

+

+

+ +

= =

 
= = 

 

= − = −

 

These parameters are defined in an iterative way and it is with which we will 
be able to define the matrices 1, n

nX F +  and 1nD +  satisfying 

( ) 1 1e en nX Xn n n nD F D F− + ++ = +                  (11) 

where the matrices nX , 1nD +  and 1nF +  are defined in the following way:  

1) The matrix nX  is defined by 

( )

( ) ( )

0 if or

otherwise

j
n ni

j
j n i

n n ni
i j

X i j i j N

F
X

v v

 = = − >



= −
−

 and sa-

tisfies the equation  

( ) 1, nNn n n n
nD X F D D+  = − +                   (12) 


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where ( )( ) ( ) if

0 otherwise

n

jnjNn ni
i

F i j N
F

 − ≤= 


. 

2) ( ) ( )1 i in n n

i i
D D F+ − = .  

3) ( ) ( ) ( ) ( )( ) ( ) ( )1 1e en nX Xn n n nF D F Dθ θθ θ θ θ−+ += + − .  
and satisfying the property n  described in the following proposition.  

Proposition 3. Let n∈ . If m n∀ ≤ ,  

( )
1

1 1

62

a b
m m

m

τ τκα ρ
ε

+ − + 
≤  
 

 

then the following property n  is holds.  

( )

( )

( )

( )

( )

1

1

1

7

1
1

1 1

1
1

1
1

1
1

1

1. e

22.
1 e

23. e e

4. e

25.
1 e

6.

7.

8.

9. .

n

n

nn

n

n

j i j
n ni

n
n

j i jX n
i

n n

j i jn
ni

n n n

n
n

jn
ni

n
n n n

in n
ni

X A

AX

AI

F

F

v

F

v c c

D D

ρ

ρ

ρ

ρ

ρ

θ

θ

θ

σ ρ

ε

ε

α

ε

ε

ε

+

+

+

− −

−

− −±

− −+
+

+ +
−

+
+

+
+

+
+

+

 ≤


 ≤

−

 − ≤


 ≤



≤ −
 ∂ ≥

 ∂ ≤


∂ < = +

 − ≤


  

Proof. A direct application of Lemma 2 allows us to obtain the desired result 
for each n.  

4. Study of Convergence 

Now we will deal with the study of the convergence of our iteration. We will 
therefore look at the conditions and the size of ε  with which we will have the 
convergence, this will be the goal of the next lemma. Finally, we conclude with 
the proof of Theorem 1 which is a simple deduction of Proposition 3 and Lem-
ma 4.  

Lemma 4. Suppose that  
( )

( )

1
1 7

9 3

6 2

1 2 3
2

12 2; 0 .
4

a b

b
a b

τ
τ τακρ

α

α τ

− +
+ +  < < 

 

≥ < + <

 

Then for 
41

37
1

2 2 3

τ

τ

κρε α
+ 

<  
 

 we have for all n:  
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1) 
( )

6

3 2

2
1

2

n

nε α
 ≤  
 

 4
11
2

α∀ ≥ . 

In particular lim 0n nε→∞ = . 

2) 
( )

1
1 1

62

a b
n n

n

τ τκα ρ
ε

+ − + 
≤  
 

.  

Proof: 1) The result is holds for 1n = . Suppose that the result remain holds 

for 1,2, ,n  thus 1 2
2
3

α α α> > > . Now we shall prove that the result is also 

true for 1n + . 
Let  

( )( )1

1
2 1

j

j
M

a bτ

+∞

=

 
=  

 − + 
∑ , 

we have  

( )( )

( )( )( )
( )( )( )

( )( )( )
1

2 25
2 114

1 1

2 1
2 2 1

14 2 1
1

1

2 116 2

12 .

n

k
k

k

n

a bn
n n

n n n n

a b
a b

na b

k k k

A τ
τ

τ
τ

τ
τ

ε ε
σ ρ κα ρ

ε
κα ρ

=

−

−

− +
+ +

− +
− +

− +

+
=

∑

   
= = =   

   

 
  =      

∏



 

Since  
( )( )( ) ( )( )( )12 2 1 2 2 1

1 1
1

1 1
k

k
k na b a b

n

k k k n n

τ τ

τ τκα ρ κα ρ

−
=

−
− + − +

+ +
=

∑   
≤   

   
∏ , 

hence  

( )( )( )

( )

2
2 114

1 1

4
28

1

3 2

1[2 ]

2 32

n

n

M
a bM

n
n n

τ
τ

τ

τ

ε ε
κα ρ

ε
καρ

− +
+ +

+

 
≤  

 

  
 ≤  
   

, 

which proves that lim 0n nε→+∞ = . 

2) By 1) we have , 1nn ε∀ ≤  then 
( ) 216

2
1 1

22 1
a b

n
n

n n

τ

τ

ε
ε

κα ρ

− +

+ +

 
= ≤  

 
, thus  

( )16

1

2 1
a b

n

n n

τ

τ

ε
κα ρ

− +

+ ≤  hence 
( )

1
1 1

62

a b
n n

n

τ τκα ρ
ε

+ − + 
≤  
 

.  

Remark. 1) One can assume without loss of generality that 1α =  and we 
have the same result, in fact the operators Hθ  and Hθα  have the same spec-
tral properties. 

2) The real b exists and satisfying all conditions.  
Proof of Theorem 1. 1) The operator Hθ  is identified to matrix D F+  

with ( )e i jj
iF e ρε − −≤ . Then for 1ρ =  and 

1

373 2e

τ

τ

καρε
+

+<  we have the existence 
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of matrices nX  and 1nD +  for all n∈  such that for all θ ,  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1
*

1 1e e e en nX X X X n nD F D Fθ θ θ θθ θ θ θ+ ++ = +  , 

where ( )1nD θ+  is a diagonal matrix, 
1

1
1

1
1 e n

n
nF ρε

+

+
+ −≤

−
,  

( ) 1
72e e nn

j i jX n
i

n n

AI ρ

σ ρ
+− −± − ≤  and ( )1 in n

ni
D D ε+ − ≤ . 

Therefore ( ) 0nF θ →  and ( ) ( )nD Dθ θ∞→  with ( )D θ∞  is a diagonal ma-
trix. All convergence are fulfilled for all θ . 

On the other hand ( ) ( ) ( )1e e nX X Uθ θ θ→  in norm and for all θ  with 
( )U θ  is an orthogonal matrix. In fact: Let ( ) ( )e jX

jU θθ =  we have 
( )1 jj U θ

≥∏  converges if and only if ( )1 jj U Iθ
≥

−∑  converges, now since  

( )
1

2

1 e j

j
jU I ρ

ε
θ

+−− ≤
−

 then we have the existence of U for all θ . Moreover 

from Lemma 4 and for 
4

0 37
1 3
2 2e τ

κε α =  
 

 the matrix ( )D θ∞  is pure point  

with finite-dimensional eigenvectors for all θ  and the measure of  
( ) ( )\D D Fσ σ +  goes to 0 as 0ε → . The eigenvectors of D F+  are formed 

by the columns of U. 
2) Let ( ), e itHt n θ

θψ ψ−=  for ( )2ψ ∈  , so by the exponential decaying of 
eigenfunctions we can easily deduce that  

( ) ( ) 22sup 1 , .
t n

n t nθψ
∈

+ < ∞∑


 

 

5. Conclusion and Suggestion 

The result in Theorem 1 improves the previous one by Eliasson, such that dy-
namical localization is proven with an appropriate potential. To my knowledge, 
there are no results on the spectral properties of Schrödinger operators with 
discontinuous potential. The ideas presented in this paper can be used to obtain 
new results for several models with discontinuities. For example, one can con-
sider the quasi-periodic operator defined for θ  in the torus   with a piece-
wise smooth potential or even functions in a piecewise Gevrey class, and see if 
similar localization results can be obtained. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 
[1] Eliasson, L.H. (1997) Discrete One-Dimensional Quasi-Periodic Schrödinger Oper-

ators with Pure Point Spectrum. Acta Mathematica, 179, 153-196.  
https://doi.org/10.1007/BF02392742 

[2] Simon, B. (1983) Kotani Theory for One-Dimensional Stochastic Jaccobi Matrice. 



https://doi.org/10.4236/oalib.1110966
https://doi.org/10.1007/BF02392742


W. Refai 
 

 

DOI: 10.4236/oalib.1110966 13 Open Access Library Journal 
 

Communications in Mathematical Physics, 89, 227-234.  
https://doi.org/10.1007/BF01211829 

[3] Bourgain, J. and Goldstein, M. (2000) On Nonperturbative Localization with Qua-
si-Periodic Potential. Annals of Mathematics, 152, 835-879.  
https://doi.org/10.2307/2661356 

[4] Germinet, F. and De Bière, S. (1998) Dynamical Localization for Discrete and Con-
tinuous Random Schrödinger Operators. Communications in Mathematical Phys-
ics, 194, 323-341. https://doi.org/10.1007/s002200050360 

[5] Germinet, F., Hislop, A. and Klein, A. (2005) On Localization for the Schrödinger 
Operator with a Poisson Random Potential. Comptes Rendus Mathematique, 341, 
525-528. 

[6] Cycon, H.L., Froese, R.G., Kirsch, W. and Simon, B. (1987) Schrödinger Operators. 
Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77522-5 

[7] Germinet, F. and Jitomirskaya S. (2001) Strong Dynamical Localization for the Al-
most Mathieu Model. Reviews in Mathematical Physics, 13, 755-765.  
https://doi.org/10.1142/S0129055X01000855 

[8] Germinet, F. (1999) Dynamical Localization II with an Application to the Almost 
Mathieu Operator. Journal of Statistical Physics, 95, 273-286.  
https://doi.org/10.1023/A:1004533629182 

[9] Jitomirskaya, S.Y. and Last, Y. (1998) Anderson Localization for the Almost Ma-
thieu Equation, III. Semi-Uniform Localization, Continuity of Gaps, and Measure 
of the Spectrum. Communications in Mathematical Physics, 195, 1-14.  
https://doi.org/10.1007/s002200050376 

[10] Jitomirskaya, S.Y. (2003) Nonperturbative Localization.  
https://arxiv.org/abs/math-ph/0304044   

[11] Max, C.A. and Jitomirskaya, S. (2015) Dynamics and Spectral Theory of Quasi-Periodic 
Shrödinger-Type Operators. https://arxiv.org/abs/1503.05740   

[12] Folland, G.D. (1976) Introduction to Partial Differential Equations.  
https://doi.org/10.1515/9780691213033 

[13] Eliasson, L.H., Kuksin, S.B. and Yoccoz, J.-C. (2002) Dynamical Systems and Small 
Divisors. https://link.springer.com/book/10.1007/b83847  

 

https://doi.org/10.4236/oalib.1110966
https://doi.org/10.1007/BF01211829
https://doi.org/10.2307/2661356
https://doi.org/10.1007/s002200050360
https://doi.org/10.1007/978-3-540-77522-5
https://doi.org/10.1142/S0129055X01000855
https://doi.org/10.1023/A:1004533629182
https://doi.org/10.1007/s002200050376
https://arxiv.org/abs/math-ph/0304044
https://arxiv.org/abs/1503.05740
https://doi.org/10.1515/9780691213033
https://link.springer.com/book/10.1007/b83847

	Dynamical Localization of the Quasi-Periodic Schrödinger Operators
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	1.1. Quasi-Periodic Schrödinger Operator on 
	1.2. Anderson Localization
	1.3. Dynamical Localization
	1.4. Idea of Proof
	1.4.1. KAM Theory
	1.4.2. Application to the Schrödinger Operators


	2. Iterative Study
	3. Induction
	4. Study of Convergence
	5. Conclusion and Suggestion
	Conflicts of Interest
	References

