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Abstract 
In this paper, we consider the following nonlinear Choquard equation  

( ) ( ) ( )( )2
1 2w V x w w wθε ε −− ∆ + = +  , where 0ε > , 2N > , ( )1 :w =  

( ) ( ) 2
1 1

p pW x I W w w wθ
− ∗  

, ( ) ( ) ( ) 2
2 2 2: q qw W x I W w w wθ

− = ∗  
 , Iθ  is 

the Riesz potential with order ( )0, Nθ ∈ , 2
2

Np q
N

θ+
≤ < <

−
, min 0N V >



 

and inf 0N iW >


, 1,2i = . By imposing suitable assumptions to ( )V x , 

( ) , 1, 2iW x i = , we establish the multiplicity of semiclassical solutions by using 
pseudo-index theory and the existence of groundstate solutions by Nehari me-
thod. Moreover, the convergence and concentration of the positive groundstate 
solution are discussed. 
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1. Introduction and Main Results 

In this paper, we will study the following equation 

( ) ( ) ( )( )2
1 2 ,w V x w w wθε ε −− ∆ + = +                (1.1) 

where 0ε > , 2N > , ( )0, Nθ ∈ , ( ) ( ) ( ) 2
1 1 1

p pw W x I W w w wθ
− = ∗  

 ,  

( ) ( ) ( ) 2
2 2 2

q qw W x I W w w wθ
− = ∗  

 , 2
2

Np q
N

θ+
≤ < <

−
, , , 1,2iV W i =  are con-  

How to cite this paper: Zhao, X.Y. (2023) 
Multiplicity and Concentration of Solutions 
for Choquard Equation with Competing 
Potentials via Pseudo-Index Theory. Open 
Access Library Journal, 10: e11026. 
https://doi.org/10.4236/oalib.1111026 
 
Received: November 22, 2023 
Accepted: December 24, 2023 
Published: December 27, 2023 
 
Copyright © 2023 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1111026
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1111026
http://creativecommons.org/licenses/by/4.0/


X. Y. Zhao 
 

 

DOI: 10.4236/oalib.1111026 2 Open Access Library Journal 
 

tinuous bounded positive functions and the Riesz potential Iθ  is defined as 
follows:  

{ }
2

2: , \ 0 .
2

2

N N

N

N

I x xθ
θ

θ

θ

θ
−

− Γ 
 = ∈

 Γ π 
 

              (1.2) 

When 1ε = , Equation (1.1) is related to the local nonlinear perturbation of 
the famous Choquard equation  

( )2
2 in .Nu u I u u−∆ + = ∗                   (1.3) 

This equation for 3N =  was first proposed by Pekar [1] in quantum me-
chanics in 1954. In 1996, Penrose [2] [3] used this equation in a different context 
as a model for self-gravitating matter. In 1977, E. H. Lieb [4] proved that the ex-
istence and uniqueness of solutions to Equation (1.3) by using symmetric de-
creasing rearrangement inequalities. Thereafter, P. L. Lions [5] [6] further stu-
died Equation (1.3) by means of a variational approach and obtained the multip-
licity of solutions to the equation. Since then, the Choquard equation has been 
studied in a variety of environments and in many contexts. 

J. N. Correia and C. P. Oliveira [7] considered  

( ) ( )1 2 2 1 in .q q Nu u u u u uµ µ
µ µω

∗ ∗+ −−∆ + = ∗ + ∗     

where 1ω = , 22 1 2
2

Nq
Nµ

µ∗ −
≤ + < =

−
,   is a positive parameter. They proved  

existence of positive solutions for a class of problems involving the Choquard 
term in exterior domain and the nonlinearity with critical growth by using vari-
ational method combined with Brouwer theory of degree and Deformation lem-
ma. S. Yao, J. Sun and T. Wu [8] studied the following equation  

( ) ( ) 2 2 in .p p q Nu V x u I K u K u u u uαλ − −−∆ + = ∗ −   

When 3N ≥ , 0λ > , ( ) 0K x ≥ , 1
2

Np
N N
α α+

+ < <
−

 and 22 2
2

Nq
N

∗< < =
−

.  

They proved different relationship between p and q when the competing effect 
of the nonlocal term with the perturbation happens. 

For the semiclassical states of Choquard equation, we can refer to the follow-
ing references. Y. Su a and Z. Liu [9] proved the following Choquard equation  

( ) ( )2 in ,Nu V x u g uαε ε −− ∆ + =                  (1.4) 

where 5N ≥ , ( )0, Nα ∈ , ( ) ( )( ) ( )g u I F u F uα ′= ∗ , ( )
#2 2

#
1

2 2
F u u uα α

α α

λ ∗

∗= + , 

#2 N
Nα
α+

= , 2 :
2

N
Nα

α∗ +
=

−
. Working in a variational setting, they showed the  

existence, multiplicity and concentration of positive solutions for such equations 
when the potential satisfies some suitable conditions. Y. Meng and X. He [10] 
considered the multiplicity and concentration phenomenon of positive solutions 
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to Equation (1.4) in which ( ) ( )( ) ( )2 2 2g u Q x I u u u f uα α
α

∗ ∗ −= ∗ + , 3N ≥ ,  
( )4N Nα

+
− < < , ( ) ( ) ( )N NV x C L∞∈ ∩   is a positive potential,  

( )1 ,f C +∈    is a subcritical nonlinear term. By means of variational methods 
and delicate energy estimates, they established the relationship between the num-
ber of solutions and the profiles of potentials V and Q, and the concentration be-
havior of positive solutions is also obtained for 0ε >  small. 

Y. Ding and J. Wei [11] considered the following Schrödinger equation  

( ) ( ) 22 in ,p Nw V x w W x w wε −− ∆ + =   

where 0ε > , 22,
2

Np
N

 ∈ − 
 and ,V W  are continuous bounded positive  

functions, they proved existence and concentration phenomena of semiclassical 
positive groundstate solutions, and multiplicity of solutions including at least 
one pair of sign-changing ones by pseudo-index theory and Nehari method. 
Later, M. Liu and Z. Tang [12] extended their research to Choquard equations. 

Motivated by the above conclusions, this article mainly discusses the existence, 
convergence, concentration, and asymptotic property of positive groundstate so-
lution of Equation (1.1). We also establish the multiplicity of semiclassical solu-
tions for Equation (1.1) by pseudo-index theory which was imposed by V. Benci. 
The equation studied in this paper has two convolution terms and two nonlinear 
potentials, which bring new challenge in our arguements. Our method of proof 
is inspired by [11] and our conclusions extend that in [12]. 

Before stating the main results, we need to make some assumptions. 
( 1 ) ( )0,, N

iV W C µ∈   are bounded with some ( )0,1µ∈ , ( )V x  achieves 
a global minimum on N  with ( )min 0N V x >



, and ( )iW x  achieves a 
global maximum on N  with ( )inf 0N iW x >



( )inf 0N iW x >


, 1,2i = . 
For 1,2i = , we denote by  

( ){ } ( ): min , : : , : liminf ;
N

N

x
V x V x V xτ τ τ∞ →∞

= = ∈ = =


V  

( ){ } ( ): max , : : , : limsup .
N

N
i i i i i i i

x
k W x W x k k W x∞

→∞
= = ∈ = =


W  

( 2 ): 1 2∩ ≠∅W W . 
We set  

( ) ( ), : max , 1,2;iv iv i i ivx k W x W x i∈ = = =
V

V  

( ) ( )
1 2

1 2 , : min .w w wx V x V xτ
∩

∈ ∩ = =
W W

W W  

For vector ( ) 2
1 2,b b= ∈b  , we define  

( )

( )

( )

2 2 12
1 4 1 12 1 2 1 2 1

1 2 1

22
12 1 2 2

2

if ,
,

otherwise

q p qp N
p p pp

q N
qq

b k ka
a k b b

m a
b

a k

θθ

θ

τ
τ

τ

+ − −+
− − − −−

∞ ∞ ∞

∞ ∞

+
− −−

∞

∞


       ≤             = 

         

b  
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and denote ( )1 2,k k=k , ( )1 2,k k∞ ∞ ∞=k , ( )1 2,v v vk k=k . Similarly, we set  
( )0 10 20: ,W W=W , ( ) ( ) ( )( )1 2,x W x W x=W . For ( ) 2

1 2,i i ib b= ∈b  , 1,2i = , we use 
1 2≤b b  to mean { }2 1 2 1

1 1 2 2min , 0b b b b− − ≥  and use 1 2<b b  to show 
 { }2 1 2 1

1 1 2 2min , 0b b b b− − ≥  and { }2 1 2 1
1 1 2 2max , 0b b b b− − > . 

( 3 ): (i) τ τ∞< , and there exists 0vR >  such that ( )i ivW x k≤ , 1,2i =  for 

vx R≥ ; 
(ii) ∞>k k , and there exists 0wR >  such that ( ) wV x τ≥  for wx R≥ . 
If ( 3 )-(i) holds, we let  

( ){ } ( ) ( ){ }1 1 2 2: : , 1,2 : or .v i iv v vx W x k i x W x k W x k= ∈ = = ∪ ∉ > >S V V  

If ( 3 )-(ii) holds, we let  

( ){ } ( ){ }1 2 1 2: : : .w w wx V x x V xτ τ= ∈ ∩ = ∪ ∉ ∩ <S W W W W  

In the following, in the case ( 3 )-(i), S  stands for vS  and S  stands 
for wS  in the case ( 3 )-(ii). Clearly, S  is bounded. Moreover,  

( )1 2= ∩ ∩S V W W , if ( )1 2∩ ∩ ≠∅V W W . 
The next theorems contain the main results of this paper.  
Theorem 1.1. Assume that ( 1 ) holds and  

, .vτ τ∞ ∞< ≥k k                        (1.5) 

Then there exists ( ),v vm m τ≥ k  such that for the maximal integer m∈  
with vm m< , Equation (1.1) possesses at least m pairs of solutions for small 

0ε > . Moreover, Equation (1.1) has a positive and a negative groundstate solu-
tion.  

Theorem 1.2. Assume that ( 1 )-( 2 ) holds and  

, .wτ τ∞ ∞≤ >k k                       (1.6) 

Then there exists ( ),w wm m τ≥ k  such that for the maximal integer m∈  
with wm m< , all the conclusions of Theorem 1.1 remain true.  

Theorem 1.3. Assume that ( 1 )-( 3 ) hold. Then for sufficiently small 0ε > , 
Equation (1.1) has a positive groundstate solution wε . If ( )1, N

iV W C∈   and 
, , 1,2iV W i∇ ∇ =  are bounded additionally, then wε  satisfies that  

1) There exists a maximum point xε  of wε  with ( )
0

limdist , 0xεε→
=S ;  

2) There exist 0C >  and sufficiently large 0R >  such that  

( )
1 1

2 2 exp , ;
4

N N
w x C x x x x x Rε ε ε

τε
ε

− −  −
≤ − − ∀ ≥  

 
 

3) Letting ( ) ( ):v x w x xε ε εε= + , then for any sequence 0x xε →  ( 0ε → ), 
there holds v vε →  in ( )1 NH   as 0ε → , where v is a least energy solution 
of  

( ) ( )( ) ( )( )2 1 2 1
0 1 0 2 0 , 0.p p q qv V x v W x I v v W x I v v vθ θ

− −−∆ + = ∗ + ∗ >    (1.7) 

If ( )1 2∩ ∩ ≠∅V W W  particularly, then ( )( )1 20
limdist , 0xεε→

∩ ∩ =V W W  
and up to a sequence, v vε →  in ( )1 NH   as 0ε →  with v being a least 
energy solution of  
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( ) ( )2 1 2 1
1 2 , 0.p p q qv v k I v v k I v v vθ θτ − −−∆ + = ∗ + ∗ >         (1.8) 

To prove the above results, we need the following basic conclusions.  
Lemma 1.4. ([13]) The embedding ( )1 NH  ↪ ( )NL q  is continuous for  

*2,2 ∈ q , * 22 :
2

N
N

=
−

, and ( )1 NH  ↪ ( )loc
NL q  is compact for )*2,2∈q .  

Moreover, ( ) ( ) ( ) ( ){ }1 1: :N N
rH u H u x u x= ∈ =   is compactly embedded into 

( )NL q  for ( )*2,2∈q .  
Lemma 1.5. ([14]) Let 0r > , )*2,2∈q . If { }nω  is bounded in ( )1 NH   

and  

( )
sup d 0

rN
nB y

y
xω

∈

→∫


q  as n →∞ , 

then 0nω →  in ( )NLµ   for any ( )*2,2µ∈ .  
For simplicity, we set  

( ) ( )
{ } { } ( )

11 : , : ,

: max 0, , : min 0, , : 0, ,

N q NH q Lw w w w

w w wω+ −
+

= =

= = = ∞

 


 

and use ( )N f x∫  to denote ( )dN f x x∫  in some cases. Moreover, we use 
different forms of C to mean various positive constants and ( )1o  to represent 
the quantities which tend to 0 as n →∞  or j →∞  in the following. 

This paper is organized as follows. Section 2 is an introduction to some con-
clusions about the Riesz potential, which plays a very important role in the sub-
sequent proof process. In Section 3, we provide some preliminary results for the 
limit equation and the auxiliary equation which are the foundation for the proof 
of the main theorems. Section 4 contributes to the proofs of main results. We 
prove the multiplicity of semiclassical solutions by Benci pseudo-index theory 
and show the existence of the groundstate solutions and concentration of the 
positive groundstate solution in Section 4. 

2. Riesz Potential 

The Riesz potential with order ( )0, Nθ ∈  of a function ( )1
loc

Nf L∈   is de-
fined by  

( )( ) ( )
2

2: d .
2

2

N N
N

N
f y

I f x y
x y

θ θ
θ

θ

θ −

π

− Γ 
 ∗ =

  −Γ 
 

∫              (2.1) 

The integral in Equation (2.1) converges in the classical Lebesgue sense for a.e. 
Nx∈  if and only if ( )( )1 , 1

NNf L x
θ −

∈ + . Moreover, if  

( )( )1 , 1
NNf L x

θ −
∉ + , then (1) diverges everywhere in N . The Riesz poten-

tial Iθ  is well-defined as an operator in ( )NL q  if and only if 1, N
θ

 ∈  
q . In 

addition, if 1, N
θ

 ∈ 
 

q  and : N
N θ

=
−
q

r
q

, then ( ) ( ): N NI L Lθ → q r  is a  
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bounded linear operator, which can be disclosed by the Hardy-Littlewood-So- 
bolev inequality.  

Lemma 2.1. ([15]) Let ( )0, Nθ ∈ , 1, N
θ

 ∈ 
 

q . Then for any ( )Nf L∈ q ,  

( ) ( )N N NI f L θ
θ

−∗ ∈ q q  and ( ) , ,NN NI f C fθ θθ−
∗ ≤ q qq q

.  
Applying Lemma 2.1 to the function ( ) ( )2N N Nf u L θ+= ∈ p , we obtain the 

following result.  
Lemma 2.2. ([16]) Let ( )0, Nθ ∈ . Then for any ( ) ( )2N N NL θω +∈ p ,  

( ) ( )
2

, 2d .N N N NI x Cθ θ θ
ω ω ω

+
∗ ≤∫

p p p

p
 

In particular, if 2N > , ,
2

N N
N N
θ θ+ + ∈ − 

p  and ( )1 NHω∈  , then  

( ) ( )( )2 2
, ,d d .N NNI x C u u xθ θω ω∗ ≤ ∇ +∫ ∫ 

p
p p

p  

Actually, ,
2

N N
N N
θ θ+ + ∈ − 

p  if and only if *2 2,2N
N θ

 ∈ +
p . The Brézis-Lieb  

type lemma we use next also applies to the Riesz potential.  

Lemma 2.3. ([12]) Let 2N > , ( )0, Nθ ∈ , 2,
2

N
N

θ+ ∈  − 
p . If nv v  in  

( )1 NH   as n →∞ , then  
1) ( ) ( ) ( )n nv v v v− − →    as n →∞ ;  
2) ( ) ( ) ( )n nv v v v′ ′ ′− − →    in ( )1 NH −   as n →∞ ,  

where ( ) ( ):  dNv I v v xθ= ∗∫
p p .  

Lemma 2.4. ([12]) Let 2N > , ( )0, Nθ ∈ , 2,
2

N
N

θ+ ∈  − 
p . If nv v  in  

( )1 NH   as n →∞ , then for any ( )1 Nu H∈  , ( ) ( ), ,nv u v u′ ′→   as 
n →∞ , where ( )v  is defined as in Lemma 2.3.  

3. Auxiliary Problems 

We consider, for 2N > , ( )0, Nθ ∈ , 2
2

Np q
N

θ+
≤ < <

−
,  

( ) ( ) ( )1 2 1
1 2 , ,b b Nv av v v v H−∆ + = + ∈                 (3.1) 

where 0a > , 0ib > , 1,2i = , ( ) ( )1 22
1 1: p pb v b I v v vθ

−= ∗ ,  
( ) ( )2 22

2 2: q qb v b I v v vθ
−= ∗ , and  

( ) ( ) ( ) ( )1 2 1
1 2 , ,b ba Nv V x v v v v Hε ε ε−∆ + = + ∈             (3.2) 

where aτ τ∞≤ ≤ , ∞ ≤ ≤k b k , ( ) ( ) ( )1 1 1 2
1 1 1: p pb b bv W x I W v v vε ε θ ε

− = ∗  
 ,  

( ) ( ) ( )2 2 2 2
2 2 2: q qb b bv W x I W v v vε ε θ ε

− = ∗  
  with  

( ) ( ){ } ( ) ( ): max , , : ,a a aV x a V x V x V xε ε= =  

( ) ( ){ } ( ) ( ): min , , : , 1,2.i i ib b b
i i i i iW x b W x W x W x iε ε= = =  
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The solutions ( )1 Nv H∈   of Equation (3.1) and Equation (3.2) can be ob-
tained as critical points of the energy functionals  

( ) ( ) ( ) ( )2 2
1 2

1 1 1: ,
2 2 2N N N

a v v av v v v v
p q

= ∇ + − −∫ ∫ ∫b
  

    

( ) ( )( ) ( ) ( )1 22 2
1 2

1 1 1: ,
2 2 2N N N

b ba av v V x v v v v v
p qε ε ε ε= ∇ + − −∫ ∫ ∫b

  
    

respectively. And the Nehari manifolds are denoted by ,a a
ε

b b  ; the least 
energies by : inf

a

a a=
b

b b


  , : inf

a

a a

ε
ε ε=

b

b b


  ; and the sets of least energy solutions 

by ,a a
ε

b b  , respectively. In particular, we define  

: , : , : , : ,V Vτ τ τ τ
ε ε

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞= = = =k k k       

: , : , : , : , 1,2.i iW W iτ τ τ
ε ε ε ε ε ε ε ε

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞= = = = =k k k k       

Lemma 3.1. There exist 0ρ >  and 0σ >  such that ( )a v σ>b  for all 

1v ρ= . Moreover, ( )lim a

t
tv

→+∞
= −∞b , if 0v ≠ .  

Lemma 3.2. Let [ ] ( )( ) ( ) ( )( ){ }1: 0,1 , : 0 0, 1 0a N aC Hγ γ γΨ = ∈ = <b b
  , then  

( ) { }
( )

[ ]
( )( )

1 0 0,1\ 0
inf max inf max 0.

aN

a a a

t tv H
tv t

γ
γ

≥ ∈∈Ψ∈
= = >

b

b b b


    

Lemma 3.3. ab  is attained and ab  is compact in ( )1 NH  .  

Proof. We set the equivalent norm ( )( )
1

2 22
1 Nv v av= ∇ +∫  for any v∈  

( )1 NH  . Obviously, a ≠ ∅b , we set a
nv ∈ b  with 0nv ≥  and  

( )a a
nv →b b   as n →∞ . On the basis of the Schwarz symmetrization and 

Theorem 3.1.5 in [13], there exists *
nv  as the radially symmetric decreasing 

rearrangment of nv  with * 0nv ≥  such that *
11n nv v≤ . We can verify that  

* 0nv ≠ . We can know that ( ) ( )1 2
2* * * * *

1 21 N
b b

n n n n nv v v v v≤ +∫   . If  

( ) ( )1 2
2* * * * *

1 21 N
b b

n n n n nv v v v v= +∫   , then * a
nv ∈ b . If  

( ) ( )1 2
2* * * * *

1 21 N
b b

n n n n nv v v v v< +∫   , then there exists ( )0,1nt ∈  such that *
n nt v ∈ 

ab  and  

( ) ( )

( )

22*
21

1
2 2

as ,

N
ba a

n n n n n

a a
n

p q pt v v v v
p pq

v n

− −
≤ < +

= → →∞

∫b b

b b


  

 

 

which implies ( )*a a
n nt v →b b   as n →∞ . Define *:n n nw t v= , then ,a

nw ∈ b
0nw ≥  and  

( ) as .a a
nw n→ →∞b b                    (3.3) 

By Lemma 2.2, one can check that { }nw  is bounded in ( )1 NH  . Along a 
subsequence, we may assume nw w  as n →∞ . According to Lemma 1.4, 

nw w→  in ( )NL r  for ( )*2,2∈r  as n →∞ . Due to a
nw ∈ b  and Lemma  

2.2, ( )2 2 2

1 1 1

p q
n n nw C w w≤ + , which implies  

https://doi.org/10.4236/oalib.1111026
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( ) ( )1 2
1 2 0N

b b
n n n nw w w w C+ > >∫   . By contradiction method, we get w ≠ 0. We 

can know ( ) ( )( ) ( ) ( )1 2 1 22
1 2 1 21 liminf N N

b b b b
n n n nn

w w w w w w w w w
→∞

≤ + = +∫ ∫ 
     

by the weakly lower semi-continuity of norm. By contradiction method, we can 
get aw∈ b  and by (3.3),  

( ) ( )

( )

22
21

1liminf
2 2

liminf ,

N
ba a

n n nn

a a
nn

p q pw w w w
p pq

w

→∞

→∞

 − −
≤ ≤ + 

 

= =

∫b b

b b


  

 

 

which implies ( )a a w=b b   is attained. In the end, we have ( ) ( ) 0a w′ =b ,  

where aw∈ b  is positive and radially symmetric. With similar arguments as 
above, ab  is compact in ( )1 NH  .                                  

In view of Theorem 3 in [17], we have the following result. 
Lemma 3.4. If there exists a least energy solution ( )1 Nv H∈   for Equation 

(3.1), then ( ) ( )1 N Nv L C∞∈ ∩  , v is either positive or negative, and v is ra-
dially symmetric up to translations.  

Lemma 3.5. Let 0ia >  and 1 2, 0i ib b >  for 1,2i = . 
(i) If { }1 1 2 2

2 1 1 2 1 2min , , 0a a b b b b− − − ≥ , then 1 1 2 2a a≤b b  . 
(ii) If { }1 1 2 2

2 1 1 2 1 2min , , 0a a b b b b− − − ≥  and { }1 1 1 2
2 1 1 2 2 2max , , 0a a b b b b− − − > , 

then 1 1 2 2a a<b b  .  
Lemma 3.6. If v is a groundstate solution of  

( ) ( ) ( )1 2 1
1 2 , ,k k Nv v v v v Hτ ∞ ∞

∞−∆ + = + ∈             (3.4) 

with the energy ∞ , where ( ) ( )1 22
1 1: p pk v k I v v vθ

∞ −
∞= ∗ ,  

( ) ( )2 22
2 2: q qk v k I v v vθ

∞ −
∞= ∗  Letting ( )

1
2

: au x v xλ
τ∞

 
  =     
 

, then Equation  

(3.1) is equivalent to  

( ) ( )1 2

2 2
2 22 2

2 2 2 21 2
1 22 2

1 2

,b bp qk ka au au u u
b b

θ θ

λ λ
τ τ

+ +

− −∞ ∞

∞ ∞

   
      −∆ + = +            

   

    (3.5) 

where ( )1 Nu H∈  , with the energy 
1

2
2

N

a
λ λ

τ

−

∞

∞

 
=  

 
  .  

Proof. Clearly, we can know v is a solution of Equation (3.4) if and only if u is 
a solution of Equation (3.5). Indeed,  

1 1
2 2

.a a au au v x v xλ τ
τ τ τ∞
∞ ∞ ∞

    
       −∆ + = −∆ +                  

 

We can verify that v ∞∈N  if and only if au λ∈ bN , then  
1

2
2

N

a
λ λ

τ

−

∞

∞

 
=  

 
  .                                                 

Lemma 3.7 Assume that ,a τ∞ ∞≤ ≥b k . Then ( ), am a ∞≤bb   . 
Proof. Noticing that if 0λ >  satisfy  
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2 2
2 22 2

2 2 2 21 2
2 2

1 2

max , 1p qk ka a
b b

θ θ

λ λ
τ τ

+ +

− −∞ ∞

∞ ∞

 
     ≤    
     

, we can know a
λ≤b  .  

According to the definition of ( ),m a b , we can find two situations:  

2 1
4 1 1

2 1

2 1

q p q
p pk ka

b b

θ

τ

+ − −
− −

∞ ∞

∞

   
≤    
   

                    (3.6) 

or  

2 1
4 1 1

1 2

1 2

.

p q p
q qk ka

b b

θ

τ

+ − −
− −

∞ ∞

∞

   
<    
   

                    (3.7) 

If (3.6) holds, let 

1
2 1

4
1

1

p
k a
b

θ

λ
τ

+ −

∞

∞

 
  =      

, then 
( )

2 2
2 1 2 1

1

1

p N
p pka

b

θ

λ τ

+
−

− −
∞∞

∞

   
=    
   

  , 

we obtain ( ), am a ∞≤bb   . If (3.7) holds, set 

1
2 1

4
2

2

q
k a
b

θ

λ
τ

+ −

∞

∞

 
  =      

, then 

( )
2 2

2 1 2 1
2

2

q N
q qka

b

θ

λ τ

+
−

− −
∞∞

∞

   
=    
   

  , we obtain ( ), am a ∞≤bb   .                 

Lemma 3.8. If τ τ∞< , v ∞≥k k , then ( ), 1vm τ >k  and vτ ∞<k  . If 

wτ τ∞≤ , ∞>k k , then ( ), 1wm τ ≥k  and wτ ∞<k  .  
Proof. Set , , 1,2i iva b k iτ= = =  in Equation (3.1), Equations (3.5)-(3.7), re-

spectively. By the definition of ( ), vm τ k , we get ( ), 1vm τ >k . By Lemma 3.7, 
we obtain vτ ∞<k  . 

Similarly, we let , , 1,2w i ia b k iτ= = =  in Equation (3.1), Equations (3.5)-(3.7), 
respectively. Obviously, we have ( ), 1wm τ ≥k . If (3.6) holds, we pick  

1
2 1

4
1

1

p

wk
k

θ

τ
λ

τ

+ −

∞

∞

 
  =      

, then wτ
λ

∞≤ ≤k    by Lemmas 3.5, 3.6. If 1 1k k ∞> ,  

then wτ
λ

∞≤ <k    by Lemma 3.6. If 2 2k k ∞> , then wτ
λ

∞< ≤k    by Lemma  

3.5. Thus wτ ∞<k  . If (3.7) holds, we choose 

1
2 1

4
2

2

q

wk
k

θ

τ
λ

τ

+ −

∞

∞

 
  =      

, then  

wτ
λ

∞≤ ≤k   . If 1 1k k ∞> , then wτ
λ

∞< ≤k   . If 2 2k k ∞> , then wτ ≤k

λ
∞<  . Thus, wτ ∞<k  .                                           

Now we establish some results for Equation (3.2).  
Lemma 3.9. There exist 0, 0ρ σ> >  both independent of , ,a bε  and just 

dependent on , , , ,N p kθ τ , such that ( )a vε σ>b  for all 1v ρ= . Moreover, 
( )lim a

t
tvε→+∞

= −∞b , if 0v ≠ .  
Lemma 3.10. Set [ ] ( )( ) ( ) ( )( ){ }1: 0,1 , : 0 0, 1 0a N aC Hε εγ γ γΨ = ∈ = <b b

  , 

https://doi.org/10.4236/oalib.1111026


X. Y. Zhao 
 

 

DOI: 10.4236/oalib.1111026 10 Open Access Library Journal 
 

then  

( ) { }
( )

[ ]
( )( )

1 0 0,1\ 0
inf max inf max 0.

aN

a a a

t tv H
tv t

ε
ε ε ε

γ
γ

≥ ∈∈Ψ∈
= = >

b

b b b


    

Lemma 3.11. If ε
∞  possesses a ( )c

PS  sequence, then either 0c =  or 
c ε

∞≥  . Besides, ε
∞ ∞≥  .  

Proof. Let { } ( )1 N
nv H⊂   and ( )nv cε

∞ → , ( ) ( ) 0nvε
∞ ′ →  in  

( )1 NH −   as n →∞ . Assume 0c ≠ , we will prove c ε
∞≥  . 

Since { }nv  is bounded in ( )1 NH  , we may assume nv v  in ( )1 NH   
as n →∞  along a subsequence. Set :n nz v v= − . By the Brézis-Lieb lemma, we 
obtain  

( )( ) ( )( ) ( )( ) ( )2 222 2 2 1 .N N Nn n n nv V x v v V x v z V x z oε ε ε
∞ ∞ ∞∇ + = ∇ + + ∇ + +∫ ∫ ∫  

  

(3.8) 

By the proof of Lemma 3.5 in [12], we have  

( ) ( ) ( ) ( )1 , 1,2,N N Ni n n i i n nv v v v z z o iε ε ε
∞ ∞ ∞= + + =∫ ∫ ∫  
        (3.9) 

where ( ) ( ) ( ) 2
1 1 1: p pv W x I W v v vε ε θ ε

−∞ ∞ ∞ = ∗  
 ,  

( ) ( ) ( ) 2
2 2 2: q qv W x I W v v vε ε θ ε

−∞ ∞ ∞ = ∗  
 , and for any ( )1 NHϕ∈  ,  

( ) ( ) ( ) ( ) 11 , 1,2.N N Ni n i i nv v z o iε ε εϕ ϕ ϕ ϕ∞ ∞ ∞= + + =∫ ∫ ∫  
      (3.10) 

As the proof of Lemma 3.6 in [12], we have that for all ( )1 NHϕ∈  , as 
n →∞ , ( ) ( )N Ni n iv vε εϕ ϕ∞ ∞→∫ ∫ 

  , 1,2i = , which ensures that ( ) ( )vε
∞ ′ =

0 . In virtue of (3.8), (3.9) and (3.10), we obtain that  

( ) ( ) ( ) ( ) ( )1, 0 in as .N
n nz c v z H nε ε ε

∞ ∞ ∞ −′→ − → →∞      (3.11) 

Case 1 If there exists 0nkz ≡ , that is nkv v≡ , then ( ) 0v cε
∞ = ≠  and  

v ε
∞∈ . Thus c ε

∞≥  . 
Case 2 If 0nz ≠  for all n∈ , then there exists 0nt >  such that n nt z ε

∞∈ . 
Hence  

( ) .n nt zε ε
∞ ∞≥                         (3.12) 

It follows from ( ) ( ) , 0n n n nt z t zε
∞ ′ =  and ( ) ( ) ( ), 1n nz z oε

∞ ′ =  that  

( ) ( ) ( ) ( ) ( )2 2 2 2
1 21 1 1 .N N

p q
n n n n n nt z z t z z oε ε

− ∞ − ∞− + − =∫ ∫ 
         (3.13) 

Additionally, ( ) ( ) ( )2
1 21

1Nn n n n nz C z z z z oε ε
∞ ∞≤ + +∫   . If  

( ) 0N
p p

n nI z zθ ∗ →∫  and ( ) 0N
q q

n nI z zθ ∗ →∫  as n →∞ , then  

1
0nz →  as n →∞ . Thus nv v→  in ( )1 NH   as n →∞  and  

( )c vε ε
∞ ∞= ≥  . If ( ) 0N

p p
n nI z zθ δ∗ ≥ >∫  or ( ) 0N

q q
n nI z zθ δ∗ ≥ >∫ ,  

then 1nt →  as n →∞  by (3.13). Hence ( ) ( )n nt z c vε ε
∞ ∞→ −   as n →∞  
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by (3.11), which implies ( )c vε ε ε
∞ ∞ ∞≥ + ≥    by (3.12). 

Finally, it follows from ( )V xε τ∞
∞≥  and ( ) , 1,2i iW x k iε

∞
∞≤ =  for any Nx∈  

that ( ) ( )v vε
∞ ∞≥   for all ( )1 Nv H∈  . Thus, ε

∞ ∞≥  .                
Remark 3.12. Similarly, if a

ε
b  has a ( )c

PS  sequence, then either 0c =  
or c ε

∞≥  .  
Lemma 3.13. a

ε
b  satisfies the ( )c

PS  condition for all c ε
∞<  .  

Proof. Let { } ( )1 N
nv H⊂   and ( )a

nv cε →b , ( ) ( ) 0a
nvε

′ →b  in  

( )1 NH −   as n →∞ . 
Since { }nv  is bounded in ( )1 NH  , we assume nv v  in ( )1 NH   as 

n →∞ . Then ( ) ( ) 0a vε
′ =b  by Lemma 2.4. Set :n nz v v= − . Then 0nz   in 

( )1 NH   and  

( ) )*
loc0 in as for 2,2 .t N

nz L n t → →∞ ∈             (3.14) 

Combine with the classical Brézis-Lieb lemma and Lemma 2.3, we have  

( ) ( ) ( ) ( ) ( )1, 0 in as .a a a N
n nz c v z H nε ε ε

−′→ − → →∞b b b         (3.15) 

Now we attest ( ) ( )a
nz c vε ε

∞ → − b  , ( ) ( ) 0nzε
∞ ′ →  in ( )1 NH −   as  

n →∞ . By definition, for any 0δ > , there is 0R >  such that  
( ) ( )aV x V xε ε δ∞ − ≤ , ( ) ( ) , 1,2ib

i iW x W x iε ε δ∞ − ≤ =  for all x R> . Hence, ac-
cording to Lemma 2.2 and the Hölder inequality, we get  

( ) ( ) ( )
( )

( ) ( ) ( )( )22

2 22
2 2

2

2
2

,Nq N
R R

qa
n n n n Nq N

q
n nL B L B

q p kpz z z z
p pq

C z z θ

ε ε θ
δ

+

∞
+

 −−
− ≤ + 

 

+ +

b 
 

which together with (3.14) and (3.15), imply that  

( ) ( ) as .a
nz c v nε ε

∞ → − →∞b                   (3.16) 

For any ( )1 NHϕ∈  , by the Hölder inequality and Lemma 2.1, we have  

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )2 22

2 1 2 1
1 12 2 2

2 1 2 1
2 1

,

,Np N Nq N
R R R

a
n n

p q
n n nNp N Nq N

p q
n n nL B L B L B

z z

C z z z

C z z zθ θ

ε ε

θ θ

ϕ

δ ϕ

ϕ+ +

∞

− −

+ +

− −

′ ′−

≤ + +

+ + +

b 

 

which combining with (3.14) and (3.15), implies that  

( ) ( ) ( )10 in as .N
nz H nε

∞ −′ → →∞             (3.17) 

It follows from (3.16) and (3.17) that { }nz  is a ( ) ( )ac v
PS

ε− b
 sequence of  

ε
∞ . According to Lemma 3.11, either ( )ac vε= b  or ( )ac vε ε

∞≥ +b  . But 
the latter contradicts with the assumption c ε

∞<  . Thus ( )ac vε= b  and  

( ) ( ) as .a a
nv v nε ε→ →∞b b                    (3.18) 
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We show below that nv v→  in ( )1 NH   as n →∞ . According to (3.18), 
( ) 0a

nzε →b  as n →∞ . Due to  

( ) ( )( ) ( ) ( )22 2
2

1 1 ,
2 2N N

ba a
n n n n n

p q pz z V x z z z o
p pqε ε ε
− −

= ∇ + + +∫ ∫b
 

   

we obtain ( )( )2 2 0N
a

n nz V x zε∇ + →∫  as n →∞ , which means that 1
0nz →  

as n →∞ . By using the Brézis-Lieb lemma, 11nv v→  as n →∞ . Hence,  
nv v→  in ( )1 NH   as n →∞ .                                      
Lemma 3.14. 

0
limsup a α

ε
ε→

≤b  β , where ( )0aVα = , ( )0 , 1,2ib
i iW iβ = = ,  

( )1 2: ,β β=β . Meanwhile, if ( )0V a≤ , ( )0 , 1,2i iW b i≥ = , then 
0

lim a a
εε→

=b b  .  
Proof. Set ( ) ( ): aV x V xε ε α= −  and ( ) ( ): , 1,2ib

i i iW x W x iε εβ= − = . Thus  

( ) ( )0, 0, 1,2 a.e. on as 0.N
iV x W x iε ε ε→ → = →          (3.19) 

Meanwhile,  

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

2 1
1

2
1 2 2

1
2

1 1 ,
2 2

N N

N N N

p pa

q q

v v V x v W x I v v
p

v v W x I v v v v
p q q

α
ε ε ε θ

ε ε θ ε

β

β

= + + ∗

− + ∗ −

∫ ∫

∫ ∫ ∫

b
 

  

 

 

β

  (3.20) 

where ( ) ( )( ) 2
1 1 1: p pv W x I W v v vε ε θ ε

−= ∗ ,  

( ) ( )( ) 2
2 2 2: q qv W x I W v v vε ε θ ε

−= ∗ . By Lemma 3.3, there is e α∈ β . Set  

0rε >  satisfy ar eε ε∈ b , we get  

( ) ( )
0

max .a a a

r
re r eε ε ε ε≥

= ≥b b b                     (3.21) 

Since ( )a reε → −∞b  as r →+∞ , there exists 0 0R >  such that ( ) 0a reε <b , 
for all 0r R> . Hence we get 0r Rε ≤ . We posit 0r rε →  as 0ε → . It follows 
from (3.19), (3.20), (3.21) and the Lebesgue dominated convergence theorem 
that  

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

2 2
2 1

1

2 2 2
2

1 2 2

0

2

2 2

as 0.

N N

N N N

p
p pa

p q q
q q

t tr e V x e W x I e e
p

t t te e W x I e e e e
p q q

r e e

α ε ε
ε ε ε ε θ

ε ε ε
ε ε θ ε

α α α

β

β

ε

⋅
≤ + + ∗

⋅  − + ∗ − 

→ ≤ = →

∫ ∫

∫ ∫ ∫

b
 

  

 

 

  

β

β β β

 

Thus 
0

limsup a α
ε

ε→
≤b  β . 

Eventually, if ( )0V a≤ , ( )0i iW b≥ , then aα = , i ibβ = , 1,2i = . Hence 
( ) 0V xε ≥ , ( ) 0, 1,2iW x iε ≥ =  for all Nx∈ . we get ( ) ( )a v vα

ε ≥b  β  for all 

( )1 Nv H∈   by (3.20). Thus, a α
ε ≥b  β . Due to  

0 0
liminf limsupa aα α

ε εε ε→ →
≤ ≤ ≤b b   β β , we obtain 

0
lim a aα

εε→
= =b b  β .  

Lemma 3.15. If ,aτ τ∞ ∞≤ < ≥ ≥k b k  or ,aτ τ∞ ∞≤ ≤ ≥ >k b k , then there 
exists 0aε >b  such that for all ,a a

εε ε≤ b b  is attained at 0avε >b .  
Proof. Noting Lemma 3.8, we have α ∞< β , where ( )0aVα =  and  

( )0 , 1,2ib
i iW iβ = = . By Lemmas 3.14 and 3.11, there exists 0aε >b  such that 
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a
ε ε

∞ ∞< ≤b    for all aε ε≤ b . By Lemma 3.13, a
ε

b  satisfies the ( ) aPS
ε

b
 con-

dition for all aε ε≤ b , which together with Lemmas 3.9 and 3.10 imply that a
ε

b  
is attained at ( )1a Nv Hε ∈b  . Since ( ) ( )a av vε ε=b b   for any ( )1 Nv H∈  , 
we may assume that 0av ≥b . By bootstrap method and elliptic regularity theory, 

( )2a Nv Cε ∈b  . By strong maximum principle, 0avε >b .     

4. Proof of the Main Results  

Setting ( ) ( ):v x w xε= , the Equation (1.1) is equivalent to  

( ) ( ) ( ) ( )1
1 2 , ,Nv V x v v v v Hε−∆ + = + ∈             (4.1) 

where ( ) ( ) ( )( ) 2
1 1 1: p pv W x I W x v v vθε ε − = ∗  
 ,  

( ) ( ) ( )( ) 2
2 2 2: q qv W x I W x v v vθε ε − = ∗  
 . If ( )v xε  is a solution of Equation 

(4.1), then ( ) xw x vε ε ε
 =  
 

 is a solution of Equation (1.1). 

Noting ( ) ( ) ( ) ( ), , 1,2ik
i iV x V x W x W x iτ

ε εε ε= = = , we find that Equation (4.1) 
is particular form of Equation (3.2). We set  

: , : , : , : , : , : , 1,2.ik
i iV V W W iτ τ τ τ τ

ε ε ε ε ε ε ε ε ε ε ε ε= = = = = = =k k k k         

4.1. Proof of Theorem 1.1 

Without loss of generality, we assume 0ivx = . Then ( )0V τ= , ( )0 ,i ivW k=
1,2i = .  

Lemma 4.1. There exists an m-dimensional subspace rmD  of ( )1 NH   such 
that ( )sup

rmv
vε

∞

∈
< 

D
, for all mr r≥ , mε ε≤ , where mr  and mε  are existing 

constants depending on m.  
Proof. Choose a τ= , , 1,2i ivb k i= = , in Equation (3.1). By Lemma 3.3, there 

exists vv τ∈ k  and ( ) ( ) 0v x v x= > . Let 0r > , ( )0r Cχ ∞
+∈   satisfy  

( ) 1r tχ =  for t r≤  and ( ) 0r tχ =  for 1t r≥ +  with ( ) 2r tχ′ ≤ . Set  
( ) ( ) ( ):r rv x x v xχ=  for Nx∈ . It follows from  

( )2 2 2
1 0r x r

v v C v v
>

− ≤ ∇ + →∫  as r →∞ , that rv v→  in ( )1 NH  ,  

rv v→  in ( )
2Ns

NNL θ+   and ( ) ( )N N
s s s s
r rI v v I v vθ θ∗ → ∗∫ ∫ 

 for ,s p q=  as 
r →∞ . There exists 0rd >  such that v

r rd v τ∈ k  and 1rd →  as r →∞ . 
Hence  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2

1 2

2 2 2 2

1 20

1 2

0

max
2 2 2 2

1 1
2 2

max .

v v v
N N

v v
N N

v v v v

p q
k kr r r r

r r r r rd

k k

d

d d d ddv v v v v
p q

p qv v v v r
p q

dv v

τ

τ τ τ τ

≥

≥

   
= − + −   
   

− −
→ + →∞

= = = =

∫ ∫

∫ ∫

k

k k k k

 

 

  

 

   

 (4.2) 

Additionally,  

( ) ( ) ( ) ( )0 , 0 , 1,2 as 0i i ivV x V W x W k iε ετ ε→ = → = = →      (4.3) 
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uniformly on any bounded set of x. There exists ˆ 0rd >  such that ˆ
r rd v ε∈  

and ˆ 1rd →  as r →∞ . Therefore, (4.2) and (4.3) mean that  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2

2 2 2 2

1 20

2 2 2 2

1 2

0

ˆ ˆ ˆ ˆ
max

2 2 2 2

ˆ ˆ ˆ ˆ
0

2 2 2 2

max .

N N

v v
N N

v v

p q
r r r r

r r r r rd

p q
k kr r r r

r r r r

rd

d d d ddv v v v v
p q

d d d dv v v v
p q

dv r

ε ε ε

τ τ

ε

≥

≥

   
= − + −      
   

   
→ − + − →      

   

→ → →∞

∫ ∫

∫ ∫

k k

 

 

  

 

 

  

(4.4) 

According to lemma 3.8, we get ( ), 1vm τ >k . We let ( ),v vm m τ= k . For the 
maximal integer m +∈  with vm m< , we have 1m ≥ . Define  

( ) ( )( )1 2: 2 1 , , ,rj r Nx v x j x x xη = − +   for 0,1, , 1j m= −
 and set  

( ){ }: : 0,1, , 1rm rjspan x j mη= = −D . We can get ( )1, 0ri rjη η =  if i j≠ .  
Hence dim rm m=D . Similarly as (4.4), for all 1,2, , 1j m= −

, we get  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2

2 2 2 2

1 20

2 2 2 2

1 2

0

ˆ ˆ ˆ ˆ
max

2 2 2 2

ˆ ˆ ˆ ˆ
0

2 2 2 2

max .

N N

v v
N N

v v

p q
r r r r

rj rj rj rj rjd

p q
k kr r r r

r r r r

rd

d d d dd
p q

d d d dv v v v
p q

dv r

ε ε ε

τ τ

ψ ψ ψ ψ ψ

ε

≥

≥

   
= − + −      
   

   
→ − + − →      

   

→ → →∞

∫ ∫

∫ ∫

k k

 

 

  

 

 

 

Thus, for all 0δ > , there exist 0, 0rδ δε> >  such that  
( )

0
max v

rjd
d τ

ε ψ δ
≥

≤ +k  , for all r rδ≥  and , 0,1, , 1j mδε ε≤ = − . For any  

rmv∈D , we posit 
1

0

m

j rj
j

v d ψ
−

=

= ∑ , where jd ∈  for 0,1, , 1j m= −
. Thus, we 

have ( ) ( ) ( ) ( )
1 1

00 0
max v

j

m m

j rj rdj j
v d d m τ

ε ε εψ ψ δ
− −

≥= =

≤ ≤ ≤ +∑ ∑ k     for all r rδ≥  and  

δε ε≤ , which implies that ( ) ( )sup v

rmv
v m τ

ε δ
∈

≤ +k 
D

. Due to Lemma 3.7, we set 

0 v

m
τδ

∞

< < − k
 , then there is 0mr > , 0mε >  such that ( )sup

rmv
vε

∞

∈
< 

D
, for  

all mr r≥ , mε ε≤ .                                                  
Lemma 4.2. Equation (4.1) has at least m pairs of semiclassical solutions.  
Proof. Let us consider the symmetric group { }2 ,id id= −  and set  
{: :Σ = ⊂    is closed and }= −  . For any ∈Σ , the Krasnoselskii ge-

nus of   is denoted by  

( ) { }( ){ }gen : inf : there exists , \ 0 and is odd .nn g C g= ∈    

Set ( ){ }: , : is an odd home omorphismh C h= ∈ D D  and for any ∈Σ , de-
fine Benci pseudo-index of   by  

( ) ( )( ): min gen ,
h

i h Bρ
∈

= ∩∂
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where 0ρ >  is a constant defined in Lemma 3.9. Let 
( )

( ): inf supj i j v
vες

≥ ∈
=

 
 ,  

1,2, ,j m= 
. We can easily to verify that 1 2 mς ς ς≤ ≤ ≤ . 

When 1j = , for any ∈Σ  and ( ) 1i ≥ , we have  
( )gen 1Bρ∩∂ ≥ , which means Bρ∩∂ ≠∅ . By Lemma 3.9 that  

( )sup
v

vε σ
∈

>

  and 1ς σ≥ . 

When j m= , taking into account that the Krasnoselskii genus satisfies the 
dimension property [18], we have ( )( )gen dimrm rmh B mρ∩∂ = =D D  for all  
h∈ , which implies ( )rmi m=D . Hence ( )sup

rm
m

v
vες

∈
≤ 

D
. Due to Lemmas 4.4,  

3.11, we have that for any mr r≥ , mε ε≤ ,  

( )1 2 sup .
rm

m
v

vε εσ ς ς ς ∞ ∞

∈
≤ ≤ ≤ ≤ ≤ < ≤   

D
             (4.5) 

Next we are going to prove ( )1,2, ,j j mς =   are critical values of ε  by  
using Theorem 1.4 in [18]. Set 0 :ς σ= , ( ): sup

rmv
vες∞

∈
= 

D
  

( ) ( ) ( ){ }1: :c Nv H v cε ε= ∈ ≤  , ( ) ( ) ( ) ( ){ }1: : , 0N
c v H v c vε ε

′= ∈ = =   .  

Since ε  is an even fuctional, ( )c
ε ∈Σ , c ∈Σ , for all [ ]0 ,c ς ς∞∈ . Ac-

cording to (4.5) and Lemma 3.13, ε  satisfies the ( )c
PS  condition for any 

[ ]0 ,c ς ς∞∈ , which means that c  is compact in ( )1 NH  , for any [ ]0 ,c ς ς∞∈ . 
For any [ ]0 ,c ς ς∞∈ , 0d >  and  

( ) ( ) ( ){ }1: : dist ,N
c cd

v H v d= ∈ <  , choose 
4
dδ = , then by the contradiction 

method we can get that there exists 0ε >  such that ( ) ( ) 8vε
ε
δ

′ ≥


 , for all  

[ ]( ) ( )1
2

2 , 2 \ c d
v c cε ε ε−∈ − +   . 

On the basis of Lemma 2.3 in [14], we choose ( ) ( )1: \N
c d

H=   , there exists  

[ ] ( ) ( )( )1 10,1 ,N NC H Hµ∈ ×    such that ( )( ) ( )1, c cε ε
ε εµ + −∩ ⊂

 

     and  

( ),tµ ⋅  is an odd homeomorphism on ( )1 NH   for any [ ]0,1t∈ . Set  
( ) ( ): 1,µ µ⋅ = ⋅ , then µ  is an odd homeomorphism on ( )1 NH   and  

( ) ( )( ) ( )\ .c c
c d

ε ε
ε εµ + −⊂

 

                      (4.6) 

For any ∈Σ  and ( ) ( )0ς σ
ε ε⊂ =   , then ( )vε σ≤  for any v∈ . 

By Lemma 3.9, we have Bρ∩∂ =∅ . As a result, ( )gen 0Bρ∩∂ =  and  

( ) ( )( )min gen 0.
h

i h Bρ
∈

= ∩∂ =


                   (4.7) 

Then, we get  

( ) ( )and 1.rm rmi mς
ε

∞⊂ = ≥D D                  (4.8) 

Combining (4.6), (4.7) and (4.8), we have that 1 2, , , mς ς ς  are critical values of 

ε , and ( )gen 1c r≥ +  if 1: j j j rc ς ς ς+ += = = =  with 1j ≥  and j r m+ ≤ . 
Since ε  is even, we infer that ε  has at least m pairs of critical points which 
are also solutions of Equation (4.1).                                    

Lemma 4.3. Equation (4.1) has at least one positive and one negative least 
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energy solution for 1m ≥ .  
Proof. Choose , , 1,2i ia b k iτ= = =  in Equation (3.1), then  

( ) ( )0 0V Vτα τ= = = , ( ) ( )0 0ik
i i i iW W kβ = = = , 1,2i = . Due to Lemmas 3.7, 

3.11, 3.14, 3.13, ε  has a ( )PS
ε

 sequence and satisfies ( )PS
ε

 condition. 
According to Lemma 3.15, there exists 0 0ε >  such that ε  is attained at 0vε >  
for all 0ε ε≤ . Hence, vε  and vε−  are positive and negative least energy solu-
tions of Equation (4.1), respectively.                             

This completes the proof.  

4.2. Proof of Theorem 1.2 

We can assume without loss of generality that 0wx = . Then ( )0V ωτ= ,  
( )0 , 1,2i iW k i= = . Setting , , 1,2i ia b k iωτ= = =  in Equation (3.1), there is  

v ωτ∈ k . Due to Lemma 3.8, ( ), 1m ωτ ≥k . We set  

( ) ( )

( )

, if , 1,
3 if , 1.
2

w

m m
m

m

ω ω

ω

τ τ

τ

 >
= 

=

k k

k
 

For the maximal integer wm m< , we get 1m ≥ . Because of Lemma 3.7,  
m ωτ ∞<k  . The remaining proof of this theorem is similar to the proof of Theo-
rem 1.1 and other details are omitted. 

4.3. Proof of Theorem 1.3 

In general, we assume 0ivx = . Then ( )0V τ= , ( )0 , 1,2i ivW k i= = . We can ve-
rify that the condition of ( 3 )(i) implies that (1.5) holds. It follows from Theo-
rem 1.1 that Equation (1.1) has a positive groundstate solution ( )w xε  and Eq-
uation (4.1) has a positive least energy solution ( ) ( )v x w xε ε ε= . Next, we will 
prove the case ( 3 )(i), the other case can be handled similarly.  

Lemma 4.4. v vε →  as 0ε →  in the sence of sequence after translations.  
Proof. Set 0jε →  as j →∞ , :

j jjv vε ε= ∈  with 0jv > . Thus, we have  

( ) ( )( ) ( )2 22
2 1

1 ,
2 2N Nj j j jj j j j j j
p q pv v V x v v v C v

p pqε ε ε ε
− −

= = ∇ + + ≥∫ ∫ 
    

due to Lemma 3.14, we know that { }jv  is bounded in ( )1 NH  . Let  

( )1

2lim sup 0
N

jB yj y
v

→∞ ∈

=∫


, by Lemmas 1.5, 2.1, we obtain 0jv →  in ( ) ( )2Nr N NL θ+  ,  

( ) 0N
r r
j jI v vθ ∗ →∫  as j →∞  for ,r p q= , which together with 

jjv ε∈  
imply that 

1
0jv →  as j →∞ . It is a contradiction with 

1
0jv C≥ > . Thus, 

there is 0δ >  and N
jy′ ∈  such that  

( )1

2 .
j

jB y
v δ

′
≥∫                       (4.9) 

Define ( ) ( )ˆ :j j jv x v x y′= + , ( ) ( )ˆ :
j j jV x V x yε ε ′= + , ( ) ( )ˆ :

j ji i jW x W x yε ε ′= + , 
1,2i = . Thus, ˆ jv  is the solution of  

( ) ( ) ( )1 2
ˆ ˆˆˆ ˆ ˆ ˆ ˆ, 0

j j jj j j j jv V x v v v vε ε ε−∆ + = + >            (4.10) 

with least energy  
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( ) ( ) ( )1 2
1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ: .

2 2N Nj j j jj j j j j
p qv v v v v

p qε ε ε ε
− −

= = +∫ ∫ 
        (4.11) 

where ( ) ( ) ( ) 1
1 1 1
ˆ ˆ ˆˆ ˆ ˆ:

j j j

p p
j j jv W x I W v vε ε θ ε

− = ∗  , 

( ) ( ) ( ) 1
2 2 2
ˆ ˆ ˆˆ ˆ ˆ:

j j j

q q
j j jv W x I W v vε ε θ ε

− = ∗  . Additonally,  

( ) ( ) ( ) ( )1 1̂ ˆ
j j

p p
j j jI W v x y I W v xθ ε θ ε

   ′∗ + = ∗
    ,  

( ) ( ) ( ) ( )2 2
ˆ ˆ

j j

q q
j j jI W v x y I W v xθ ε θ ε

   ′∗ + = ∗
     for any Nx∈ , which imply that  

( ) ( )ˆ ˆ ˆ .
j j j jj jv vε ε ε ε= = =                      (4.12) 

Due to the boundedness of { }ˆ jv , we can suppose without loss of generality 
that  

( )1ˆ in as ,N
jv v H j →∞

                 (4.13) 

( ) )*ˆ in as for 2,2 ,r N
j locv v L j r → →∞ ∈            (4.14) 

which combine with (4.9) imply that 0v ≠ . 
According to V and , 1,2iW i =  are bounded, we posit  

( ) ( )0 0and , 1,2 as .
j jj i j iV y V W y W i jε ε′ ′→ → = →∞        (4.15) 

Because of ( ):V V x M∇ ∇ ≤  for all Nx∈ , we have that for any 0r > , 
( ) ( )ˆ

j j j jV x V y Mrε ε ε′− ≤ , for all ( )0rx B∈ . Hence 0
ˆ

j
V Vε → , 

 
0

ˆ , 1,2
ji iW W iε → =  as j →∞  uniformly on any bounded set of x. Using the 

proof of Lemma 3.14, we have  
0 0ˆlimsup .

j

V

j
ε

→∞
≤ W                        (4.16) 

Uniting (4.10), (4.13), (4.15), we get that for any ( )0
NCϕ ∞∈  ,  

( ) ( ) ( )

( ) ( )

1 2

0 10 20

ˆ ˆˆˆ ˆ ˆ ˆ0 lim

,

N j j j

N

j j j jj
v V x v v v

v V v v v

ε ε εϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

→∞
 = ∇ ∇ + − − 

 = ∇ ∇ + − − 

∫

∫





 

 
 

with ( ) ( ) 2
10 10 10: p pv W I W v v vθ

− = ∗  , ( ) ( ) 2
20 20 20: q qu W I W v v vθ

− = ∗  , which 
means v solves  

( ) ( )0 10 20 , 0v V v v v v−∆ + = + >                 (4.17) 

with energy  

( ) ( ) ( )0 0 0 02 2
0 10 20

1 1 1( ) : .
2 2 2N N N

V Vv v V v v v v v
p q

= ∇ + − − ≥∫ ∫ ∫W W
  

     (4.18) 

Due to Fatou’s Lemma, we obtain  

( ) ( )0
ˆ ˆ ˆliminf , 1,2.N N ji i j jj

v v v v iε→∞
≤ =∫ ∫ 

            (4.19) 

Combining (4.11), (4.16), (4.18) and (4.19),  
( ) ( )0 0 0 0 0 0ˆ ˆˆliminf limsup

j j

V V V
jj j

v vε ε→∞ →∞
≤ ≤ ≤ ≤W W W     . Hence,  

( )0 0 0 0ˆlim .
j

V V

j
vε→∞

= =W W                    (4.20) 
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Choose ( )0Cξ ∞
+∈   satisfy ( ) 2supp t Bξ ⊂  and 1ξ ≡  on 1B  with  

( ) 2tξ ′ ≤ . Define ( ) ( ):j
xx v x
j

µ ξ
 

=  
 

  and ( ) ( ) ( )ˆ, :j j jz x y v x xµ= −   for  

Nx∈ . Thus as j →∞ , j vµ →  in ( )1 NH  , j vµ →  in ( )r NL   for  

2,
2

Nr
N

θ+ ∈ − 
, j vµ →  a.e. on N  and 0jz   in ( )1 NH  , 0jz →  in 

( )r N
locL   for 2,

2
Nr
N

θ+ ∈  − 
, 0jz →  a.e. on N . 

Next, our main goal is to obtain ( )ˆ 0
j jzε →  and ( ) ( )ˆ , 0

j j jz zε
′

→  as  

j →∞ , where  

( ) ( ) ( ) ( )2 2
1 2

1 1 1ˆ ˆ ˆˆ: .
2 2 2N N Nj j j jj j j j j j jz z V x z z z z z

p qε ε ε ε= ∇ + − −∫ ∫ ∫  
    

Indeed, similar to the proof of Theorem 1.3 in [12], we can obtain  

( )2 2 2

1 1 1
ˆ 1 ,j j jz v oµ= − +                    (4.21) 

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆˆ 1 ,N N Nj j jj j jV x z V x v V x oε ε ε µ= − +∫ ∫ ∫ 

  
       (4.22) 

( ) ( ) ( ) ( )1̂
ˆ ˆˆ ˆ 1 , 1,2.N N Nj j jj j i j j i j jz z v v o iε ε ε µ µ= − + =∫ ∫ ∫  

  
      (4.23) 

According to the Lebesgue dominated convergence theorem, we get that  

( ) ( )2 2
0

ˆ 1 ,N Nj jV x V v oε µ = +∫ ∫

 
                (4.24) 

( ) ( ) ( )0
ˆ 1 , 1,2.N Nji j j i v v o iε µ µ = + =∫ ∫ 

 
             (4.25) 

Additionally,  

( )2 2

22
1 .j v oµ∇ = ∇ +                     (4.26) 

By (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), (4.20), (4.10) and (4.17), we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

0 0

ˆ ˆ 1 1 ,

ˆ ˆ, , , 1 1 .

j j

j j

V
j

V
j j j j

z v o o

z z v v v v o o

ε ε

ε ε

= − + =

′ ′ ′= − + =

W

W

  

  
  (4.27) 

Due to (4.27), we get that ( ) ( ) ( ) ( ) 2

1

1ˆ ˆ1 ,
2j jj j j jo z z z C z

pε ε
′

= − ≥  ,  

which means 0jz →  in ( )1 NH   as j →∞ . Hence 
1 1 1

ˆ j j jv v z vµ− ≤ + −  
as j →∞ .                                                        

Lemma 4.5. ( )ˆ 0jv x →  as x →∞  uniformly in j∈ .  
Proof. We have that there are 0δ > , N

nx ∈ , nx →∞  as n →∞  such 
that ( )ˆ

nj nv x δ≥  by contradiction method. Meanwhile, there exists 0 0C >   

which independent of j such that ( ) ( )( )
1

1
22

0ˆ ˆ
n nn

j n jB x
v x C v≤ ∫ . Thus by applying  

the Minkowski inequality, we have  
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( ) ( ) ( )( )
1

11
2 2 22

0 0ˆ ˆ 0 as ,Nn n n
j n j B x

v x C v v C v nδ ≤ ≤ − + → →∞∫ ∫
 

which is impossible.                                                 
Lemma 4.6. { }j j j

yξ ′  is bounded on N .  
Proof. Assume by contradiction that there is j jyε ′ →∞  as j →∞  along a 

subsequence. Therefore 0V τ τ∞≥ >  and 0 , 1,2i i ivW k k i∞≤ ≤ = , which together 
with Lemma 3.5, imply that 0 0 vV τ>W k  . However, due to (4.12), (4.20) and  
Lemma 3.14, we have 0 0 lim limsup v

j j

V

j j

τ
ε ε→∞ →∞

= ≤ ≤W k    , which is a contradiction.  

Hence, without loss of generality we may posit  

0 as .j jy x jε ′ → →∞                     (4.28) 

By (4.15), we obtain  

( ) ( )0 0 0 0, , 1,2.i iV V x W W x i= = =                (4.29) 

Noticing (4.17), we claim v is a least energy solution of Equation (1.7).      
Lemma 4.7. { }yε ε

ε  is bounded, where Nyε ∈  is a maximum point of 
vε .  

Proof. Suppose there exists 0jε →  with j jyε →∞  as j →∞  where 
:

jjy yε=  is a maximum point of :
jjv vε= . By Lemmas 4.4, 4.5, 4.6, we can ob-

tain that there is N
jy′ ∈  such that ( )ˆ 0j j jv v y v′= ⋅ + → ≠  in ( )1 NH   as 

j →∞  and ( )ˆ 0jv x →  as x →∞  uniformly in j∈ , { }j j j
yε ′  is bounded 

on N . Hence j j j j j j j jy y y yε ε ε ε′ ′− ≥ − →∞  as j →∞ , which means that  

j jy y′− →∞  as j →∞ . Therefore ( ) ( )ˆmax 0
N j j j j j jv v y v y y′= = − →


 as  

j →∞ . Due to ˆ 0jv > , we get ˆ 0jv →  as j →∞  uinformly in Nx∈ , which 
contradicts with 0v ≠ .  

Lemma 4.8. ( )
0

limdist , 0vyεε
ε

→
=S .  

Proof. According to Lemma 4.7, we get there is 0jε →  with 0j jy yε →  as 
j →∞ , where :

jjy yε=  is the maximum point of :
jjv vε= . We just require to 

attest 0 vy ∈S . By Lemmas 4.4, 4.6, there exists N
jy′ ∈  satisfying ( )ˆ jv x =

( )j jv x y′+  and (4.28). Due to Lemma 4.5, we can suppose ( )ˆ ˆmax Nj j jv x v′ =


 
and { }j j

x′  is bounded on N . Hence j j jy x y′ ′= +  and  
0j j j j j jy y xε ε ε′ ′− = →  as j →∞ . And combining with (4.28), (4.29), mean that  

( ) ( )0 0 0 0 0 0, , , 1,2.i iy x V y V W y W i= = = =              (4.30) 

Assume by contradiction that 0 vy ∉S , then we have ( )0V y τ= ,  
( )1 0 1vW y k< , ( )2 0 2vW y k=  or ( )0V y τ= , ( )1 0 1vW y k= , ( )2 0 2vW y k<  or 
( )0V y τ> , ( )0i ivW y k≤ , 1,2i = . Due to Lemma 3.5, ( ) ( )0 0 vV y y τ>W k  . Com-

bining (4.12), (4.20), (4.30), and Lemma 3.14, we have  
( ) ( )0 00 0ˆlim lim limsupv

j j j

V y yV

j j j

τ
ε ε ε→∞ →∞ →∞
= = = > ≥WW k      , which is a contradiction. 

Particularly, if ( )1 2∩ ∩ ≠∅V W W , then ( )0 1 2vx ∈ = ∩ ∩S V W W , we can  
get ( )( )1 20

limdist , 0yεε
ε

→
∩ ∩ =V W W  and ( )0V x τ= ,  ( )0i iW x k= ,  1,2i = ,  
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which combine with Equation (1.7) mean that v is a least energy solution of Eq-
uation (1.8).                                                     

Lemma 4.9. For , 2,
2

Np q
N

θ+ ∈ − 
, there is 0C >  and ˆ 0R >  such that for 

all small 0ε > , ( )
1

2 exp
2

N
v x C x xε

τ−  −
≤   

 
 for all ˆx R≥ .  

Proof. We check its correctness for any sequence. By Lemma 4.5, we obtain  

( ) ( )( )( ) ( )( )

( ) ( )( )( ) ( )( )

2
1 1

2
2 2

ˆ ˆ ˆ ˆlim

ˆ ˆ ˆ ˆ 0

j j

j j

pp
j jx

qq
j j

W x I W v x v x

W x I W v x v x

ε θ ε

ε θ ε

−

→∞

−

∗

+ ∗ =

 

uniformly in j∈ , which means that there exists ˆ 0R >  such that for any 
ˆx R≥  and j∈ ,  

( ) ( )( )( ) ( )( ) ( ) ( )( )( ) ( )( )2 2
1 1 2 2

3ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ .
4j j j j

p qp q
j j j jW x I W v x v x W x I W v x v xε θ ε ε θ ε τ

− −
∗ + ∗ ≤   

(4.31) 

Thus, by (4.10) and (4.31), we have ˆ ˆ 0
4j jv vτ

−∆ + ≤  for any ˆx R≥  and  

j∈ . 
Similar to the proof of Theorem 1.3 in [12] we can know that for any ˆx R≥   

and j∈ , ( )
1

2ˆ exp
2

N

jv x C x xτ−  −
≤   

 
.                              

Set x yε εε= . Then ( ) ( )w x v yε ε ε ε= . Due to Lemma 4.7, xε  is a maximum 
point of wε  and { }xε ε  is bounded on N . According to Lemma 4.8,  

( )
0

limdist , 0vxεε→
=S . On the basis of Lemmas 4.4, 4.5,  

( ) ( ) ( )v̂ x v x y w x x xε ε ε ε ε εε ε′ ′= + = + − , where x y yε ε ε′ ′= −  is a maximum point 
of v̂ε  with 0xεε ′ →  as 0ε → . Finally, we obtain that,  

( )
1 1

2 2 exp
4

N N
w x C x x x xε ε ε

τε
ε

− −  −
≤ − −  

 
, for all x R≥ , by Lemma 4.9,  

where ˆ: supR R xε ε= + . 
The proof of Theorem 1.3 is completed. 
By making reasonable assumptions about potentials, we use pseudo-index 

theory to prove the multiplicity of semiclassical solutions to Equation (1.1). The 
existence of groundstate solutions are proved using Nehari method. In addition, 
we also demonstrate the concentration and convergence of the positive groundstate 
solution. 
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