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Abstract

In this paper, we consider the following nonlinear Choquard equation
—&*Aw+V (x)w=e" (R (w)+I}(w)), where £>0, N>2, ) (w):=

m(x)[1g*(m|w|")}|w|"‘2w, J)Q(w):sz(x)[]g*(W2|w|q)}|w|q_2w, I, is

the Riesz potential with order e (0, N) , 2<p<g< ]]\\j-’-

6, min_, V>0
2 R

and inf , W, >0, i=1,2. By imposing suitable assumptions to V(x),

/4 (x) ,i =1,2, we establish the multiplicity of semiclassical solutions by using

pseudo-index theory and the existence of groundstate solutions by Nehari me-
thod. Moreover, the convergence and concentration of the positive groundstate
solution are discussed.
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1. Introduction and Main Results
In this paper, we will study the following equation

=&’ Aw+V (x)w=2"" () (w)+ 3 (w)), (L.1)
where £>0, N>2, 0€(0.N), R(w)=1,(x)] = (Wl ) 7w,
D)= () 2y (ol s 22 g <TEDL V=12 are con-
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tinuous bounded positive functions and the Riesz potential [, is defined as

)
1, =

2%”%(‘9)
2

When ¢ =1, Equation (1.1) is related to the local nonlinear perturbation of

follows:

|x|67N, xeRN\{O}. (1.2)

the famous Choquard equation

~Autu=(I, %’ Ju inR". (1.3)

This equation for N =3 was first proposed by Pekar [1] in quantum me-
chanics in 1954. In 1996, Penrose [2] [3] used this equation in a different context
as a model for self-gravitating matter. In 1977, E. H. Lieb [4] proved that the ex-
istence and uniqueness of solutions to Equation (1.3) by using symmetric de-
creasing rearrangement inequalities. Thereafter, P. L. Lions [5] [6] further stu-
died Equation (1.3) by means of a variational approach and obtained the multip-
licity of solutions to the equation. Since then, the Choquard equation has been
studied in a variety of environments and in many contexts.

J. N. Correia and C. P. Oliveira [7] considered

o =K, # |l )l + (/c wuf )|u|21‘f1 in R,

. 2N- . -
where w=1, 2<g+1<2, = N—;’ € is a positive parameter. They proved

existence of positive solutions for a class of problems involving the Choquard
term in exterior domain and the nonlinearity with critical growth by using vari-
ational method combined with Brouwer theory of degree and Deformation lem-

ma. S. Yao, J. Sun and T. Wu [8] studied the following equation
—Au + /IV(x)u = (Ia * K|u|p )K|u|p_2 u —|u|q_2 u inR".

and 2<q<2*=2—N.
N-=-2

They proved different relationship between p and ¢ when the competing effect

When N>3, 1>0, K(x)ZO, 1+%<p<]]\\/]+a

of the nonlocal term with the perturbation happens.
For the semiclassical states of Choquard equation, we can refer to the follow-

ing references. Y. Su a and Z. Liu [9] proved the following Choquard equation
—&’Au+V(x)u=e“g(u) inR", (1.4)

:
[

where N>5, ae(O,N), g(u):(]a *F(”))F’(u), F(u):zi#|u|2g 4 21* X
2f = N;a , 2, = —]]\\;_'-Z. Working in a variational setting, they showed the

existence, multiplicity and concentration of positive solutions for such equations

when the potential satisfies some suitable conditions. Y. Meng and X. He [10]

considered the multiplicity and concentration phenomenon of positive solutions
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2

27,2

to Equation (1.4) in which g(u) =Q(x) 1, *|u u +f(u) , N>3,
(N—4)+ <a<N, V(x)e C(R’V)mL"c (RN) is a positive potential,

fecC (R*,R) is a subcritical nonlinear term. By means of variational methods

J

and delicate energy estimates, they established the relationship between the num-
ber of solutions and the profiles of potentials ¥ and Q, and the concentration be-
havior of positive solutions is also obtained for & >0 small

Y. Ding and J. Wei [11] considered the following Schrédinger equation

—&*Aw+ V()c)WzW(x)lwlpf2 w inRY,
2N . .
where £>0, pe 2,m and V,W are continuous bounded positive

functions, they proved existence and concentration phenomena of semiclassical
positive groundstate solutions, and multiplicity of solutions including at least
one pair of sign-changing ones by pseudo-index theory and Nehari method.
Later, M. Liu and Z. Tang [12] extended their research to Choquard equations.

Motivated by the above conclusions, this article mainly discusses the existence,
convergence, concentration, and asymptotic property of positive groundstate so-
lution of Equation (1.1). We also establish the multiplicity of semiclassical solu-
tions for Equation (1.1) by pseudo-index theory which was imposed by V. Benci.
The equation studied in this paper has two convolution terms and two nonlinear
potentials, which bring new challenge in our arguements. Our method of proof
is inspired by [11] and our conclusions extend that in [12].

Before stating the main results, we need to make some assumptions.

(A1) V. W, eC™ (RN) are bounded with some ue€ (0,1), V(x) achieves
a global minimum on RY with min V(x)>0, and W, (x) achieves a
global maximum on R"Y with infRN /4 (x) >0 infRN W, (x) >0, i=12.

For i=1,2, we denote by

7= rﬁ}vnV, 7= {x eR" :V(x) = z’}, T, = limian(x);

[x|—>e0

kﬁznﬂgxl/l/,., ”/,':z{xeRN:W(x)zki}, ky, =limsup W, (x).

i i
x|

(A2): 7, n7,+D.
We set

X, €/, N7,, T,:= min V(x) = V(xw).

NNy

For vector b=(b,,b,)e R*, we define

o+2p N 2 2+04-p a1
(Tijz(pl) 2[&}1)1 if&—”s(i]zt p-1 [kl_oc p*l’
a k., b, T, b,
m(a,b) - 0+2¢ N 2
1 2 -1
(T—“’jz(q b2 (b—Z]q otherwise
a chc
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and denote k= (kl,kz) , k= (klm,ka), k, = (klv,kz‘,) . Similarly, we set
Wy =W, W), W (x)=(W,(x).W,(x)). For &' :(bf,b;)eRz , i=1,2, we use
b' <b> tomean min{h> —b,b; —b)}>0 anduse b'<b’ toshow
min{b —b},b; ~b,} 20 and max{h’ —b,b; —b}}>0.

(A3): (i) r<rt,,and there exists R >0 such that W, (x) <k,, i=12 for
2R,

(ii) k>k,,and there exists R, >0 such that V(x) >7

, for |x| 2R,.
If (A3 )-(i) holds, we let

So={xes W (x)=k,.i=1.2}U{xe 7 W (x)> ky, or Wy (x)> Ky, ).
If (A3 )-(ii) holds, we let
= {xe 7, N 7/2':V(x)=z'w}u{xe 7Ny Y (x)< z’w}.

In the following, in the case (.A3)-(i), ./ stands for ./, and . stands
for .7/, in the case (.43 )-(ii). Clearly, . is bounded. Moreover,
=7 AR 7 (0 )2 8.

The next theorems contain the main results of this paper.

Theorem 1.1. Assume that ( Al) holds and

r<t,, k 2k, (1.5)

Then there exists m, 2 m(T,kV) such that for the maximal integer meN
with m<m,, Equation (1.1) possesses at least m pairs of solutions for small

& > 0. Moreover, Equation (1.1) has a positive and a negative groundstate solu-
tion.

Theorem 1.2. Assume that ( Al )-( A2 ) holds and
t, <7, k>k,. (1.6)

Then there exists m, 2> m(z’w,k ) such that for the maximal integer meN
with m <m,, all the conclusions of Theorem 1.1 remain true.

Theorem 1.3. Assume that (Al )-(.A3 ) hold. Then for sufficiently small & >0,
Equation (1.1) has a positive groundstate solution w,. If V,W, e C' (RN ) and
VV,VW,,i=1,2 are bounded additionally, then w, satisfies that

1) There exists a maximum point x, of w, with }giiradist(xg,// )=0;

2) There exist C>0 and sufficiently large R >0 such that

J, Vx| = R;

3) Letting v, (x) =W, (Sx + xg) , then for any sequence x, —>x, (&¢—0),
there holds v, —v in H' (RN ) as & -0, where v is a least energy solution
of

N 1- _
w,(x)<Ce ? |x—x8|2Nexp( f|x—x€
&

—Av+V (x,)v= le(xo)(lg *v”)v”‘l +W; (xo)(lg *vq)v"_l, v>0. (1.7)

If 7 n\(7,n7,))#@ particularly, then limdist(xg, 7 (70 7/2')) =0
&0
and up to a sequence, v, >v in H' (RN) as € —0 with v being a least

energy solution of
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~Av+rv=Fk! (Ig *vp)vp’l +k} (Ia *v")vq’l, v>0. (1.8)

To prove the above results, we need the following basic conclusions.
Lemma 1.4. ([13]) The embedding H' (RN) o[ (RN) is continuous for

qe[2,2*], 2 :=%, and HI(RN)‘—)L?OC(RN) is compact for qe[2,2*).

Moreover, H! (RN):z {u eH' (RN ) cu(x)= u(lxl)} is compactly embedded into
L”'(RN) for qe(z,z*).
Lemma 1.5. ([14]) Let r>0, qe[z,z*). If {a)n} is bounded in HI(RN)

and

"dx >0 as n—o o,

sup -[By(y) @

ye]RN

then w,—0 in L"(RN) for any ,ue(2,2*).

For simplicity, we set
Pl =iy o, = vy
w"=max {0,0}, w =min{0,w}, R, ==(0,),

and use .[]RN f(x) to denote J.IRN f(x)dx in some cases. Moreover, we use
different forms of C to mean various positive constants and 0(1) to represent
the quantities which tend to 0 as n—>0 or ; — oo in the following.

This paper is organized as follows. Section 2 is an introduction to some con-
clusions about the Riesz potential, which plays a very important role in the sub-
sequent proof process. In Section 3, we provide some preliminary results for the
limit equation and the auxiliary equation which are the foundation for the proof
of the main theorems. Section 4 contributes to the proofs of main results. We
prove the multiplicity of semiclassical solutions by Benci pseudo-index theory
and show the existence of the groundstate solutions and concentration of the

positive groundstate solution in Section 4.

2. Riesz Potential

The Riesz potential with order 6 €(0,N) of a function f e LIIOC(RN) is de-
fined by

(1% 1)(x)=] F(N;ej f(»)

&N ZGRN/ZF(QJ |x _ y|N79
2

dy. (2.1)

The integral in Equation (2.1) converges in the classical Lebesgue sense for a.e.
xeR" ifandonlyif fel (RN,(I + |x|)9_N) . Moreover, if

fel (]RN ,(1+|x|)giN) , then (1) diverges everywhere in R" . The Riesz poten-
tial /, is well-defined as an operator in [ (RN ) if and only if q e{l,%]. In

Ng

et then 7,:['(R")—>L(RY) is a

addition, if qe(l,%j and t:=
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bounded linear operator, which can be disclosed by the Hardy-Littlewood-So-
bolev inequality.

Lemma 2.1. ([15]) Let GE(O,N), qe(l,%j. Then for any feLq(RN))

I, fe L (RY) and |1, * v < Coal £, -

Applying Lemma 2.1 to the function f —|u|’J N/?N+9 (RN ), we obtain the
following result.

Lemma 2.2. ([16]) Let He(O N). Then for any a)eLZN”/(N+g)(RN),

.[ ( [4 |w| )|w| dX<CN9|a)|sz/ N+0)

N+60 N+6

In particular, if N>2, pe ,
N N-=-2

} and a)eHl(RN>, then

.[RN (19 * |a)|P )|a)|" dx<Cyy, (J‘RN <|Vu|2 + |u|2 )dx)p

Actually, pe N+0 _— N+0 if and only if 2Np € [2,2*] The Brézis-Lieb
N N+0

N-=-2
type lemma we use next also applies to the Riesz potential.

Lemma 2.3. ([12]) Let N>2, HG(O,N), pe[Z,]Ifﬂzj. If v,—v in

H‘(RN) as n—» o, then

1) B(v,)-B(v,-v)>B(v) as n—w;

2) B'(v,)-B'(v,—v)>B'(v) in H"(RN) as n—w,
where B(v):= J.RN(IH>l<|v|p)|v|p dx.

Lemma 2.4. ([12]) Let N>2, Qe(O,N), pe[z,x“‘gj, If v, —v in

H' (RN) as n—, then for any ueHl(RN), <B’(vn),u>—><l3’(v),u> as
n— oo, where B(v) is defined as in Lemma 2.3.

3. Auxiliary Problems

We consider, for N >2, HG(O,N), 2§p<q<x+§,
—Av+av:ylh(v)+yzbz(v), veHl(RN), (3.1)

where a>0, 5,>0, i=12, }"(v)=4 (]0 *|V|p)|v|p72v’
P> (v)i=87 (1, * | )

AP (x)v =00 (v)+20 (v). ve ' (RY). (¢2)

v )JMV2 v

v, and

where t<a<r,_, k,<b<k, J{?(v);:I/Vl?(x)[]H*(WI?
3)26( ) 2}? (x)[ (W;Z | )}M v with

Ve(x):= max{a, V(x)} . Vi(x)=V(ex),

W' (x)=min{b, W, (x)}, W (x)=W"(ex), i=12.
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The solutions ve H' (RN) of Equation (3.1) and Equation (3.2) can be ob-
tained as critical points of the energy functionals

:—j (|Vv| +av )—— A J-]R'v:yz

T )= Lo (VF 7 (0 )= i (v

RN 2

respectively. And the Nehari manifolds are denoted by N, N the least

energies by £ = =inf J b g = mf J®; and the sets of least energy solutions
neb

by T%,T,”, respectively. In partlcular, we define

J* =T N* = Nk £7 = gile 2 =y,
Jr=Jr  NF = N &8 =00 W =Wl i=1,2.

Lemma 3.1. There exist p>0 and o>0 such that J“ (v)>0' for all
||v||1 = p. Moreover, lim J“ (tv) =—w0,If v#0.
Lemma 3.2. Let P = {}/ IS C([O,l],Hl (RN)) : )/(O) =0,7% (7(1)) < 0} , then
E% = inf maxJ® (tv)z inf max J“ (y(t))>0.

vetl'(RV o} 120 yew tef0,]]
Lemma 3.3. £ isattained and T® is compact in HI(RN )
1
Proof. We set the equivalent norm ||v||1 :(LRN (|Vv|2 +av2))2 for any ve

H' (RN ) Obviously, N =@, weset v, e N with v >0 and
J* (v")—>8”" as n—>00. On the basis of the Schwarz symmetrization and
Theorem 3.1.5 in [13], there exists v

n

as the radially symmetric decreasing

rearrangment of v, with v, >0 such that "v::"1 <|v,,- We can verify that
v, #0. We can know that "v: |]2 < .[RN W (v:)v: + (v: )v: JIf

= Jn W (V:)V: + (V:)V: , then v: eN 1f

|2

|2

v
iy

<[ (Vn)"n +) (Vn)Vn , then there exists 7, €(0,1) such that ¢, €
N and

2 . 4-p
T 2pq RY sz(vn)vn

n

EP<g® (t,1v:)<172—;1 %

=J"(v,) > E® asn—oo,

which implies J"”(tnv )—)S“" as n—>o. Define w,:=tv,,then w, e N,

n'n?
w,20 and

T (w,)>E® asn—w. (3.3)

By Lemma 2.2, one can check that {w } is bounded in H' (RN). Along a

n

subsequence, we may assume w, —w as n—>0. According to Lemma 1.4,
w, —>w in L‘(RN) for re(2,2*) as n—>o.Dueto w, e N and Lemma

2.2, (lw 2SC(W

niil

29
Wl

n

2p
]+

) , which implies
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oo H(w,)w, +33* (w,)w, > C>0. By contradiction method, we get w # 0. We
can know ||w||12 < 1irnllioro1f(IRN W (w, )w, + 07 (w,)w, ) = J.]RN W (w)w+ W2 (w)w
by the weakly lower semi-continuity of norm. By contradiction method, we can
get we N and by (3.3),

w

n

n—»00

a “ i -1 -
Eb< g b(w)ghmmf(sz | 12+qu5.[RNyzbz (W,,)Wn]

=liminf 7 (w,)=£€",

n—ow

which implies Eb = g (W) is attained. In the end, we have (j ab ),(W) =0,

where weT® is positive and radially symmetric. With similar arguments as
above, 7 is compact in H' (RN). O

In view of Theorem 3 in [17], we have the following result.

Lemma 3.4. If there exists a least energy solution ve H' (RN ) for Equation
(3.1), then vel (RN ) NC” (RN ) , v is either positive or negative, and v is ra-
dially symmetric up to translations.

Lemma 3.5. Let a, >0 and b,b’ >0 for i=1,2.

() If min{a, —a,.b} —b},b} —b; | >0, then £ <g=,

(i) If min{a, —a,b —by,b0 —b}} >0 and max{a, —a,b —b},b, —b}} >0,
then £ <g®n .

Lemma 3.6. If v is a groundstate solution of

~Av+r7,v=)"" (v)+yzk2°° (v), veHl(]RN), (3.4)

with the energy £, where 3" (v)=k, (Ie *[v” )|v|‘”72 v

D= v

y;% (v) =k;, (19*|v|q)|v|q72v Letting u(x) =Av (iJ x|, then Equation
T

©

(3.1) is equivalent to

0+2 0+2
2

K2 (a)? k a)?
—Au+au=| = - AP (u)+ ﬁ - A7\ (u), (3.5)
1 2 ®

0
N

1
2
where ue H' (RN), with the energy &, =1’ [}il .

fg

Proof. Clearly, we can know vis a solution uation (3.4) if and only if uis

a solution of Equation (3.5). Indeed,

1 1
Aa a ) a )’
“Aut+au=—|-Av|| — | x|+ V|| —| x

-0

We can verify that ve. / * ifand onlyif ue. /,”,then

2| a 17%
E=1"— E”. d

Lemma 3.7 Assume that a<t,,b>k,. Then m(a,b)E® <E”.
Proof. Noticing that if 1 >0 satisfy
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20 200

lal2 ., k(a2

max{—2| —| A*7?, 22| —| 2?7 :<1, we can know ET<E, .
bl TOO b2 Too

According to the definition of m(a,b) , we can find two situations:

204-p a1
By fa )t 7 Ay (3.6)
b, T, b,
or
Z0p=q L
4 g1 ]
kl_w< i ! k_w i (3 7)
b, T, b,
1
M ; 0+2p N 2
4 2(p-1) 2 -1
If (3.6) holds, let 4=| =[  then &, =| L[ i 177 e
b 7, . b,
1
20 |g-1
. ab _ oo ky ( a)*
we obtain m(a,b)é' <&, If (3.7) holds, set A= b—‘“(—j , then
h \ T
0+2q N 2
2(g-1) 2 ]
gz:(iJ ! (lz—qu E”, we obtain m(a,b)f,"”’sé"”_ 0
T, )

Lemma 3.8. If <7, , k, 2k, , then m(r,kv)>1 and &% <g” . If
r,<t,, k>k,, then m(z,,k)>1 and £ <£~.

Proof. Set a=7,b, =k, ,i=1,2 in Equation (3.1), Equations (3.5)-(3.7), re-
spectively. By the definition of m(‘[,kv), we get m(‘r,kv) >1. By Lemma 3.7,
we obtain £ <&~

Similarly, we let a=7,,b, =k;,i=1,2 in Equation (3.1), Equations (3.5)-(3.7),

respectively. Obviously, we have m(z’w,k) 21.1f (3.6) holds, we pick

1

w2

2+6

240 {p1
k 4 . »
A= f[i , then £ <& <€ by Lemmas 3.5, 3.6. If k >k, ,
Az

©

then £ <& <& byLemma3.6.If k, >k, ,then " <& <& by Lemma
1

200
k 4
3.5. Thus &+ <£=. If (3.7) holds, we choose A= %[i , then
2 \ T
E<E <E” . If k >k, , then E<E <E" . If k,>k,,, then £ <
£, <& . Thus, & <&~ O

Now we establish some results for Equation (3.2).

Lemma 3.9. There exist p>0,0>0 both independent of ¢,a,b and just
dependent on N,@0,p,r,k, such that jfb (v) >0 for all "v"1 = p. Moreover,
lim Jf"(tv):—oo,if v=0.

1—>+0

Lemma 3.10. Set ‘PZ”::{}/EC([O,I],H'(RN)):)/(O)zo,Jfb(y(l))<0} ,
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then
&= inf maxJ?(w)= inf maxJ"((¢))>0.

veH‘(JRN)\{o} 20 yew® 1€[0,1]
Lemma 3.11. If J. possesses a (PS )C sequence, then either ¢=0 or
c2E&” . Besides, £ >2E”.
Proof. Let {v,} CHI(RN) and J(v,)—>c, (jf),(vn)—>0 in
H"I(RN) as n—> . Assume c =0, we will prove ¢>E .
Since {v,} is bounded in H' (RN) , we may assume v, —Vv in H' (RN)
as n—>o0 along a subsequence. Set z, :=v, —v. By the Brézis-Lieb lemma, we

obtain

.[RN (|Vv" |2 +V7 (x)vj) = IRN (|Vv|2 +V7 (x)v2 ) + J.RN (|Vzn

‘y v (x)z§)+ 0(1).
(3.8)

By the proof of Lemma 3.5 in [12], we have
[ 2 v =[N v+ [0 (2,)z, +0(1), i=1,2, (3.9)

P P2
VoM s

qﬂ|v|q_2 v,and forany gpeH' (RN ) ,

where )7 (v)=W,, (x)[lg * (Wlf

v

0 (v) = ()| 1, = (5

w X )e= Y We+ [ X0 (2)pro(]e],, i=1.2. (3.10)

As the proof of Lemma 3.6 in [12], we have that for all goeH'(Rf’), as

n—o, J.Rh,){f(vn)goaj'w){f(v)go, i=1,2, which ensures that (jgw) (v)=
0. In virtue of (3.8), (3.9) and (3.10), we obtain that

To(z) > -T2 (), (77) ()0 inH'(RY) asnoe  (311)

Case 1 If there exists z,, =0, thatis v, =v,then J(v)=c#0 and
ve N . Thus ¢2&.
Case2If z,#0 forall neN, then there exists ¢, >0 such that 7z, € N .

Hence

Il (t,2,)2E (3.12)
It follows from <(j;)’(tnzn),tnzn>:0 and <(jf),(zn),zn>:0(l) that

(1=272)[ 302 (2) 2, + (1= [ 2 (2,) 2, = 0(1). (3.13)
Additionally, |z, 12 < C.[RN Ni(z,)z, + e (z,)z, +o(1). If

Jer(Lo =2 2l >0 and [, (2, %[, [")

1—)0 as n—>.Thus v, >v in HI(RN) as n—> o and
p)|zn|p25>0 or JRN(IH* q>|zn|q25>0,

50 as n—o,then

Z}'l Zﬂ

ZVI
c=Jr(v)=E. If .[RN(IH*

then ¢, >1 as n—o by (3.13). Hence J(t,z,)>c—J (v) as n—w

n—n

Z’l ZV!
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by (3.11), which implies ¢> 7, (v)+&" =& by (3.12).
Finally, it follows from V*(x)>7, and W (x)<k,,i=12 for any xeR"

& [0

that 7, (v)>J"(v) forall veH‘(RN).Thus, E2E". )
Remark 3.12. Similarly, it J" bhas a (PS)C sequence, then either ¢=0
or ¢2&.

Lemma 3.13. J* satisfies the (PS)C condition for all ¢<E& .

Proof. Let {vn}cHl(RN) and J(v,)>c, (Jf”) (v,)>0 in
H’I(RN) as n— o,

Since {v,} is bounded in H' (RN , we assume v, —v in H' (RN) as
n— . Then (jfb) (v)=0 by Lemma 2.4. Set z,:=v,—v. Then z, —0 in
HI(RN) and

z, > 0in L, (R") as n —oo for £ €[ 2,2"). (3.14)

Combine with the classical Brézis-Lieb lemma and Lemma 2.3, we have

T*(z) -T2 (), (72) (z,) >0 in H'(RY) asn o, (3.15)

Now we attest J."(z,)>c—-J"(v), (jf)'(zn)—>0 in H’I(RN) as
n —> oo, By definition, for any &> 0, thereis R >0 such that
V‘”(x)—V;’(x)|£5, W (x)-Ww; (x)|£5,i=1,2 for all |x|>R. Hence, ac-

& ic ic

cording to Lemma 2.2 and the Hélder inequality, we get
- -p)k
< p 22n2+(£] p)zzan o
2p 2 Pq 2Ng/(N+0)

+C(|zﬂ|iz(BR) +

T (z,)-T(z)

q
z, Lqu/(Nm)(BR) ),

which together with (3.14) and (3.15), imply that

I (z,)>c-T"(v) asn—o. (3.16)

Forany ¢peH' (RN ) , by the Hélder inequality and Lemma 2.1, we have

((92) ) ~(72) (2 )0)

2p-1 2q-1
< Cl&( Zuly T2 2Np/(N+0) Z 2Nq/(N+e))"¢"1
2p-1 2¢-1
+C, ( z, 2 (5y) +1\z, 2MI(N+0) (g, +|z, LZN‘I/("V*H)(BR))||¢||1 >

which combining with (3.14) and (3.15), implies that
(77) (z,)>0 in H'(RY) asn—>w. (3.17)

It follows from (3.16) and (3.17) that {Z”} is a (PS) sequence of

=T (v)
J. . According to Lemma 3.11, either ¢=J"(v) or ¢>J"(v)+&". But
the latter contradicts with the assumption ¢<&’. Thus c¢=.7" (V) and

T (v,)>TE(v) asn—w. (3.18)
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We show below that v, »>v in HI(RN) as n— . According to (3.18),
j;b(zn)—>0 as n— . Dueto

jab =—.[ (|Vz

2=+ PJ V2 (2,)z, +o(1),

we obtain I N(|Vz7| + VE" x)zj) —0 as n— o, which means that "Zn " -0
R ’ I
as n—>»o0. By using the Brézis-Lieb lemma,

. Hence,
v, >V in HI(RN) as n—>w, O
Lemma 3.14. limsupE” <& | where a=r'(0), B —Wb"(O) i=12,
ﬂi=(ﬂ1,ﬂ2).M€aH€I7/?HY€, if V(0)<a, W,(0)2b,i=12, then 11m5”” E”.
Proof. Set 7, (x)=V"(x)-a and W, (x)=p8-W,(x )1—12 Thus
V,(x)>0,W,(x)>0,i=1,2 ae.onR" ase—0. (3.19)

Meanwhile,

1 _ _
TV 0 T S T o

(3.20)
o e T L LT () 1 T )

where 3_46( )=W,( (1 /4 |v|p)v|p_2v,
3}26( ) ( )(1 *W |V| )|V|q "y, By Lemma 3.3, there is ee7 . Set

r,>0 satisfy ree NP, we get

&

ab _ ab ab
max 7" (re) =T (r.e) 2 & (3.21)

Since J”(re)——% as r—»+om, thereexists R, >0 suchthat J(re)<0,
for all r>R,. Hence we get », <R . We posit r. >r, as &—0. It follows

from (3.19), (3.20), (3.21) and the Lebesgue dominated convergence theorem
that

2 _ L 42p _
&2 <70 o)+ S [T+ A [T (1 el e

— . 2q p—
. (e)e+'82—t”fRN W, (x)[lg * |e|qJ|e|q - 2‘”

q g’

2p RY

> T (re)<T? (e)=EP ase—0.

Thus limsupE® <&%

Eventuaﬁ;;,o if V(O)Sa, W,.(O)_b,., then a=a, f =b, i=12. Hence
Z(x)ZO, VI_/ig(x)ZO,i=l,2 for all xeR". we get jfb(v)ZJO’ﬂ(v) for all
veHl(RN) by (3.20). Thus, £ >E&% . Due to
£ <liminf £ <limsupE” <E? , we obtain hmE“" EFP =g,

&0 -0

Lemma 3.15. If r<a<t ,k>2b>k, or 1<a<rt _,k>b>k,_,
exists £ >0 such that forall &<, isattainedat v?* >0 .
Proof. Noting Lemma 3.8, we have £% <&, where a=V" (0) and
B =W (0),i=1,2. By Lemmas 3.14 and 3.11, there exists & >0 such that

then there
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E? <E7<E” forall £<&™.ByLemma 3.13, J satisfies the (PS), s con-
dition for all & < ¢&®, which together with Lemmas 3.9 and 3.10 imply that &’
is attained at v e H' (]RN) Since J*(v)=J(|v]) for any veH' (]RN)

we may assume that v* >0. By bootstrap method and elliptic regularity theory,

v eC? (RN ) . By strong maximum principle, vgb >0. O

4. Proof of the Main Results
Setting v(x) = w(ex) , the Equation (1.1) is equivalent to

—Av+V (ex)v=(v)+ L (v), VEHI(RN), (4.1)

where (v)= 1 ()] 1, * (W (ex)bl" ) o v
Y(v) ::Wz(gx)[le *(Wz(gx)|v|q )JMHV. If v,(x) is a solution of Equation

(4.1), then w,_(x)=v, (fj is a solution of Equation (1.1).
£
Noting V(&x)=V/ (x),W,(ex)=W} (x),i=12, we find that Equation (4.1)

is particular form of Equation (3.2). We set
T, =T N, =N* & =T, =TV, =V W, =Wr i=12.

i€

4.1. Proof of Theorem 1.1

Without loss of generality, we assume x, =0. Then V( ) , W ( ) k,,
i=12.

Lemma 4.1. There exists an m-dimensional subspace ;, of H' (RN ) such
that sup J,(v)<E&*, for all r>r,, e<¢,, where r, and ¢, are existing
constanfs depending on m.

Proof. Choose a=71, b =k, ,i=1,2,in Equation (3.1). By Lemma 3.3, there
exists veT™ and v(x)=v(|x)>0.Let r>0, g, €Cy(R,) satisfy
2. (1)=1 for 1<r and #,(t)=0 for r>r+1 with |;(r'(t) <2. Set
v, (x)=12, (|x|)v(x) for xeR". It follows from

vl <],
s

: N+o N K s s s
v, >v in [N+ (R ) and J'RN(Ig *y) )Vr - I]RN (klg *y )v for s=p,q as
r—o. There exists d, >0 such that dv,e N and d —1 as r—w.

Vv|2+v2)—>0 as r—oo,that v, »v in HI(RN),

Hence

a'2 d2p d2 dzq
tk, _ kyy _r _ k
max J (a’v,,)—[2 2p] (v )y, +[2 2q] 2 (v, ),

p-1 o q—l

o W (v)v(r—)oo) (4.2)

_ tk, _ tk, _ otk, _ otk,
—I{{lgg(j (dv)—j (v)—é' =E™.

Additionally,
V() (0)=7, W, (x)—W,(0)=k

&

i=1,2 ase—0 (4.3)
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uniformly on any bounded set of x. There exists c?r >0 such that c?rvr eN,
and d —1 as r— . Therefore, (4.2) and (4.3) mean that

a3 g i g

n;llgoxjs (dvl):( 2’: - 2’p JJ.RN ‘)}18 (Vr)vr +£7’”_ qu ]J‘RN ‘))28 (vr)vr
72 52p 72 72q

N (dr _ dr JJ‘ R Mklv (Vr)V,~ _,’_(dr _ dr
2 2p J'R 2 2q

7k, 7k,
— max J (dv,)—>E™ (r— o).

i

(4.4)

According to lemma 3.8, we get m(‘[,kv) >1. Welet m, = m(r,k‘,). For the
maximal integer meZ, with m<m, , wehave m>1. Define
n,(x)=v, (xl—Zj(x+l),x2,---,xN) for j=0,1,---,m—1 and set
S = span{nn.(x):j =0,l,~~~,m—1} . We can get (77”.,770.)1 =0 if i=j.
Hence dim?,, =m. Similarly as (4.4), forall ;=1,2,---,m—1, we get

2 i
ndl?())(j‘ (dl//,j):( 2r - 2']9 ]J.RN ylg(l//rj)l//rj +[ > - 2 ]IR.'\73}2C(W;7')V/;7'

poany. »oa
S| G- G- e

tk, tk,
— max J (dv,) > E* (r—> ).

Thus, forall & >0, there exist 7; >0,5; >0 such that
maxjs(dy/,j)sé’rk“+5, for all r>r; and £<g;,;=0,1,---,m—1. For any
d=0

m-1

ve, , we posit v=2d/l//,j, where d; eR for j=0,1,---,m—1. Thus, we
=0

m-1

have Je(V)Sng(d,w,j)srfrgg)xjg(d%,)Sm(e”‘v+5) for all r>7, and
Jj=0 J=0 "~

& < &5, which implies that sup 7, (v) < m(é”k" + 5). Due to Lemma 3.7, we set

ve “rm

gw . o0
0<8<———E™, then there is 7, >0, &, >0 such that sup J,(v)<&”, for
m V€ m

all r>r,, e<s,. O
Lemma 4.2. Equation (4.1) has at least m pairs of semiclassical solutions.
Proof. Let us consider the symmetric group Z, = {id ,—id } and set

Y= {T cD:T isclosedand T = —T} . For any 7 €%, the Krasnoselskii ge-

nusof 7 isdenoted by

gen(7 )= inf{n : there exists g € C(T,R" \{0}) and g is odd}.
Set H:= {h €C(7,7):hisan odd home omorphism} and for any 7 e, de-
fine Benci pseudo-index of 7 by
i(T)= mingen(h(T) 2 6Bp),

heH
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where >0 is a constant defined in Lemma 3.9. Let ¢, := _(iTn)f supJ, (v)>
(T)z] ver

j=1,2,---,m . We can easily to verify that ¢, <g, <---<g, .

When j=1,forany TeX and i(7)>1, we have
gen(Tﬂ@Bp)Zl,which means 7 NoBp # <. By Lemma 3.9 that
su;)jg(v)>0' and ¢ >0.

When j=m, taking into account that the Krasnoselskii genus satisfies the
dimension property [18], we have gen(h(”,/rm)maBp):dim ~ =m for all

“rm

h e H , which implies i(f/ ): m . Hence ¢, <sup J, (v) . Due to Lemmas 4.4,

rm

m

3.11, we have that forany r2>r,, s<g¢,,

0<g <g,<<g,<sup J,(v)<E <& (4.5)
Next we are going to prove ¢; ( J =1,2,---,m) are critical values of J, by
using Theorem 1.4 in [18]. Set ¢, =0, 6, :=sup J, (v)

V€

(7,) :z{veHl(RN):jg(v)Sc}, K, ::{veHl(RN):Je(v):c,(jg)'(v):O}.

Since J, is an even fuctional, («75 )C eX, K eX, for all Ce[go,gw]. Ac-
cording to (4.5) and Lemma 3.13, J, satisfies the (PS )C condition for any
ce [go,gw] , which means that K, is compactin H' (RN) ,forany ce [go,gm] .
For any ce[go,gw] , d>0 and

(K), = {v eH' (RN) :dist(v, K, ) < d} , choose & =%, then by the contradiction

method we can get that there exists £>0 such that H(jg )' (v)

> 8—8 , for all
)

ved," ([e-28,c+28])\(K.),, -

On the basis of Lemma 2.3 in [14], we choose S:=H' (]RN ) \(K. )d , there exists
aec((oa]<a' (RY).a' (RY)) such that A(1,(7,)" nS)=(,)™ and
[l(t,~) is an odd homeomorphism on H' (RN) forany te€ [0,1]. Set
,u() = ,&(1;) ,then 4 isan odd homeomorphism on H' (RN) and

lu((jc)mf\(]Cc)d)c(jc)c—g. (4.6)

For any 7eX and 7 c(J7,)" =(J,)", then J,(v)<o for any veT.
By Lemma 3.9, we have 7 moBp = . As a result, gen(TﬁaBp)=0 and

i(T)zr}{lig[lgen(h(T)maBp):O. 4.7)
Then, we get
i (T,)" and i(7,)=m=1. (4.8)

Combining (4.6), (4.7) and (4.8), we have that ¢,,5,,:-,5,, are critical values of
J,»and gen(K,)>r+1 if c=¢,=¢, =-=¢,, with j>1 and j+r<m.
Since J, iseven, weinfer that 7, has at least m pairs of critical points which
are also solutions of Equation (4.1). O

Lemma 4.3. Equation (4.1) has at least one positive and one negative least
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energy solution for m=1.

Proof. Choose a=7,b, =k,,i=1,2 in Equation (3.1), then
a=V (0)=V(0)=c, B =W (0)=W,(0)=Fk, i=12. Due to Lemmas 3.7,
3.11, 3.14, 3.13, J, has a (PS)SS sequence and satisfies (PS)SS condition.
According to Lemma 3.15, there exists &, >0 such that £ is attained at v, >0
for all ¢<¢,. Hence, v, and —v, are positive and negative least energy solu-
tions of Equation (4.1), respectively. O

This completes the proof.

4.2, Proof of Theorem 1.2

We can assume without loss of generality that x, =0. Then V(O) =7,,
(0) =k;,i=1,2.Setting a=7,,b,=k,,i=1,2 inEquation (3.1), there is
veT ™" Due to Lemma 3.8, m(T k)>l We set

(R

(z’ k) ifm(rw,k)>1,

®°

% if m(z,.k)=1.

For the maximal integer m <m,,, we get m >1. Because of Lemma 3.7,
mE™* < £”. The remaining proof of this theorem is similar to the proof of Theo-

rem 1.1 and other details are omitted.

4.3. Proof of Theorem 1.3
In general, we assume x, =0. Then V(O) =7, W (0) =k,,i=1,2. We can ve-

rify that the condition of (.43 )(2) implies that (1.5) holds. It follows from Theo-
rem 1.1 that Equation (1.1) has a positive groundstate solution w, (x) and Eq-
uation (4.1) has a positive least energy solution Vv, (x) =w, (gx). Next, we will
prove the case (.43 )(1), the other case can be handled similarly.

Lemma 4.4. v, >Vv as ¢— 0 inthe sence of sequence after translations.

Proof. Set &, >0 as j—>w, v =V, e’];j with v, >0. Thus, we have

p—1 2 g-p 2

55/ :‘75/' (v‘/)zg,[]]{“’( j| +V£j (x)v,/z’)+ 2pq J‘RN -)ngj (Vj)vj 2C”vj 1
due to Lemma 3.14, we know that {vj} isbounded in H' (RN) . Let

lim sup j v? =0, by Lemmas 1.5, 2.1, we obtain v, >0 in ¥/ (RN) ,

]~>ac

_[R (I V] )v —0 as j—o for r=p,q, which together with v, eN,
imply that " " —0 as j—oo.Itisa contradiction with " ” >C>0. Thus,
thereis >0 and yj eR" such that

[ vize (4.9)
B(yy)

Define Gj(x)::vj(x+y}) , I}gj(x)::ng(x+y‘;) , Wg_(x)::Wj(x+y‘;) ,

i=1,2.Thus, v, is the solution of

—AD +V, (x)9, =0, (9,)+ 3, (9,), 9,>0 (4.10)

with least energy
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A A R -1 ~ n ~ \ A
G :jsj (V/) :l?z_pJ.RN ylgj (V;)V +_ RN st (V ) (4 11)
where Al&'j (\;/) = VI’}lsj (x) [9 *(VI’}]‘E/‘;? ):| "jp—l,

£ =0, (9)=7,(v)=¢, (4.12)

Due to the boundedness of {\3 j} , we can suppose without loss of generality
that

b, —v inH'(RY) asj—>ox, (4.13)

v, —>v inl (RN) as j — oo forre[2,2*), (4.14)

loc

which combine with (4.9) imply that v=0.
According to Vand W,,i=1,2 are bounded, we posit

v, (v))>V, and W, (y))>W,, i=12 asjow (4.15)

Because of VV:|VV(x)|SM for all xeR"Y, we have that for any »>0,
I}S/_ (x)-7., (y;) <& Mr,forall xeB,(0).Hence I;'L,/ -V,
W, —W,,i=1,2 as j—»o uniformly on any bounded set of x. Using the

lé‘

proof of Lemma 3.14, we have

hmsupE <&M (4.16)

Jo

Uniting (4.10), (4.13), (4.15), we get that for any ¢ eC; (RN) ,
0= },E?OIRN |:V0jv¢+ I}cj (x)"}jgo_ 3}15] <§j>¢_j>2:;j ("}j)qo:l
= IRN [VVV(P +Vvo =y (v) 9 = Yy (v)(p},

with 3 (v):= W[ £, * (Wiov”) |72y s 33 ()= Wiy [ 1, % (Wap”) [y, which
means vsolves

—Av+V0v=yl0(v)+yzo(v), v>0 (4.17)
with energy

T )= [ (O 4H )= Lo Koy [ ()2 €. 419

Due to Fatou’s Lemma, we obtain
[ Yo (v)y<timinf [ 3, (v,)9;, i=1,2 (4.19)

Combining (4.11), (4.16), (4.18) and (4.19),
EMo < g (v )< hmlnfj ( )< hmsupE <& Hence,

]—)

im¢, =& =g (v). (4.20)

J—o j
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Choose £eCy(R,) satisfy suppf(t)cB2 and £=1 on B, with
|§'(t)|$2.Deﬁne ﬁf(x)::f[i]v(x) and zj(x,y):zﬁj(x)—[tj(x) for
" J

xeR". Thus as j o, fI; >V in H'(RN), f;—>v in L’(]RN) for

re{z,N“ﬂ, f;—>v ae on RY and z;,—0 in HI(RN), z; >0 in

(RN) for re[Z,]]zﬂzj, z; >0 ae.on R".

»
Llac

, J

Next, our main goal is to obtain jgj (z}.) —0 and <(j€ )’ (zj ),z > —>0 as
j —> oo, Where

. 1
jgj (Zj ) = ELRN

2 s 2 1 o 1 A
VZ/‘| +7, (x)|zf| _ZIRN X, (z)z _ZJ.RN N, (z)z-
Indeed, similar to the proof of Theorem 1.3 in [12], we can obtain

2
|1 =
2 o

.[R"V I}S/ (x)|z/.| - .[]RN Vf/‘ (x)
.[]RN 3715]. () :.[]RN 331-5, (ﬁj)ﬁ_,. _IRN 331-5, (ﬁ,—)[{,— to(l), i=1,2.  (423)

=l o), (4.21)

2

Vi

_LRN ’}s,- (x)|ﬂj|2 +o(1), (4.22)

Vi

According to the Lebesgue dominated convergence theorem, we get that

[ox Ve ()i = [ Vv +o(1), (4.24)
[on 2, ()i, =[x Yo (v)v+0(1), i=1,2. (4.25)

Additionally,
Vi, [ =|vof, +o(1). (4.26)

By (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), (4.20), (4.10) and (4.17), we have

T, (z)=E€, =T (v)+o(1)=0(1),
(110

Due to (4.27), we get that o(l):jgv(zj>—$<(jp)'(z_,.),z_l.>ZC||zj||lz,

(4.27)

’

()4 )= ()51,

J ]

which means z, -0 in HI(RN) as j— oo. Hence ||\3j—v||]£||zj||l+||,&j—v||1
as j—>oo. O
Lemma 4.5. \7j(x)—>0 as |x|—>00 uniformlyin jeN.
Proof. We have that there are 5§>0, x, eR", |xn|—>00 as n—>o0 such

that |\3j" (x, )|25 by contradiction method. Meanwhile, there exists C,>0
1

which independent of ; such that ‘\% (x, )‘ <G, (J.B( )\3; )2 . Thus by applying
n 1 (x, n

the Minkowski inequality, we have
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1 1
N 2\2 2\2
v, —v| +C, J' |v| —0 asn—o,
In Bi()

<C, (IRN

which is impossible. o
Lemma 4.6. {gjy}}j is bounded on R" .
Proof. Assume by contradiction that there is |g~ ; y'/| —o as j-—>oo alonga
subsequence. Therefore V, >z, >7r and W, <k, <k, ,i=1,2, which together
with Lemma 3.5, imply that £ > £ . However, due to (4.12), (4.20) and

VoW, . . k, . . o 4
Lemma 3.14, we have £°"° =lim 58]_ <limsup Egj <E&™, which is a contradiction.
J® J—o

Hence, without loss of generality we may posit

£y, —>X, as j—>o. (4.28)

By (4.15), we obtain
Vo=V (x,), Wo=W,(x,), i=12. (4.29)
Noticing (4.17), we claim vis a least energy solution of Equation (1.7). |

Lemma 4.7. {gyg }g is bounded, where y,€R" is a maximum point of
v,.

Proof. Suppose there exists &, —0 with |gjyj|—>oo as j— oo where
Y=Y, is a maximum point of v, = Vg, - By Lemmas 4.4, 4.5, 4.6, we can ob-
tain that there is ] eR" such that ﬁj:vj<-+y_;.)—>v¢0 in H‘(]RN) as
j— o and \7].()6)—)0 as |x|—>00 uniformly in jeN, {gfyj’,}_ is bounded

‘ J
on R"Y.Hence |gjyj —ejy}|2|£jyj|—|sjy}|—>oo as j — oo, which means that
|yj —y»'/.|—>oo as j— oo. Therefore max v, :vj(yj)zﬁj(yj —y})—)O as

j—>o.Dueto v, >0,weget ¥, >0 as ;o uinformlyin xeR", which
contradicts with v=0.

Lemma 4.8. £i£1;1dist(gyc,.’4) =0.

Proof. According to Lemma 4.7, we get there is &, >0 with ¢y, >y, as
Jj—> oo, where y, = V., is the maximum point of v, := v,, - We just require to
attest y, €./, . By Lemmas 4.4, 4.6, there exists y,eR" satisfying v, (x)=
v, (x+yj’.) and (4.28). Due to Lemma 4.5, we can suppose 7, (x;) =max v,
and {x}}j_ isbounded on R".Hence y,=x;+); and
£y~ 8/-)/; = ijl; —0 as j— o .And combining with (4.28), (4.29), mean that

yo=x07V(yo)=V0»Wi(J/o)=Wi07i=l’2' (4.30)

Assume by contradiction that y, .7/ , then we have V( yo) =7,
W(vo)<hk,, Wy(v)=ky or V(n)=t, Wi(n)=hk,, W(n)<k, or
V(y0)>1, Wi(yO)Skiv, i=1,2. Due to Lemma 3.5, o) 5 etk Com-
bining (4.12), (4.20), (4.30), and Lemma 3.14, we have

lim Scj =lim 51/ = &M — gVl n) o etk limsup&, , which is a contradiction.
Joo Jo joo

Particularly, if 7 '0(7/1'(\ /'/2')7&@, then x,€./, =7 '0(7/1 N /'/2'), we can
get lirr(}dist(gyg,'/' N7 N 7/2')):0 and V(x0)=r , W;(xo)=ki, i=12,
£
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which combine with Equation (1.7) mean that vis a least energy solution of Eq-
uation (1.8). O

Lemma 4.9. For p,q e[ , +§j , there is C>0 and R>0 such that for

all small >0, v, (x)SC|x|% exp(_\z/ax@ for all |x|21§.

Proof. We check its correctness for any sequence. By Lemma 4.5, we obtain

tim 17, ()(2, * (12, 97)) () (5, ()

x|

Wy, () 1y (W, ) ) () (5, ()" = 0

uniformly in jeN, which means that there exists R>0 such that for any

|x|21§ and jeN,

- R P2 s SN R -2 _3

Wi, (o) (101, 57) ) 0) 5, () s, (o)1 % (0, 90 ) ()5, ()" <5
(4.31)

7.'

Thus, by (4.10) and (4.31), we have —Av + <0 for any |x|>R and

.[;

jeN.

Similar to the proof of Theorem 1.3 in [12] we can know that for any |x| >R
oo (L
and jeN, ﬁj(x)SC|x|2 exp T|x| . O

Set x, =¢y,. Then w ( ) (yg) Due to Lemma 4.7, x, is a maximum
point of w, and {)qc }g isbounded on R" . According to Lemma 4.8,
limdist(x,,/,) = 0. On the basis of Lemmas 4.4, 4.5,
f/jfx) =V, (x+yg) =w, (8x+ X, —Exé,), where x, =y, —y! isamaximum point

of v, with &x, >0 as &— 0. Finally, we obtain that,
N-T \/;
w, ( ) <C (
4e

where R:=R+ sup, |x€| .

; ] , for all |x| 2R, by Lemma 4.9,

The proof of Theorem 1.3 is completed.

By making reasonable assumptions about potentials, we use pseudo-index
theory to prove the multiplicity of semiclassical solutions to Equation (1.1). The
existence of groundstate solutions are proved using Nehari method. In addition,
we also demonstrate the concentration and convergence of the positive groundstate

solution.
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