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Abstract 
Up to now, there is a long time problem that dot product has no correspond-
ing division. In order to solve this problem, in this paper, indefinite dot quo-
tients are introduced as extensive inverse operations of dot products, which 
solve the problem in 3-dimensional space that the quotient of a number and a 
vector on dot product does not exist from another angle. Some basic proper-
ties, and some expected operation properties, and two forms of geometric ex-
pressions and six coordinate formulas of indefinite dot quotients are pre-
sented. 
 

Subject Areas 
Vector Analysis, Analytic Geometry, Mechanics 
 

Keywords 
Indefinite Dot Quotient, Indefinite Dot Division, Dot Product, Dot Quotient, 
Dot Division, Vector Division, Vector Quotient, Cross Product 

 

1. Introduction 

The dot product (also scalar product) is one of the most important multiplica-
tions of vectors. It is not only widely used in analytic geometry, vector analysis, 
linear algebra, mechanics [1] [2] [3]. but also widely used in other fields such as 
engineering, computer graphs [4] [5] [6]. But there is something imperfect, since 
dot product does not have corresponding division. Almost everyone spends 
some time to consider this problem when starting to learn dot product. Then 
obtains a sad result: the division on dot product does not exist. As a result, there 
are no papers which successfully present the quotient of a number and a vector 
as the inverse operation of a dot product. 

Our purpose of this paper is to set up a theory to solve the problem that dot 
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product has no corresponding division in 3-dimensional space. Dot product is 
quite different to cross product. The former exits in each vector space, but the 
latter just exists in some special vector space [7] [8]. Fortunately, they all exist in 
three dimensional space. As most of people think the divisions on cross products 
do not exist, in 2022, Mr. Wang and Ms. Chen successfully built the theory of 
indefinite cross divisions in 3-dimensional space to have solved the problem that 
cross product has no corresponding division, by adding angle as parameter [9]. 
Similar to cross products, we are sure that we can solve the problem that dot 
product has no corresponding division by adding parameters. We naturally think 
again that, when computing dot product, the something important we uncons-
ciously ignore includes angles, since there are many books in which the defini-
tion of dot product of two vectors a  and b  is directly defined by their coor-
dinates such as 

1 1 2 2 n na b a b a b⋅ = + + +a b                      (1) 

where { }1 2, , , na a a=a   and { }1 2, , , nb b b=b   [4] [10]. Though the definition 
is simple and useful when computing dot products, it somehow hinders us to 
find the truth of inverse operation of dot product. If we want to inversely find 
the exact vector a  from scalar c and vector b  such that c⋅ =a b , we will face 
the fact that there are many many a’s such that c⋅ =a b , which may be the main 
reason that makes us obtain that dot product does not have corresponding divi-
sion. Fortunately some books stress the angle by presenting the following defini-
tion: 

Let a  and b  be two vectors, and ( )0θ θ≤ ≤ π  be the angle between a  
and b . The dot product (also called scalar product) of two vectors a  and b , 
denoted by ⋅a b , is a scalar, defined as 

cosθ⋅ =a b a b                           (2) 

where a  and b  indicate the magnitudes of a  and b  respectively. 
The above definition can be easily found in the internet and in the most books 

related to vector analysis [1] [2] [3]. It is seen that if the angle is 0 or π then we  

can inversely get the exact a  by 2
cb
b

 such that c⋅ =a b  where ≠b 0 . But  

for other angles, we can not. We always think the dot product should have cor-
responding division like cross product. Thus, a problem naturally arises: Is there 
another hidden factor that we unconsciously ignore? We notice the fact: If a  
and b  are known, not only the angle between a  and b  is specified, but also 
the cross product ×a b  is specified in three dimensional space. We find that, 
the direction of ×a b  is the second thing which is unconsciously ignored. 
However, when we inversely want to obtain a  from c and b  such that 

c⋅ =a b , we do not know the angle and the direction. If we grasp them and put 
them as parameters, we then establish the theory of indefinite dot quotients in 
three dimensional space. In fact, it is enough for us to inversely obtain the exact 
a  from a constant c and a nonzero vector b  such that c⋅ =a b  when we  
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know an angle [ ]0,
2

θ  ∈ − π


π



 and a direction n . 

We claim that there exist inverse operations on dot products if enough condi-
tions are known. If we put unknown enough conditions as parameters we obtain 
indefinite dot quotients which can solve the problem that dot product has no 
corresponding division in three dimensional space. 

In order to realize our purpose, this paper is arranged as 4 main sections. In 
Section 2, the definitions of indefinite dot quotients are introduced, and some 
basic properties are presented. In Section 3, some useful operations of indefinite 
dot quotients are discussed. In Section 4, the structures of indefinite dot quo-
tients are studied in different angles. In Section 5, some useful coordinate for-
mulas of indefinite dot quotients are simply obtained by their structures. And 
two simple examples are presented not only to support coordinate formulas but 
also to show that if we know sufficient information, we really can back to find 
the exact a  such that c⋅ =a b  from c and b . 

2. Indefinite Dot Quotients 

In this section, we build the foundation of this paper: indefinite dot quotients 
and their basic properties. Before introduction of them, we stress that: 

cos 0c θ >  on computation of dot product when 0c ≠  since 0c =  if and  

only if =a 0  or =b 0  or 
2

θ =
π . 

Definition 2.1. Let c be a scalar and b  be a nonzero vector, and let  

0, ,
2 2

θ π π   π    
∈


∪  be an angle parameter such that cos 0c θ ≥ , and ( )≠n 0  

be a normal vector parameter such that ⊥n b . The vector, denoted by 
( ),

c

θ n b
 

(
( ),

c

θ nb
), is called left (right) indefinite dot quotient (or division) of scalar c and 

vector b , if its magnitude is defined as 

( ) ( ), , cos
c c c

θ θ θ
= =

n nb b b
 

and its direction, when 0c ≠ , is determined by the following 3 steps: 
Step 1. In Figure 1, let O be any point in 3D space, and set =ON n ,  
=OB b . 

Step 2. Spread the left (right) hand, satisfying that five fingers are on the plane 
BON and the thumb is perpendicular to other 4 fingers; and pointing the thumb 
direction along ON  and other four fingers along OB . 

Step 3. The left (right) open hand rotates around vector ON  through the 
angle θ . Then, the direction that the four fingers point out is just the direction  

of 
( ),

c

θ n b
 (

( ),

c

θ nb
). 
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Figure 1. Dot quotients. 

 
The left and right indefinite dot quotients are collectively called the indefinite 

dot quotients (or divisions), simply dot quotients (or divisions). 

It is seen that 
( ) ( ), ,

0 0

θ θ

= =
n nb b

0  when 0c =  and 
2

θ ≠
π . Notice that the 

above definition does not include the case of 
2

θ =
π , because it makes the de-

nominator of 
cos
c
θb

 to be 0 so that the problem becomes complicated. We 

will present the supplementary definition on this special case in Section 4. Thus, 

in the rest of this paper, if no special statement, as we meet the notation 
( ),

c

θ n b
 

or 
( ),

c

θ nb
, we always suppose 0, ,

2 2
θ  ∈ ∪

π π π    , ≠b 0 , ≠n 0 , ⊥n b  and 

cos 0c θ ≥ . 
From Definition 2.1, when 0,θ = π , we have 

( ) ( )
2

, ,

.c c c

θ θ

= =
n n

b
b b b

                        (3) 

Moreover, we have the following simple attributes: 

(2.1) 
( ) ( ) ( ) ( ), , , ,

c c c cc
θ θ θ θ

⋅ = ⋅ = = ⋅ = ⋅
n n n n

b b b b
b b b b

. 

(2.2) There is a real number 0µ >  such that 
( ),

c

θ

µ× =
n

b n
b

,  

( ),

c

θ

µ× =
n

b n
b

. 

(2.1.1) 
( ),

c

θ

⊥
n

n
b

, 
( ),

c

θ

⊥
n

n
b

. 

(2.1.2) 
( ) ( ), ,

, ,c c

θ θ

θ
   
   ∠ = ∠ =
   
   n n

b b
b b

. 

(2.1.3) The ordered three vectors 
( ),

c

θ n b
, b , n  obey the right hand 

rule, and b , 
( ),

c

θ nb
, n  also obey the right hand rule. 
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(2.3) If two vectors 1n  and 2n  have the same direction, then  

( ) ( )1 2, ,

c c

θ θ

=
n nb b

, 
( ) ( )1 2, ,

c c

θ θ

=
n nb b

. 

(2.4) 
( ) ( ), ,

c c

θ θ −

=
n nb b

, 
( ) ( ), ,

c c

θ θ −

=
n nb b

 (Conversion Formulas). 

(2.5) 
( ) ( ) ( ), ,

c c

θ θ

− =
−n n

b b
, 

( ) ( )( ), ,

c c

θ θ

− =
−n n

b b
 (Inverse Formulas). 

(2.6) 
( ) ( ), ,

c c

θ θ−π

−
− =

n nb b
, 

( ) ( ), ,

c c

θ θ−π

−
− =

n nb b
 (Angle Formulas). 

The attributes of (2.4), (2.5) and (2.6) can be easily understood by Figure 2. 

There is a point, we should note, not to use 
( ),

c

θ

−

nb
, since ( )cos 0c θ− ≤  in 

(2.6). 
Note that, the definition of left indefinite dot quotient ensures that for any 

0, ,
2 2

θ  ∈ ∪
π π π    , 

( ),

c

θ n b
 is a vector such that 

( ) ( ), ,

c c c
θ θ

⋅ = ⋅ =
n n

b b
b b

. Con-

versely, we have 
Theorem 2.1. Let ≠b 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor a  such that c⋅ =a b  and × ≠a b 0 , then there is the unique angle  

0, ,
2 2

θ  ∈ ∪ 
π π


π




 
 

 such that 
( ),

c

θ

=
n

a
b

 where n  is any nonzero vector  

which has the same direction of ×a b . 
Proof. Since 0c ≠ , the angle ( ),∠ a b  between a  and b  is in  

0, ,
2 2

 ∪
π π π 




 
. And since × ≠a b 0 , ( ),∠ a b  is neither 0 nor π. Let  

( ), 0, ,
2 2

θ  π π
= ∠ ∈ ∪ 


 π 
 

a b . According to the definition of left indefinite dot 

quotient, we have the following three items:  

1) 
( ),

c

θ

⊥
n

n
b

, ⊥n a , ⊥n b . 

2) The three ordered vectors 
( ),

c

θ n b
, b , n  obey the right hand rule; and a , 

b , n  also obey the right hand rule. 

3) 
( ),

,c

θ

θ
 
 ∠ =
 
 n

b
b

 and ( ), θ∠ =a b . 

The above three items imply that 
( ),

c

θ n b
 and a  have the same direction, 

and θ  is unique. 

Since cos cθ⋅ = =a b a b , they have the same magnitude 
cos
c
θb

. Thus 

( ),

c

θ

=
n

a
b

. 
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Figure 2. Conversion of left and right 
dot quotients. 

 
Theorem 2.2. Let ≠b 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor a  such that c⋅ =a b  and × =a b 0 , then there is the unique angle 

{ }0,θ ∈ π  such that 
( ),

c

θ

=
n

a
b

 where n  is any nonzero vector perpendicular 

to b . 
Proof. Let ( ),θ = ∠ a b . Since × =a b 0 , θ  is one of 0 and π. If 0c > , then 

0θ = , that suggests a  and b  have the same direction. If 0c < , then θ = π , 
that suggests a  and b  have the opposite direction. For any nonzero vector  

n , according to the definition of left indefinite dot quotient, 
( ),

c

θ n b
 and b  are 

colinear; furthermore, when 0θ = , 
( ),

c

θ n b
 and b  have the same direction, 

and when θ = π , 
( ),

c

θ n b
 and b  have the opposite direction. Thus, 

( ),

c

θ n b
 

and a  have the same direction, and θ  is unique. Since cos cθ⋅ = =a b a b , 

( ),

c

θ n b
 and a  have the same magnitude 

cos
c
θb

. Thus 
( ),

c

θ

=
n

a
b

.       □ 

Corollary 2.1. Let ≠b 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor a  such that c⋅ =a b , then there are an angle 0, ,
2 2

θ  ∈ ∪
π π π     and a 

nonzero vector n  such that 
( ),

c

θ

=
n

a
b

. 

Proof. It can be seen from Theorem 2.1 and Theorem 2.2.               □ 
Symmetrically, for right indefinite dot quotients, we have the following three 

results: 
Theorem 2.3. Let ≠a 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor b  such that c⋅ =a b  and × ≠a b 0 , then there is the unique angle 
 

0, ,
2 2

θ  ∈ ∪ 
π π


π




 
 

 such that 
( ),

c

θ

=
n

b
a

 where n  is any nonzero vector 
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which has the same direction of ×a b . 
Theorem 2.4. Let ≠a 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor b  such that c⋅ =a b  and × =a b 0 , then there is the unique angle  

{ }0,θ ∈ π  such that 
( ),

c

θ

=
n

b
a

 where n  is any nonzero vector perpendicular 

to a . 
Corollary 2.2. Let ≠a 0  be a vector and 0c ≠  be a scalar. If there is a vec-

tor b  such that c⋅ =a b , then there are an angle 0, ,
2 2

θ  ∈ ∪
π π π     and a 

nonzero vector n  such that 
( ),

c

θ

=
n

b
a

. 

3. Operations 
Since a dot quotient involves four factors: a scalar and two vectors and an angle 
parameter, the rules of multiplications between scalars and dot quotients be-
come very complicated. Thus, in this section, it is fully necessary to further study 
them. For the symmetry of left and right dot quotients, we only prove the prop-
erties with respect to left dot quotients. We always suppose that all factors in-
volving dot quotients make the expressions valid. 

For a real number ( )0λ ≠ , in algebra, we have 
a a a

bb b
λλ

λ

× = = , a a
b b

λ
λ

= ,  

etc. Can these properties be extended to dot quotients? In this section, if no spe-
cial statement, we always assume 0c ≠ . We have the following properties: 

Theorem 3.1. For any 0λ ≠ , 
( )

( )

,

,

1
c c

θ

θ

λ

λ

=
 
 
 

n

n

b b
, 

( )

( )

,

,

1
c c

θ

θ

λ

λ

=
 
 
 

n

n

b b
. 

Proof. When 0λ > , since 
( ),

c

θ

λ
n b

 and 

( ),

1
c

θ λ
 
 
 n

b
 have the same magni-

tude and direction, 
( )

( )

,

,

1
c c

θ

θ

λ

λ

=
 
 
 

n

n

b b
. When 0λ < , based on the previous 

result and attribute (2.5),  

( ) ( )

( ) ( ) ( )

, ,

,
, ,

11 1
c c c c c

θ θ

θ
θ θ

λ λ

λλ λ

= − = − = =
     

−             

n n

n
n n

b b bb b
.            □ 

Theorem 3.2. 1) For any 0λ > , 
( ) ( ), ,

c c

θ θ

λλ =
n nb b

, 
( ) ( ), ,

c c

θ θ

λλ =
n nb b

. 

2) For any 0λ < , 
( ) ( ) ( ) ( ), ,,

c c c

θ θθ

λ λλ
−π

−
= =

−n nn
b b b

, 
( ) ( )( ) ( ), ,,

c c c

θ θθ

λ λλ
π−

−
= =

−n nn
b b b

. 

Proof. (The proof of left equation of (1)) 

For any 0λ > , the magnitudes of 
( ),

c

θ

λ
n b

 and 
( ),

c

θ

λ

n b
 are equal, because 
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( ) ( ) ( ), , ,cos cos
c c c c c

θ θ θ

λ λλ λ λ
θ θ

= = = =
n n nb b b b b

. 

Moreover, when 0c ≠ , since cos 0cλ θ > , 
( ),

c

θ n b
 and 

( ),

c

θ

λ

n b
 have the 

same direction by the definition of left indefinite dot quotient. Thus  

( ) ( ), ,

c c

θ θ

λλ =
n nb b

. 

(The proof of left equation of (2)) For any 0λ < , we have 

( )
( )

( ) ( ), , ,

c c c

θ θ θ

λλ λ −
= − − = −

n n nb b b
. 

By the attribute (2.5), 
( ) ( ) ( ), ,

c c

θ θ

λ λ− −
− =

−n n
b b

; 

by the attribute (2.6), 
( ) ( ), ,

c c

θ θ

λ λ

π−

−
− =

n nb b
.                             □ 

Corollary 3.1. 

1) For any 0λ > , 

( )

( ),

,

1
c c

θ

θ

λ

λ

=
 
 
 

n

n

bb
, 

( )

( ),

,

1
c c

θ

θ

λ

λ

=
 
 
 

n

n

bb
. 

2) For any 0λ < , 

( )
( ) ( ),

,

1
c c

θ

θ

λ

λ

−
=

− 
 
 

n

n

bb
, 

( )

( )( ),

,

1
c c

θ

θ

λ

λ

−
=

− 
 
 

n

n

bb
. 

Proof. Obvious from Theorem 3.1 and Theorem 3.2.                   □ 
Corollary 3.2. 

1) For any 0λ > , 
( ) ( ) ( ), ,

c c

θ θ

λ
λ

=
n n

b b
, 

( ) ( )( ), ,

c c

θ θ

λ
λ

=
n n

b b
. 

2) For any 0λ < , 
( ) ( )( ), ,

c c

θ θ

λ
λ

−π

=
n n

b b
, 

( ) ( ) ( ), ,

c c

θ θ

λ
λ−π

=
n nb b

. 

Proof. 1) If 0λ > , then 
( ) ( ) ( ) ( ) ( ), , , ,

1 1c c c c

θ θ θ θ

λ λλ
λ λ λ

 = × = = 
 n n n n

b b b b
. 

2) If 0λ < , then 
( ) ( ) ( ) ( )( ), , , ,

1 1c c c c

θ θ θ θ

λ λλ
λ λ λ−π π−

 = × = = 
 n n n n

b b b b
.         □ 

Theorem 3.3. If cos 0ic θ >  for 1,2i = , then 

1) 
( ) ( ) ( )

1 2 1 2

, , ,

c c c c

θ θ θ

+
= +

n n nb b b
; 2) 

( ) ( ) ( )

1 2 1 2

, , ,

c c c c

θ θ θ

+
= +

n n nb b b
. 

Proof. (1) Since cos 0ic θ >  for 1,2i = , we have 1 2 0c c > . Hence there is a 
real number 0λ > , satisfying 2 1c cλ= . Thus, 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( ) ( ) ( )

1 2 1 1 1 1

, , , , , ,

11 1 1 1 2

, , , ,

1
1 .

c c c c c c

cc c c c c
θ θ θ θ θ θ

θ θ θ θ

λ
λ

λ λ
λ

+ = + = +

+ + +
= + = = =

n n n n n n

n n n n

b b b b b b

b b b b
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Similar to (2).                                                  □ 
Note that, if 1 2 0c c < , then the above results are not valid, since 1 cos 0c θ >  

and 2 cos 0c θ >  can not hold at the same time. 

4. Structures of Dot Quotients 

In this section, we discuss the structures of dot quotients in two kinds of normal 
vector parameters: one is fixed, and another is not. We always assume that, 
≠b 0  is given, and c is a scalar, and ≠n 0  always indicates a normal vector 

parameter such that ⊥n b . Then we have the following geometric properties: 
Theorem 4.1. Let 0c >  and n  be fixed. In Figure 3, let O be a point in 

3-dimensional Space, and make =OB b  and =ON n . Take  

( )
1 2

0,

c c
= =

n

bOQ
bb

 and 
( )

2 2
,

c c

π

− −
= =

n

bOQ
bb

. For 1,2i = , through iQ , draw a  

straight line il  parallel to vector ×b n . Then 

1) Point 1P  is on the straight line 1l  if and only if there exists a 1 0,
2

θ  ∈  

π  

such that 
( )1

1
,

c

θ

=
n

OP
b

 or 
( )1

1
,

c

θ

=
n

OP
b

; 

2) Point 2P  is on the straight line 2l  if and only if there exists a 

2 ,
2

θ π π


∈ 
 such that 

( )2

2
,

c

θ

−
=

n

OP
b

 or 
( )2

2
,

c

θ

−
=

n

OP
b

. 

Proof. (Proof of (1)) In fact, when 1P  is on the right of line 1l  in Figure 3, 

( )
( )

( )
( )

( )1 1 1 1
0, 0,

0c c c cλ λ
 
 ⋅ = + ⋅ = + × ⋅ = ⋅ + × ⋅ = + =
  n n

OP b OQ Q P b b n b b b n b
b b

, where 0λ ≥ . According to Corollary 2.1, there exists a 1 0,
2

θ  ∈  

π  such that 

( )1

1
,

c

θ

=
n

OP
b

. Similarly, when 1P  is on the left of line 1l  (that is, 1 1P A= ), 

there exists a 1 0,
2

θ  ∈  

π  such that 
( )1

1
,

c

θ

=
n

OP
b

. 

Conversely, if there exists a 1 0,
2

θ  ∈  

π  such that 
( )1

1
,

c

θ

=
n

OP
b

 or 
( )1,

c

θ nb
. 

This tells that 1⊥n OP . And since 1⊥n OQ , we have 1 1⊥n Q P . Moreover 

( )1 1 1 1 1 1 0c c⋅ = − ⋅ = ⋅ − ⋅ = − =Q P b OP OQ b OP b OQ b . This implies that 1 1⊥b Q P . 
Thus, 1 1Q P  is parallel to ×b n . Therefore 1P  is on the line 1l . 

Similarly, we can prove (2).                                       □ 
Corollary 4.1. Let 0c >  and n  be fixed. In Figure 3, the point sets 

( ) ( ), ,

| or , 0,
2

c cP
θ θ

θ
   = ∈   

π

 n n

OP
b b

 

and 
( ) ( ), ,

| or , ,
2

c cP
θ θ

θ
 − − = ∈

π π 
 
 

 n n

OP
b b
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Figure 3. Structure for a fixed n . 

 

form two parallel lines, whose distance is 2c
b

. 

Proof. Obvious.                                                 □ 
Corollary 4.2. Let 0c >  and n  be fixed. In Figure 3, the point sets 

( ),

| , 0,
2

cP
θ

θ
   = ∈   

π

n

OP
b

 and 
( ),

| , ,
2

cP
θ

θ π π 
 − = ∈ 
   n

OP
b

 form two paral-

lel rays on the right parts of 1l  and 2l , whose distance is 2c
b

. Symmetrically, 

the point sets 
( ),

| , 0,
2

cP
θ

θ
   = ∈  

π

 n

OP
b

 and 
( ),

| , ,
2

cP
θ

θ π π 
 − = ∈ 
   n

OP
b

 

form two parallel rays on the left parts of 1l  and 2l , whose distance is also 
2c
b

. 

Proof. Obvious.                                                 □ 

Corollary 4.3. Let 0c ≠  and n  be fixed. Given 0 0, ,
2 2

θ  ∈ ∪
π π π    , for 

any 0, ,
2 2

θ  ∈ ∪
π π π     such that cos 0c θ ≥  and 0cos 0c θ ≥ , there is a real 

number 0λ ≥  such that 
( ) ( )0 ,,

c c

θθ

λ= + ×
nn

b n
b b

 and 
( ) ( )0 ,,

c c

θθ

λ= + ×
nn

n b
b b

. 

Proof. They can be found from Figure 3.                            □ 

It is readily seen that, if 0 0,
2

θ  ∈  

π , then 0,
2

θ  π ∈  
 is required; and if 

0 ,
2

θ π π


∈ 
, then ,

2
θ π π∈ 

  
. 

Theorem 4.2. Let 0c ≠  and n  be fixed. Then, for any 0, ,
2 2

θ  ∈ ∪
π π π     

such that cos 0c θ ≥ , there is a real number 0λ ≥  satisfying 

( ) ( )
2 2

, ,

andc c c c

θ θ

λ λ= + × = + ×
n n

b bb n n b
b bb b

            (4) 
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where 2
tanc θλ =

n b
. 

Proof. When 0,
2

θ  π ∈  
, we have 0c > . According to Figure 3, we can take 

( )
1

,

c

θ

=
n

OP
b

. Then there is a real number 0λ ≥  such that 1 1 λ= ×Q P b n . 

Hence, on the one hand, 1 1 sin
2

λ λπ
= =Q P b n b n . On the other hand, 

( )
1 1 1

,

sinsin sin
cos

c c

θ

θθ θ
θ

= = =
n

Q P OP
b b

. Thus, sin
cos

c θ λ
θ
= b n

b
 ⇒   

2
tanc θλ =

n b
. Since 1 1 1 1= +OP OQ Q P , by Equation (3), we have  

( )
2

,

c c

θ

λ= + ×
n

b b n
b b

 with 2
tanc θλ =

n b
. 

When ,
2

θ π π∈ 
  

, we have 0c < . In the previous proof, substituting 2Q  

for 1Q  and 2P  for 1P , we also have 
( )

2
,

c c

θ

λ= + ×
n

b b n
b b

 and 2
tanc θλ =

n b
. 

Symmetrically, we have 
( )

2
,

c c

θ

λ= + ×
n

b n b
b b

.                         □ 

Corollary 4.4. Let 0c >  and n  be fixed. For any 1 2θ θ<  with  

1 2, 0,
2

θ θ π ∈  
, there is a real number 0λ >  such that 

( ) ( ) ( ) ( )2 1 1 2, , , ,

c c c c

θ θ θ θ

λ− = × = −
n n n n

b n
b b b b

. 

Proof. Obvious.                                                 □ 
Corollary 4.5. Let 0c <  and n  be fixed. For any 1 2θ θ<  with  

1 2, ,
2

θ θ π π∈ 
  

, there is a real number 0λ >  such that 

( ) ( ) ( ) ( )1 2 2 1, , , ,

c c c c

θ θ θ θ

λ− = × = −
n n n n

b n
b b b b

. 

Proof. Obvious.                                                 □ 

Because Definition 2.1 does not include the case of 
2

θ =
π , it leads to some-

thing imperfect. How to define dot quotients on this special case? 

In Figure 3, let 0c >  and 1 0,
2

θ  ∈  

π  and 2 1θ θ= π − , and let  

1 1 2 2λ= × =Q P b n Q P  and 1 1 2 2λ= × =Q A n b Q A , 0λ ≥ . We can find that, if we 
do not change the directions and magnitudes of four vectors 1 1Q P , 2 2Q P , 

1 1Q A  and 2 2Q A , when c goes to 0, not only the vectors 
( )1

1
,

c

θ

=
n

OP
b

 and 
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( )2

2
,

c

θ

−
=

n

OP
b

 (
( )1

1
,

c

θ

=
n

OA
b

 and 
( )2

2
,

c

θ

−
=

n

OA
b

) are all closing to the vector 

1 1Q P  ( 1 1Q A ), but also 1θ  and 2θ  are all closing to 
2
π . In other words, we 

have the following two facts: 

1) 
( ) ( )1 2

0 0
, , ,

2

0lim lim
c c

c c

θ θ
→ →

 
 

π



−
= =

n n n
b b b

, and 
( ) ( )1 2

0 0
, , ,

2

0lim lim
c c

c c

θ θ
→ →

 
 
 
π

−
= =

n n n
b b b

. 

2) 
( )1

1 10
,

lim
c

c

θ

λ
→

= = ×
n

Q P b n
b

 and 
( )1

1 10
,

lim
c

c

θ

λ
→

= = ×
n

Q A n b
b

. 

Thus, according to the above discussion, we can present a supplementary de-

finition of indefinite dot quotients for the case of 
2

θ =
π

 to complete our 

theory. 

Definition 4.1. Let λ  be an arbitrary nonnegative scalar. 
,

2

0

 
 

π


n

b
 is defined 

as λ ×b n , 
that is, 

,
2

0 ;λ
 
 
 
π

= ×
n

b n
b

 

and 
,

2

0

 π 
 
 

n
b

 is defined as λ ×n b , that is, 

,
2

0 ;λ
 


π




= ×
n

n b
b

 

where λ  is called a scalar parameter (see Figure 4). 

For 
,

2

0

 π 
 
 

n
b

 and 
,

2

0

 
 

π


n

b
, Attribute (2.1)-(2.6) hold. In fact, they can be ob-

served by Figure 4. For instance, Attribute (2.6) becomes 

, ,
2 2

0 0

   
   
 
π π

 

− =
n n

b b
, 

, ,
2 2

0 0

   
   
   
π π

− =
n n

b b
, 

that is, λ λ− × = ×b n n b  and λ λ− × = ×n b b n . However, the most of results, 
involving the multiplications of scalars and numerators, in Section 3 do not hold. 
In other words, the properties except Theorem 3.1 do not hold. Since, at this 
time, the new numerator as the multiplication of a scalar and an old numerator 
is 0 which leads to invalid properties. For instance, the result: for 0λ > , 

, ,
2 2

0 0λλ
   
  


π


 
π



=
n n

b b
, does not hold. In fact, let 

,
2

0 2
 
 
 
π

= ×
n

b n
b

. Then  

, , ,
2 2 2

0 2 0 02 4 2
     
     
   

π π


π


×
= × ≠ = = ×

n n n

b n b n
b b b

. 
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Figure 4. Structure for 
2

θ =
π . 

 

If we know more valid information about 
,

2

0

 π 
 
 

n
b

 and 
,

2

0

 
 

π


n

b
, then we can 

imply the exact them. We have 

Theorem 4.3. If there is a real number 0µ ≥  such that 
,

2

0 µ
 
 
 
π

× =
n

b n
b

 or 

,
2

0 µ
 π
 
 

× =
n

b n
b

, then 

2 2

, ,
2 2

0 0and .µ µ

   

π

  
  

π


× ×
= =

n n

b n n b
b bb b

 

Proof. (using condition 
,

2

0 µ
 
 
 
π

× =
n

b n
b

) According to the above definition, 

there is a real number 0λ ≥  such that 
,

2

0 λ
 
 
 
π

= ×
n

b n
b

. We then have, 

,
2

0 µ
 
 
 
π

× =
n

b n
b

 ⇔  ( )λ µ× × =b n b n  ⇔  ( ) ( )λ µ ⋅ − ⋅ = b b n b n b n  ⇔  

2λ µ=b n n  ⇔  2
µλ =
b

. 

Similarly, we can get the other equation. 

If we use condition 
,

2

0 µ
 π
 
 

× =
n

b n
b

, we can obtain the same results. In fact, 

condition 
,

2

0 µ
 
 
 
π

× =
n

b n
b

 is equivalent to condition 
,

2

0 µ
 π
 
 

× =
n

b n
b

.       □ 

Corollary 4.6. For any [ ]0,θ ∈ π , there is a real number 0λ ≥  such that  

( )
2

,

c c

θ

λ= + ×
n

b b n
b b

 and 
( )

2
,

c c

θ

λ= + ×
n

b n b
b b

          (5) 

where 
2

2

tan , 0, ,
2 2

,
2

c θ θ

λ
µ θ

π π  ∈ ∪  = 
 =

 π  


π



n b

b

 if there is a real number 0µ ≥  such 
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that 
,

2

0 µ
 
 
 
π

× =
n

b n
b

 or 
,

2

0 µ
 π
 
 

× =
n

b n
b

 when 0c = .  

Proof. By Theorem 4.2 and Theorem 4.3.                            □ 

Theorem 4.4. Let 1 2, 0λ λ ≥  such that 1 2 1λ λ+ = . If 1 2, 0,
2

θ θ π ∈  
 

( ,
2
π π  

), then there is a 0,
2

θ  π ∈  
 ( ,

2
π π  

) satisfying  

( ) ( ) ( )1 2

1 2
, , ,

c c c

θ θ θ

λ λ+ =
n n nb b b

 and 
( ) ( ) ( )1 2

1 2
, , ,

c c c

θ θ θ

λ λ+ =
n n nb b b

 

where c∈  and 1cos 0c θ ≥  and 2cos 0c θ ≥  and cos 0c θ ≥ . 

Proof. (We only prove the case of 1 2, 0,
2

θ θ π ∈  
) If one of 1λ  and 2λ  and c 

is 0, or 1 2θ θ= , the results hold obviously. 
Let us simply assume 1 2θ θ< . And let 1 2, , 0cλ λ ≠ . Since 1cos 0c θ > , 0c > . 

In Figure 5, let O be a point in 3-dimensional Space, and make =OB b  and 

=ON n . Take 1 2
c

=
bOQ

b
 and 2 2

c
= −

bOQ
b

. And take 
( )1

1
,

c

θ

=
n

OA
b

 and 

( )2

2
,

c

θ

=
n

OA
b

. And more, take 2 2λ=OP OA  and 
( )1

1 1 1
,

c

θ

λ λ= =
n

PE OA
b

. From 

Theorem 4.1, the three points 1Q  and 1A  and 2A  are on the same line, which 
is the exact line 1l  in Figure 3. Since 1 2,⊥ ⊥n OA OA , we have ⊥n OE , that 

leads to 1⊥n Q E . Since ( )
( ) ( )2 1

2 1
, ,

c c c
θ θ

λ λ
 
 ⋅ = + ⋅ = + ⋅ =
 
 n n

OE b OP PE b b
b b

, 

( )1 1 1 0c c⋅ = − ⋅ = ⋅ − ⋅ = − =Q E b OE OQ b OE b OQ b , which shows 1⊥b Q E . 

Thus, E is on the line 1 2Q A . From Theorem 4.1, there is a 0,
2

θ  π ∈  
 satis-

fying 
( ),

c

θ

=
n

OE
b

, that is, 
( ) ( ) ( )1 2

1 2
, , ,

c c c

θ θ θ

λ λ+ =
n n nb b b

. 

By symmetry, we have 
( ) ( ) ( )1 2

1 2
, , ,

c c c

θ θ θ

λ λ+ =
n n nb b b

.                    □ 

In the above theorem, interval 0,
2

 
 

π  can not be extended to 0,
2

 
  

π . In fact, 

if 1 2 2
θ θ< =

π
, we have 0c = . Let 1 2

1
2

λ λ= = , and let 
,

2

0 λ
 
 
 
π

= ×
n

b n
b

 with  

0λ ≠ . Then, there is no 0,
2

θ  π∈  
 satisfying 

( ) ( )1, ,,
2

1 0 1 0 0
2 2θ θ 

 

π



+ =
n nn

b b b
, since  

2
λ

× ≠b n 0  and 
2
λ λ× ≠ ×b n b n  for any 0λ ≠ . Interval ,

2
π π  

, of course,  

can not be extended to ,
2
π π  

. 
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Figure 5. Linear operations. 

 
Corollary 4.7. Let 1 2, , , sλ λ λ  be s nonnegative real numbers such that 

1
1

n

i
i
λ

=

=∑ . For 1,2, ,i s=  , if 0,
2iθ

 ∈  

π  ( ,
2
π π  

), then there is a 0,
2

θ  π ∈  
 

( ,
2
π π  

) satisfying 

( ) ( )1 , ,i

s

i
i

c c

θ θ

λ
=

=∑
n nb b

 and 
( ) ( )1 , ,i

s

i
i

c c

θ θ

λ
=

=∑
n nb b

 

where c∈  and cos 0ic θ ≥  and cos 0c θ ≥ . 
Proof. It can be proved by mathematical induction based on Theorem 4.4. 

□ 
In the application, in order to fit new situation, we need to adjust direction 

parameter to find good new indefinite dot quotients. Considering that the direc-
tion parameter n  is just perpendicular to b , we have the following geometric 
properties: 

Theorem 4.5. Let 0c > . In Figure 6, let O be a point in 3-dimensional Space, 

and =OB b . Take 1 2
c

=
bOQ

b
, and 2 2

c
= −

bOQ
b

. For 1,2i = , through iQ , 

draw a plane iΠ  perpendicular to vector b . Then 
1) point 1P  is on the plane 1Π  if and only if 1 c⋅ =OP b  and  

( )1, 0,
2

 ∠ ∈
π
 

OP b ; 

2) point 2P  is on the plane 2Π  if and only if 2 c⋅ =OP b  and  

( )2 , ,
2
π π 

∠ ∈


OP b . 

Proof. 1) Let 1P  be an arbitrary point on the plane 1Π . If 1P  is 1Q , the re-
sult, of course, holds. If 1P  is not 1Q , then 1 1⊥b Q P . Thus  

( )1 1 1 1 1 1 1 0c c⋅ = + ⋅ = ⋅ + ⋅ = + =OP b OQ Q P b OQ b Q P b . At this case,  

( )1, 0,
2

 ∠ ∈
π
 

OP b  is obvious. 

Conversely, if 1 c⋅ =OP b  and ( )1, 0,
2

 ∠ ∈
π
 

OP b , Then,  

( )1 1 1 1 1 1 0c c⋅ = − ⋅ = ⋅ − ⋅ = − =Q P b OP OQ b OP b OQ b . This means 1P  is on the 
plane 1Π . 
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Figure 6. Structure for free n . 

 
Similarly, 2) can be proved.                                       □ 
Corollary 4.8. In Figure 6, 1) point 1P  is on the plane 1Π  if and only if 

there are a 1 0,
2

θ  ∈  

π  and an n  such that 
( )1

1
,

c

θ

=
n

OP
b

 or 
( )1

1
,

c

θ

=
n

OP
b

; 

2) point 2P  is on the plane 2Π  if and only if there are a 2 ,
2

θ π π


∈ 
 and 

an n  such that 
( )2

2
,

c

θ

=
n

OP
b

 or 
( )2

2
,

c

θ

=
n

OP
b

. 

Proof. Easy.                                                    □ 

In Figure 6, let 0,
2

θ  π ∈  
 be a fixed angle. Then the point sets  

( ){ }| , ,P c θ⋅ = ∠ =OP b OP b  and ( ){ }| , ,P c θ⋅ = − ∠ = π −OP b OP b  form two 

cycles. One’s center is 1Q , and another’s is 2Q . 
In Figure 6, we can find that, when 0c → , two planes 1Π  and 2Π  are all 

closed to the same plane through O and 
2

θ →
π

. Thus, we have 

Theorem 4.6. Let 0c = . In Figure 7, let O be a point in 3-dimensional Space, 
and =OB b . Through O, draw a plane Π  perpendicular to vector b . Then 
point P is on the plane Π  if and only if 0⋅ =OP b . 

Proof. Obvious.                                                 □ 
In Figure 7, given 0r > , the point set { }| 0,P r⋅ = =OP b OP  forms a cycle 

in the plane Π , whose center is O and radius is r. 

5. Coordinates of Dot Quotients 

Since our theory on dot quotients is built earlier in 3-dimensional Space, which 
does not use any coordinate system, it holds widely. For simplicity, in this sec-
tion, we just consider the coordinate formulas of dot quotients in some given 
rectangular coordinate system { }; , ,O i j k . Then, from the coordinates of b   
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Figure 7. Structure for 0c = . 

 

and n , by the results of Section 4, we can easily find the coordinates of 
( ),

c

θ n b
. 

We have 

Theorem 5.1. Let c∈ , 0, ,
2 2

θ  ∈ ∪
π π π    , { }2 2 2, ,X Y Z= ≠b 0 , and 

{ }3 3 3, ,X Y Z= ≠n 0  such that ⊥n b . Suppose 
( )

{ }1 1 1
,

, ,c X Y Z
θ

=
n b

. Then 

( )

( )

( )

2 3 3 2
2 2 2 2

3 3 3
1 2 2 2

2 2 2

3 2 2 3
2 2 2 2

3 3 3
1 2 2 2

2 2 2

2 3 3 2
2 2 2 2

3 3 3
1 2 2 2

2 2 2

tan

tan

tan

Y Z Y Z
c X

X Y Z
X

X Y Z

X Z X Z
c Y

X Y Z
Y

X Y Z

X Y X Y
c Z

X Y Z
Z

X Y Z

θ

θ

θ

  −  +
  + +  =

+ +


 −
 +

  + + =
+ +

  −  +  + +  = + +

                 (6) 

Proof. From Theorem 4.2, we have 

( )
2 2 2

,

tan tanc c c c

θ

θ θ ×
= + × = +  

 n

b b nb n b
b nb n b b

. 

We derive the formula (6) by substituting the coordinates of b , n  and 
×b n .                                                           □ 
Corollary 5.1. Let c R∈ , { }2 2 2, ,X Y Z= ≠b 0  and { }3 3 3, ,X Y Z= ≠n 0  such 

that ⊥n b . Suppose 
( )

{ }1 1 1
,

, ,c X Y Z
θ

=
n b

. If 0θ =  or π, then 

2
1 2 2 2

2 2 2

2
1 2 2 2

2 2 2

2
1 2 2 2

2 2 2

cXX
X Y Z

cYY
X Y Z

cZZ
X Y Z


= + +

 =
+ +


=

+ +

                       (7) 

Proof. If 0θ =  or π, then tan 0θ = . The result can be obtained by the coor-
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dinate formula (6).                                                □ 
It is readily seen that the above result deduced from the coordinate formula (6) 

is quite equal to that deduced from Equation (3). If 
2

θ =
π

, we have 

Theorem 5.2. Let { }2 2 2, ,X Y Z= ≠b 0  and { }3 3 3, ,X Y Z= ≠n 0  such that 

⊥n b . Suppose { }1 1 1

,
2

0 , ,X Y Z
 
 

π



=
n

b
. If 

,
2

0 µ
 
 
 
π

× =
n

b n
b

, then 

( )

( )

( )

2 3 3 2
1 2 2 2

2 2 2

3 2 2 3
1 2 2 2

2 2 2

2 3 3 2
1 2 2 2

2 2 2

Y Z Y Z
X

X Y Z
X Z X Z

Y
X Y Z

X Y X Y
Z

X Y Z

µ

µ

µ

 −
= + +

 − =
+ +

 −
 =

+ +

                    (8) 

Proof. According to Theorem 4.3, we have 

{ }2 3 3 2 3 2 2 3 2 3 3 2
2 2 2 2

2 2 2
,

2

, ,0 Y Z Y Z X Z X Z X Y X Y
X Y Z

µµ

 
 
 
π

− − −×
= =

+ +
n

b n
b b

. 

□ 
For right indefinite dot quotients, we have similar results: 

Theorem 5.3. Let c R∈ , 0, ,
2 2

θ  ∈ ∪
π π π    , { }1 1 1, ,X Y Z= ≠a 0 , and  

{ }3 3 3, ,X Y Z= ≠n 0  such that ⊥n a . Suppose 
( )

{ }2 2 2
,

, ,c X Y Z
θ

=
na

. Then 

( )

( )

( )

3 1 1 3
1 2 2 2

3 3 3
2 2 2 2

1 1 1

1 3 3 1
1 2 2 2

3 3 3
2 2 2 2

1 1 1

3 1 1 3
1 2 2 2

3 3 3
2 2 2 2

1 1 1

tan

tan

tan

Y Z Y Z
c X

X Y Z
X

X Y Z

X Z X Z
c Y

X Y Z
Y

X Y Z

X Y X Y
c Z

X Y Z
Z

X Y Z

θ

θ

θ

  −  +
  + +  =

+ +


 −
 +

  + + =
+ +

  −  +  + +  = + +

                  (9) 

Proof. From Theorem 4.2, we have 

( )
2 2 2

,

tan tanc c c c

θ

θ θ ×
= − × = +  

 n

a n aa n a
a na n a a

. 

Then, we derive Formula (9) by the coordinates of a , n  and ×n a .    □ 
Corollary 5.2. Let c R∈ , { }1 1 1, ,X Y Z= ≠a 0 , and { }3 3 3, ,X Y Z= ≠n 0  such 

that ⊥n a . Suppose 
( )

{ }2 2 2
,

, ,c X Y Z
θ

=
na

. If 0θ =  or π, then 
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1
2 2 2 2

1 1 1

1
2 2 2 2

1 1 1

1
2 2 2 2

1 1 1

cXX
X Y Z

cYY
X Y Z

cZZ
X Y Z


= + +

 =
+ +


=

+ +

                       (10) 

Proof. If 0θ =  or π, then tan 0θ = . The result holds from the coordinate 
formula (9).                                                      □ 

Theorem 5.4. Let { }1 1 1, ,X Y Z= ≠a 0  and { }3 3 3, ,X Y Z= ≠n 0  such that 

⊥n a . Suppose { }2 2 2

,
2

0 , ,X Y Z
 
 
 
π

=
n

a
. If 

,
2

0 µ
 π
 
 

× =
n

a n
a

, then 

( )

( )

( )

3 1 1 3
2 2 2 2

1 1 1

1 3 3 1
2 2 2 2

1 1 1

3 1 1 3
2 2 2 2

1 1 1

Y Z Y Z
X

X Y Z
X Z X Z

Y
X Y Z

X Y X Y
Z

X Y Z

µ

µ

µ

 −
= + +

 − =
+ +

 −
 =

+ +

                     (11) 

Proof. According to Theorem 4.3, we have 

{ }3 1 1 3 1 3 3 1 3 1 1 3
2 2 2 2

1 1 1
,

2

, ,0 Y Z Y Z X Z X Z X Y X Y
X Y Z

µµ

 
 
 
π

− − −×
= =

+ +
n

n a
a a

. 

□ 
Next, we will discuss the applications of coordinate formulas. Although we 

can give some application examples of dot quotient in differential manifolds, in 
physics, in force, etc., here we just give a very simple examples to show how to 
use our formulas, and verify the correctness of our theory, by the way. 

Example 1 It is given that two vectors { } { }1 1 1, , 1,2,2X Y Z= =a  and  
{ } { }2 2 2, , 2,1, 3X Y Z= = −b . Then their dot product 2c = ⋅ = −a b , and their cross 

product { } { }1 2 2 1 2 1 1 2 1 2 2 1, , 8,7, 3Y Z Y Z X Z X Z X Z X Z× = − − − = − −a b . And let  
{ } { } { }3 3 3, , 16,14, 6 2 8,7, 3 2X Y Z= = − − = − − = ×n a b . Of course, ⊥n a  and  

⊥n b . Thus we have 2 2 2
1 1 1 3X Y Z= + + =a , 2 2 2

2 2 2 14X Y Z= + + =b ,  
2 2 2
3 3 3 2 122X Y Z= + + =n . Since a  and b  are known, the angle θ  

between them is determined by 2cos
3 14

θ −
= =

ab
a b

. By the way, we have 

2 122sin 1 cos
3 14

θ θ= − = , 2cot
122

θ −
= , and  

2 2 2
3 3 3

2cot 2 122 4
122

X Y Zθ −
+ + = × = − . 

It is no doubt that ⊥n b  and ≠b 0  and cos 0c θ > . From Formula (6), we, 

of course, have the coordinates of 
( ),

c

θ n b
: 
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( ) ( )
2 3 3 2

2 2 2 2
3 3 3

1 2 2 2
2 2 2

cot 1 6 14 32 2 1
14 4

Y Z Y Zc X
X Y Z

X
X Y Z

θ

 − +
 + +  × − − × −− = = + = −+ +  

; 

( ) ( ) ( )
3 2 2 3

2 2 2 2
3 3 3

1 2 2 2
2 2 2

cot 16 3 2 62 1 2
14 4

X Z X Zc Y
X Y Z

Y
X Y Z
θ

 − +
 + +  − × − − × −− = = + = −+ +  

; 

( )
2 3 3 2

2 2 2 2
3 3 3

1 2 2 2
2 2 2

cot 2 14 16 12 3 2
14 4

X Y X Yc Z
X Y Z

Z
X Y Z

θ

 − +
 + +  × − − ×− = = − + = −+ +  

. 

It is readily seen that 
( ),

c

θ n b
 is exactly equal to a .  

Similarly, by Formula (9), we can obtain the coordinates of 
( ),

c

θ na
: 

( )
3 1 1 3

1 2 2 2
3 3 3

2 2 2 2
1 1 1

cot 14 2 2 62 1 2
9 4

Y Z Y Zc X
X Y Z

X
X Y Z

θ

 − +
 + +  × − × −− = = + = −+ +  

; 

( ) ( )
1 3 3 1

1 2 2 2
3 3 3

2 2 2 2
1 1 1

cot 1 6 16 22 2 1
9 4

X Z X Zc Y
X Y Z

Y
X Y Z
θ

 − +
 + +  × − − − ×− = = + = −+ +  

; 

( )
3 1 1 3

1 2 2 2
3 3 3

2 2 2 2
1 1 1

cot 16 2 1 142 2 3
9 4

X Y X Yc Z
X Y Z

Z
X Y Z
θ

 − +
 + +  − × − ×− = = + = − −+ +  

. 

It is also seen that 
( ),

c

θ na
 is really equal to b . 

Example 2 Given two vectors { } { }1 1 1, , 1,2,1X Y Z= =a  and  

{ } { }2 2 2, , 2,1, 4X Y Z= = −b , their dot product 0c = ⋅ =a b , which means ⊥a b , 

and 2 2 2 2
2 2 2 21X Y Z= + + =b , and their cross product  

{ } { }
( ) ( ){ } { } { }

3 3 3 1 2 2 1 2 1 1 2 1 2 2 1, , , ,

2 4 1 1,2 1 1 4 ,1 1 2 2 9,6, 3 3 3,2, 1

X Y Z Y Z Y Z X Z X Z X Y X Y× = − − −

= × − − × × − × − × − × = − − = − −

a b 
. If we re-

gard { }9,6, 3× = − −a b  as known and let { }3,2, 1= − −n , then 3µ = . 

Thus, from Formula (8), we have the coordinates of 
,

2

0

 
 

π


n

b
: 

( ) ( ) ( )2 3 3 2
1 2 2 2

2 2 2

1 1 2 4 7 1
21 21 3

Y Z Y Z
X

X Y Z
µµ µ µ × − − × −−  = = = = =

+ +
; 

( ) ( ) ( ) ( )3 2 2 3
1 2 2 2

2 2 2

3 4 2 1 14 2 2
21 21 3

X Z X Z
Y

X Y Z
µµ µ µ − × − − × −−  = = = = =

+ +
; 
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( ) ( )2 3 3 2
1 2 2 2

2 2 2

2 2 3 1 7 1
21 21 3

X Y X Y
Z

X Y Z
µµ µ µ × − − ×−  = = = = =

+ +
. 

It is readily seen that 
,

2

0

 
 

π


n

b
 is exactly equal to a .  

Similarly, we have the coordinates of 
,

2

0

 π 
 
 

n
a

: 

( ) ( )3 1 1 3
2 2 2 2

1 1 1

2 1 2 1 4 2 2
6 6 3

Y Z Y Z
X

X Y Z
µµ µ µ × − × −−  = = = = =

+ +
; 

( ) ( ) ( )1 3 3 1
2 2 2 2

1 1 1

1 1 3 1 2 1
6 6 3

X Z X Z
Y

X Y Z
µµ µ µ × − − − ×−  = = = = =

+ +
; 

( ) ( )3 1 1 3
2 2 2 2

1 1 1

3 2 1 2 8 4 4
6 6 3

X Y X Y
Z

X Y Z
µµ µ µ − × − ×− − − = = = = = −

+ +
. 

It is also seen that 
,

2

0

 π 
 
 

n
a

 is fully equal to b . 

We should note that, if we adjust the value of µ , we can get different a  or 
b  such that 0⋅ =a b . For instance, if 1µ =  instead of 3, we have  

,
2

0 1 2 1, ,
3 3 3 π

 
 

 =  
 

n
b

 and 
,

2

0 2 1 4, ,
3 3 3π 

 
 

 = − 
 

n
a

 such that 
,

2

0 0
 
 
 
π

⋅ =
n

b
b

 and  

,
2

0 0
 
 
 
π

⋅ =
n

a
a

. Based on our need, by adjusting the value of µ , we can get better 

or best 
,

2

0

 
 

π


n

b
 or 

,
2

0

 π 
 
 

n
a

. 

Generally speaking, if we know sufficient supporting information, we really 
can back to find a  ( b ) such that c⋅ =a b  from the main information c and 
b  ( a ). Sometimes, we are not interested in finding original a  ( b ), but in 

finding a needed ′a  ( ′b ) such that c′ ⋅ =a b  ( c′⋅ =a b ). When 
2

θ ≠
π

, the  

dot quotient theory tells that it is enough by adjusting angle parameter and 
normal vector parameter, otherwise we need additional conditions such as cross 
products. 

6. Conclusions 

This paper successfully set up the theory of indefinite dot quotients by adding 
angle and normal direction parameters. 

First of all, we successfully define indefinite dot quotients by Definition 2.1. 
By the definition, as we know a real number c and a nonzero vector b , we  

inversely obtain two vectors 
( ),

c

θ n b
 and 

( ),

c

θ nb
 satisfying 
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( ) ( ), ,

c c c
θ θ

⋅ = ⋅ =
n n

b b
b b

 

where θ  is an angle parameter and n  direction parameter such that ⊥n b , 

and both 
( ),

c

θ

×
n

b
b

 and n  have the same direction, and both 
( ),

c

θ

×
n

b
b

 and  

n  have the same direction. We further obtain the basic properties (2.1) to (2.6) 
and some expected operation properties. 

Secondly, we obtained two geometric expressions of indefinite dot quotients 
(by Theorem 4.1 and Theorem 4.5) where one of them exposes that, when nor-
mal direction n  is fixed, the end points of indefinite dot quotients form two 
parallel lines with the change of angle parameters, and another reveals that when 
θ  is fixed, the end points form two circles with the change of normal directions. 
By the geometric expressions, Corollary 4.6 not only puts angle parameter into 
real parameter but also presents two unified expressions: 

( ) ( )
2 2

, ,

andc c c c

θ θ

λ λ= + × = + ×
n n

b bb n n b
b bb b

 

which successfully avoid concerning the angle parameter is 
2
π

 or not. We say 

that the structures of indefinite dot quotients are exposed completely in geome-
try. 

Finally, we obtained the coordinate formulas (6)-(11), which help us to get the  

coordinates of 
( ),

c

θ n b
 and 

( ),

c

θ nb
 easily. With determined angle and direction  

parameters, we inversely find the exact vector a  ( b ) from a scalar c and a 
vector b  ( a ) such that c⋅ =a b  by the coordinations. 

We want to say, we can design new indefinite dot quotients by adjusting angle 
parameters and direction parameters to fit new situation in the applications. 

The relation between dot products and indefinite dot quotients likes that be-
tween derivatives and indefinite integrals, the only difference is that an indefinite 
integral has only one parameter (formed by an arbitrary constant), but an inde-
finite dot quotient has a parameter pair (an angle, a direction). 

It is seen that this paper has successfully built the theory of indefinite dot quo-
tients which solve the long time problem that dot product has no corresponding 
division in three dimensional space. Our theory of indefinite dot quotients 
makes the theory of vector analysis more perfect. 
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