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Abstract 
In this paper, an improved genetic algorithm with delay constraint was de-
signed. When initializing the population, a greedy strategy was adopted to 
ensure that there were enough excellent genes in the initial population, a 
normal distribution ordering selection strategy was adopted when selecting 
the next generation, so that high-quality chromosomes have a greater proba-
bility of being selected, and an adaptive cross-mutation strategy was proposed 
to achieve dynamic probability when cross-mutation was carried out to avoid 
the problem that the algorithm was easy to fall into the local optimal solution 
in the later stage, and at the same time, a maximum subsegment crossover 
strategy and a discardable mutation strategy were proposed to solve the prob-
lem of individual solution deterioration after crossover. 
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1. Introduction 

With the popularization of smart terminal devices and the large-scale develop-
ment of emerging technologies such as VR and driverless driving, their applica-
tions have become more complex, and the requirements for network perfor-
mance, latency, and computing power are increasing day by day. In order to 
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cope with the rapid development of technology and improve user service quality, 
edge cloud computing emerged as the times require. By moving tasks to edge 
servers closer to users, task delays and energy consumption can be effectively 
reduced. Due to the limited edge cloud resources, due to the diversity and com-
plexity of edge cloud computing offloading scenarios, different offloading strate-
gies will usually produce different effects. How to reasonably offload the differ-
ent tasks generated by mobile local devices to ensure the quality of service? The 
problem needs to be solved urgently [1]. At present, a large number of research 
on edge computing ignores the resources of the central cloud. At the same time, 
task models and offloading strategies often only consider the optimal energy 
consumption when the delay is not limited, ignoring the optimal energy con-
sumption when the delay is limited. In response to the above problems, this pa-
per takes dependent applications composed of serial tasks as the research object, 
combines the system model of a single local device, multi-edge cloud servers and 
a single central cloud server, and finally builds an optimal solution under de-
lay-limited conditions. Energy consumption task model, and an improved ge-
netic algorithm suitable for delay constraints is designed. 

At present, many scholars have studied the problem of edge computing task 
offloading. These studies can be roughly divided into three categories, namely 
minimizing delay as the goal, minimizing energy consumption as the goal, and 
the trade-off between delay and energy consumption. 

1) Minimize time delay 
In order to shorten the computing time of the application, Chen et al. [2] 

modeled the delay minimization problem as a convex optimization model and 
used convex optimization to solve it, which effectively shortened the computing 
time. Yu et al. [3] proposed a complete polynomial time approximation scheme 
for parallel multi-applications, which can greatly shorten the execution delay of 
tasks.  

2) Minimize energy consumption 
Zhang et al. [4] proposed a total cost algorithm based on enumeration search 

algorithm and improved Lagrangian relaxation for the stochastic shortest path 
problem. The simulation results show that compared with local execution and 
cloud execution, significant savings in mobile energy consumption on the device. 
Wen et al. [5] optimized the configuration of clock frequency and data transmis-
sion to meet the requirements of delay constraints, and minimized energy con-
sumption by solving constraint optimization problems. This method can reduce 
the energy consumption of the equipment while ensuring performance. 

3) Trade-off between delay and energy consumption 
Considering energy consumption and execution delay at the same time, Mao 

et al. [6] proposed a low-complexity sub-optimal algorithm strategy based on al-
ternating minimization, which comprehensively considers the comprehensive 
cost of delay and energy consumption, which can effectively reduce system costs 
and Its effectiveness is verified through simulation results. Mahmoodi et al. [7] 
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comprehensively considered delay and energy consumption in their research 
and modeled the problem as a linear programming model to obtain a solution 
that minimizes system cost. Through the linear programming method, the delay 
and energy consumption can be balanced and the optimal system cost can be 
obtained. 

The above-mentioned classification analysis of the current status of past re-
search is summarized below. First of all, the above-mentioned research on mi-
nimizing delay and minimizing energy consumption are all studies on a single 
goal, and do not combine delay and energy consumption. However, the applica-
ble scenarios are limited. Secondly, the above-mentioned studies on the trade-off 
between delay and energy consumption usually simply use parameters to weight 
the relationship between delay and energy consumption, and have never consi-
dered the optimal situation when either delay or energy consumption is limited. 
The situation lacks certain constraints. Finally, research on edge cloud compu-
ting also ignores the resources of the central cloud, and often only considers 
both terminal devices and edge devices. 

Therefore, in view of the above shortcomings, there is an urgent need to study 
energy-optimal offloading strategies under delay constraints in the device-edge- 
cloud tripartite system model scenario. Therefore, this paper designs an im-
proved genetic algorithm with time constraint (IGAWTC) that is suitable for 
time delay constraints to obtain optimal energy consumption under time delay 
constraints. At the same time, simulation experiments are conducted to compare 
with other offloading strategies. The proposed IGAWTC The energy consump-
tion is the lowest when the delay is limited. 

2. System Model 

This paper mainly considers studying the optimal energy consumption of serial 
tasks under the condition of limited delay under the system model of mul-
ti-terminal devices, multi-edge cloud servers and central cloud servers, in which 
each task is only allowed to be processed by one of the three parties of terminal, 
edge and cloud. Execution, Figure 1 shows the edge cloud computing system 
model. 

The key to edge cloud computing is to solve tasks generated by terminal de-
vices while taking into account the characteristics of the tasks. Therefore, this 
paper considers the system model to be a terminal-edge-cloud tripartite system, 
making full use of the performance of edge cloud servers and cloud servers to 
meet the task offloading strategy. The process of designing a system is as follows. 
First, the task generated by the terminal device will determine whether the task is 
executed locally. If it is executed locally, it will be processed directly on the ter-
minal device. If it is not executed locally, the task will be uploaded and assigned 
to the edge server or cloud server for execution. Finally, the edge cloud server or 
the cloud server can return the results to the terminal device after completing 
the task execution. 
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Figure 1. System model. 

2.1. Delay Model and Energy Consumption Model 

This article assumes that the system consists of a terminal device (the terminal 
device can be a mobile phone, a computer or an Internet of Things device, etc.), 
a central cloud server and m edge cloud servers. Among them, the application 
generated by the user can be disassembled into k sub-tasks, which can offload to 
the central cloud server or edge cloud server for processing, or it can be processed 
directly locally. Model it as { }1 2, , , kTASKS task task task=  , and express the i-th 
task as a triplet as { }, ,in out

i i i itask D Z D= , where in
iD  represents the input data 

of the i-th task. Amount, Zi represents the number of resources required to 
process the i-th task, and out

iD  represents the amount of data after the calcula-
tion of the i-th task is completed. 

The terminal device is modeled as a five-tuple { }, , , ,l l up down idleU f p p p p= , 
where fl represents the task computing capability of the local device, pl represents 
the execution power of the local device, and pup represents the upload of the local 
device. Power, pdown represents the local device receiving power, and pidle represents 
the local standby power. 

Use M to represent the set of edge cloud servers, that is  
{ }1 2, , , mM mec mec mec=  , and use a triple to represent the j-th edge cloud serv-

er, { }, ,mec upmec downmec
j j j jmec f r r= , where, mec

jf  Indicates the task computing ca-
pability of the j-th edge cloud server, upmec

jr  indicates the upload rate of the j-th 
edge cloud server, and downmec

jr  indicates the download rate of the j-th edge 
cloud server. 

Similarly, the central cloud server is represented by a triplet, cloud = {fcloud, rup-

cloud, rdowncloud}, where fcloud represents the task computing capability of the central 
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cloud server, rupcloud represents the upload rate of the central cloud server, and 
rdowncloud represents the central cloud server download rates. 

Use { }1 2, , , kO o o o=   to represent the offloading decision of k tasks, where, 
{ }0,1, , , 1io m m∈ + . When oi = 0, it means that the i-th task is a non-offloading 

task, and the task is executed on the local device; when { }1, ,io m∈  , it means 
that the i-th task is a task that is offloaded to the edge cloud for execution; when 
oi = m + 1, it means that the i-th task is a task that is offloaded to the central 
cloud server for execution.  

When the i-th task is a non-offloaded task, only the local execution delay and 
local execution energy consumption need to be considered, as shown in Equa-
tions (1) and (2): 

l i
i

l

Zt
f

=                              (1) 

l l
i i le t p= ⋅                             (2) 

When the i-th task is an offloaded task and executed on the edge cloud server, 
the task upload delay, execution delay and return delay need to be considered, as 
shown in Equation (3), and the energy consumption is as shown in Equation (4) 
Show: 

in out
mec i i i
i upmec mec downmec

i i i

D Z Dt
r f r

= + +                    (3) 

in out
mec i i i
i up idle downupmec mec downmec

i i i

D Z De p p p
r f r

= × + × + ×            (4) 

When the i-th task is an offloaded task and executed on the central cloud 
server, similar to the edge cloud server, the task upload delay, execution delay 
and return delay need to be considered, as shown in Equation (5), the energy 
consumption is as shown in Equation (6): 

in out
cloud i i i
i

upcloud cloud downcloud

D Z Dt
r f r

= + +                  (5) 

in out
cloud i i i
i up idle down

upcloud cloud downcloud

D Z De p p p
r f r

= × + × + ×           (6) 

According to the above calculation model, the taski delay calculation is as 
shown in Equation (7), and the energy consumption is as shown in Equation 
(8): 

{ }
, 0

, 1, ,
, 1

l
i i
mec

i i i
cloud
i i

t o
T t o m

t o m

 =


= ∈
 = +

                    (7) 

{ }
, 0

, 1, ,
, 1

l
i i
mec

i i i
cloud
i i

e o
E e o m

e o m

 =


= ∈
 = +

                    (8) 

When all tasks are completed and executed, the total delay can be calculated 
as shown in Equation (9), and the total energy consumption is shown as Equa-
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tion (10): 

1

k

total i
i

T T
=

= ∑                          (9) 

1

k

total i
i

E E
=

= ∑                         (10) 

2.2. Problem Model 

Given a set of serial tasks TASKS, terminal device U, edge cloud server M and 
central cloud server cloud, if all tasks are executed in the corresponding longest 
(or shortest) time, the system will generate the longest delay Tmax (or the shortest 
delay Tmin). The problem of this article is to minimize energy consumption under 
the given delay limit min limit maxT T T≤ ≤ , right now: 

min totalE                         (11) 

s.t. total limitT T≤                       (12) 

3. Improved Genetic Algorithm Suitable for Delay  
Constraints 

3.1. Encoding and Decoding 

When the genetic algorithm solves the offloading problem of edge cloud 
computing, each chromosome is defined as an offloading strategy. The value 
of the gene in the chromosome is an integer of [0, m + 1], where 0 means that 
the task is processed directly on the terminal device, and [1~m] indicates that 
the task is processed on different edge cloud servers, and m + 1 indicates that 
the task is processed on the central cloud server. 

Assume that the number of subtasks generated by the terminal device is 10, 
then the task set is { }1 2 10, , ,TASKS task task task=  , Table 1 Represents a 
computational offloading coding instance of 10 pending tasks.  

Usually the algorithm initializes the offloading decision vector at the be-
ginning, and then updates the offloading decision vector based on fitness. At 
the same time, this article assumes that the number of terminal devices is 1, 
the number of edge cloud servers is 5, and the number of cloud servers is 1. 
Therefore, this article can Assume that the i-th offloading decision vector of 
these 10 tasks is Xi = {0, 2, 4, 5, 6, 4, 3, 0, 5, 1}. This value is a randomly initia-
lized value, and the minimum value is 0. The maximum value is 6, which de-
monstrates the encoding and decoding process. Among them, 0 means that 
the task is returned to the terminal device for processing, [1 - 5] means that 
the task is processed on different edge cloud servers, and 6 means that the 
task is processed on the central cloud server.  

During the task offloading optimization process, it is necessary to know the 
task allocation on each node of the terminal, edge, and cloud. Therefore, it is 
necessary to decode the offloading decision vector. By observing the encoding 
method of the offloading decision vector, the decoding results are shown in 
Table 2. 
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Table 1. Offloading decision vector encoding example. 

TASKS task1 task2 task3 task4 task5 task6 task7 task8 task9 task10 

Code 0 2 4 5 6 4 3 0 5 1 

 
Table 2. Example of offloading decision vector decoding. 

Node number 0 1 2 3 4 5 6 

TASKS task1 
task8 

task10 task2 task7 
task3 
task6 

task4 
task9 

task5 

 
It can be seen from the decoding results that {task1, task8} is processed lo-

cally, task10 is processed on the edge server mec1, task2 is processed on the 
edge server mec2, task7 is processed on the edge server mec3, and {task3, task6} 
is processed on the edge server. Processing is performed on mec4, {task4, task9} 
is processed on the edge server mec5, and task5 is processed on the central 
cloud server. 

According to formulas (7) and (9), the delay and energy consumption after 
each task offloading is completed can be calculated. According to formulas (8) 
and (10), the delay and energy consumption of each offloading strategy can 
be calculated. Then the time delay is introduced. With extension constraints, 
a feasible solution to the problem model in this article can be obtained. 

Finally, the IGAWTC algorithm is executed to optimize the offloading strat-
egy. When the iteration is completed, the optimal solution to the problem 
model of this article can be obtained. 

3.2. Algorithm Process 

In IGAWTC, each individual is composed of a chromosome representing a set of 
genes. Each chromosome can be expressed as a solution to a problem, where 
each position represents a gene, and the length of each chromosome is k, which 
exactly fits the unloading decision vector of this article.  

First, IGWTC initializes the operation to determine the value range of the fit-
ness function, establish the accuracy and chromosome coding length, chromo-
some coding, and establish the population size, etc. Then the population is gree-
dily initialized and the first generation population is randomly generated. Se-
condly, improved selection, crossover, mutation and other operations are per-
formed to obtain the next generation population. Finally, after the iteration is 
completed, the optimal solution is output. The specific steps will be explained in 
detail in this section.  

Figure 2 is the IGAWTC flow chart. 

3.3. Greedy Initialization Population Strategy 

The original distribution of the initial population has a great impact on the con-
vergence of the algorithm. Unreasonable initial population distribution will  
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Figure 2. IGAWTC algorithm flowchart. 

 
cause the algorithm to converge slowly, especially when the crossover and muta-
tion operators of the genetic algorithm are poorly selected, or even premature 
convergence. The initial populations of standard genetic algorithms and most 
improved genetic algorithms are randomly generated in the search space. This 
method may result in not enough excellent genes when initializing the popula-
tion, which is extremely detrimental to subsequent operations such as selection, 
crossover, and mutation. 

Therefore, this paper proposes a greedy initialization population strategy for 
this problem. Two individuals of the population use a greedy algorithm. One in-
dividual selects the best delay for each task, one individual selects the best energy 
consumption for each task, and the other individuals are still initialized randomly, 
which ensures that there are enough excellent genes in the initial population and 
effectively improves the algorithm search efficiency. 

3.4. Normal Distribution Ranking Selection Strategy 

Since this article needs to consider the delay constraint, delay and energy con-
sumption are usually mutually constrained. When the individual energy con-
sumption is low but the delay does not meet the constrained delay condition, it 
is not a solution to the problem. When an individual meets the delay constraint 
but has high energy consumption, it means that the individual is not the optimal 
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solution to the problem. Obviously, the conventional use of delay sorting or 
energy consumption sorting selection is unreasonable. Therefore, this paper 
proposes a normal distribution sorting selection strategy to calculate the abso-
lute value of individual delay and constraint delay and sort them in ascending 
order, as shown in Equation (13) as shown: 

s totol limispecie tABS T T= −                      (13) 

The normal distribution is a very widely used probability distribution, and its 
function expression is shown in Equation (14): 

( )
( )2

221 e
2

x

f x
µ

σ

σ

−
−

π
= ×                      (14) 

Since the mathematical expectation of the standard normal distribution is 0, 
and because this strategy calculates the absolute value of the solution, the gener-
ated solution values are all greater than 0. Therefore, after the population is 
sorted by absolute value, normalization is performed and the values are mapped 
to With μ = 0 as the right half of the central symmetry axis, it is mapped to the 
interval (0, 2), as shown in Equation (15), and then the proportion probability of 
each individual is assigned through roulette, as shown in Equation (16) shown. 

2 species species
min

maxspecies
species spec es

min
i

ABS ABS
ABS

ABS ABS
−

′ = ×
−

              (15) 

( )
( )
( )

1

species
i

sp
i

c es

N

e i
i

f ABS
P i

f ABS
=

′
=

′∑
                    (16) 

Among them, speciesABS ′  represents the solution value after normalization of 
the absolute value, ABSspecies represents the absolute value without normalization, 

specie
min

sABS represents the individual with the smallest absolute value in the con-
temporary population without normalization, specie

max
sABS  represents the indi-

vidual with the largest absolute value in the contemporary population without 
normalization, and spec

i
iesABS ′  represents the i-th value after normalization. 

It can be seen that the normal distribution ranking selection strategy does not 
rely on individual fitness value information, but combines the delay constraints 
studied in this article and the standard normal distribution for ranking selection. 
It can inhibit the standard genetic algorithm based on fitness to a certain extent. 
Premature convergence and evolutionary stagnation caused by proportional se-
lection strategies. 

3.5. Adaptive Crossover Mutation Probability 

In standard genetic algorithms, crossover and mutation probabilities are usually 
set to fixed values based on experience. If they are set too low, the standard 
genetic algorithm will not easily generate new individuals and will easily fall 
into local optimality. Setting it too high will turn the standard genetic algo-
rithm into a purely random search algorithm. Standard genetic algorithms 
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usually require repeated experiments for each problem to determine the cros-
sover and mutation probabilities, and it is often difficult to find the optimal 
probability. 

Inspired by the literature [8], this paper proposes a nonlinear adaptive cros-
sover mutation probability that combines fitness. It mainly based on the Sigmoid 
function to improve the crossover rate and mutation rate, a nonlinear adaptive 
crossover mutation probability adjustment formula combined with fitness is de-
signed. 

Equation (17) is the nonlinear adaptive crossover probability formula of IGA- 
WTC. Equation (18) is the nonlinear adaptive mutation probability formula of 
IGAWTC. 

Among them, Ttotol is the independent variable, among which k1, k2 and k3 are 
constants, which are set to 1.0, 0.1 and 0.2 respectively. 

( )
( )

6
1

2
20

,

1 e
,

limit totol

limit min

totol limit
T T
T T

totol limitmax

k k T T
P cr

P cr T T

 −
− ×  − 

 − ≤=  +
>

           (17) 

( )
( )

6
3

20

,

1 e
,

limit totol

limit min

totol limit
T T
T T

totol limitmax

k T T
P mu

P mu T T

 −
− ×  − 

 ≤=  +
>

            (18) 

Nonlinear adaptive cross-mutation probability combined with fitness can mainly 
solve the following problems: 

It can be seen from Equations (17) and (18) that when Ttotol does not meet the 
delay constraints, it is given the highest crossover and mutation probability, 
which can quickly transform solutions that do not meet the constraints into so-
lutions that meet the conditions. 

When Ttotol is close to Tmin, it means that although the delay meets the con-
straints, it is obvious that better energy consumption can be found, so higher 
crossover and mutation probabilities are given to optimize it. 

When Ttotol is closer to Tmin, it means that the time delay is close to the boun-
dary, so the probability of crossover and mutation decreases non-linearly and 
smoothly, and the excellent body is better preserved. 

3.6. Maximum Subsegment Crossover Strategy Based on Dual  
Fitness 

In standard genetic algorithms, crossover operators usually adopt a single-point 
crossover or two-point crossover strategy to randomly determine crossover points 
on individual chromosomes. The crossover mixing speed of this strategy is slow, 
and the random selection of crossover points is usually easy to cause Excellent 
genes are exchanged, causing the individual’s solution to become worse after 
crossing. 

Therefore, this paper proposes a maximum sub-segment crossover strategy 
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based on dual fitness, considering the total delay and total energy consumption 
as delay fitness and energy consumption fitness. The specific operation is: 

First, the individual that needs to be crossed is defined as the primary indi-
vidual, and the individual that needs to be crossed with the primary individual is 
defined as the secondary individual. The selection of the secondary individual is 
determined by the primary individual. 

The populations are sorted by delay fitness and energy consumption fitness 
respectively, and the secondary individuals are selected by judging whether the 
delay of the main individual satisfies the delay constraint. When the main indi-
vidual satisfies the delay constraint, the individual with the lowest energy con-
sumption fitness is selected. As a secondary individual, the purpose is to reduce 
the energy consumption of the primary individual. When the delay constraint is 
not satisfied, the individual with the lowest delay fitness is selected as the sec-
ondary individual, with the purpose of reducing the delay of the primary indi-
vidual. 

Then search for the gene sub-segments of the main individual and the sec-
ondary individual, starting from the largest sub-segment. When the secondary 
individual in the same gene sub-segment is better than the main individual, the 
genes of this sub-segment will be crossed, otherwise the genes will continue to be 
narrowed down. Search for subsections. If information feedback is obtained that 
there is no gene subsection in the secondary individual that is better than the 
primary individual, the crossover will be terminated to ensure that excellent 
genes are not lost. The process is shown in Figure 3. 

3.7. Abandonable Mutation Strategy 

The mutation operation is an important operation to jump out of the local op-
timal solution when the algorithm falls into the local optimal solution. In the 
standard genetic algorithm, it is usually easy to mutate excellent genes into bad 
genes during the mutation operation. Therefore, in order to make the algorithm 
jump out of the local optimal solution quickly, it is optimal and does not mutate 
the solution that satisfies the delay constraint into a solution that does not satisfy 
the delay constraint. This paper proposes an abandonable mutation strategy. 
First, it is judged whether the delay of the individual to be mutated satisfies the 
delay constraint. If it is satisfied, the mutation operation is performed and then 
the judgment is made. Whether the individual solution after mutation still satis-
fies the time delay constraint, if so, accept the mutation, otherwise give up the 
mutation. If the delay of the mutated individual does not meet the delay con-
straint, the mutation operation is performed directly. 

4. Experimental Simulation and Results 
4.1. Experimental Environment and Parameter Configuration 

In order to verify the performance of the IGAWTC algorithm, a program was 
written in JAVA language and a simulation comparison experiment was de-
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signed. The experimental running environment is: Intel(R) Core(TM) i7-9750H 
CPU @ 2.60 GHz, Windows 10 Professional laptop with 16 GB memory. In the 
experiment, a central cloud server, terminal equipment and 5 edge cloud servers 
were set up. All parameters were set according to the literature [9] as shown in 
Table 3. 

In order to simplify the calculation amount in this article, the parameter nu-
merical design range is small, and the parameter design logic conforms to the 
edge cloud computing model. Generally speaking, the computing power of cloud 
servers is the strongest, followed by edge cloud servers and local servers are the 
weakest. At the same time, parameters such as upload, download and execution 
power are also determined according to the logic of the actual device. Generally 
speaking, the standby power is the lowest and the upload power is the highest. 
The bandwidth is usually that the download bandwidth is better than the upload 
bandwidth. Just make sure the data is logical. 

 

 
Figure 3. Maximum subsegment crossover strategy based on double fitness. 
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Table 3. Simulation parameter setting. 

Symbol Definition Value 

k Number of subtasks 100 - 700 

lf  local computing power 2.5 GHz 

lp  local execution power 5.5 W 

upp  Upload power 3 W 

downp  Download power 2 W 

idlep  Local standby power 0.3 W 
in
iD  The amount of input data for the i-th task 100 - 350 Mb 

iZ  The number of resources required to process the i-th task 1 - 30 GHz 
out
iD  The amount of data after the i-th task calculation is completed 100 - 350 Mb 

c
j
mef  The computing power of the jth edge cloud server 3.5 - 7.5 GHz 

c
j
upmer  The jth edge cloud server upload bandwidth 35 - 39 Mbps 

dow
j

nmecr  The download bandwidth of the jth edge cloud server 40 - 44 Mbps 

cloudf  Central cloud server computing power 15 GHz 

upcloudr  Central cloud server upload bandwidth 30 Mbps 

downcloudr  Central cloud server download bandwidth 35 Mbps 

N  population size 30 

maxite  The maximum number of iterations 100 

4.2. Simulation 
4.2.1. Task Environment Construction 
The IGAWTC algorithm proposed in this article is mainly related to the Im-
prove genetic algorithm (IGA) in the literature [10], the adaptive genetic algo-
rithm (AGA) in the literature [11], the Standard genetic algorithm (SGA), And 
the random allocation method (Random) is compared, in which each algorithm 
adopts the optimal retention strategy. 

This paper generates interval correspondence between the input data volume 
of the task, the number of resources required by the task, and the data volume 
after the task calculation is completed. That is, when [ )0,200in

iD ∈ , Zi corres-
ponds to the interval [0, 16), and out

iD  corresponds to the interval. [100, 200) 
generated. Correspond in sequence as shown in Table 4. At the same time, con-
trol is performed when tasks are generated to ensure that tasks are evenly distri-
buted among various intervals. 

In order to represent different delay constraints, the delay constraint calcula-
tion formula is designed: ( )limit min max minT T T T α= + − × , where [ ]0,1α ∈ , the 
smaller α means the tighter the delay constraint, and vice versa, the looser the 
delay. 

The energy consumption that cannot meet the delay requirements is represented 
by the maximum value on the y-axis. 
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Table 4. Data volume interval corresponding table. 

Symbol Interval 
in
iD  [100, 200) [200, 250) [250, 300) 300, 350) 

iZ  [1, 16) [16, 20) [20, 25) [25, 30) 
out
iD  [100, 200) [200, 250) [250, 300) [300, 350) 

4.2.2. Experimental Design 
Experiment 1: This experiment tests the impact of changes in delay constraints 
on each algorithm. The number of iterations is 100, and the number of subtasks 
generated by the terminal device is limited to 100, 400 and 700 respectively. 
When the delay constraint α value is reduced from 4/5 to 1/5 (that is, the delay is 
getting tighter), the energy consumption generated by each algorithm is shown 
in Figures 4-6 respectively. 

From the simulation results in the above figure, the following conclusions can 
be drawn: 

1) Judging from the columnar data, under different delay constraints, IGA- 
WTC’s energy consumption to meet delay constraints is better than IGA, AGA, 
SGA and Random, indicating that IGAWTC has great advantages in reducing 
energy consumption under the delay constraint. 

2) As the delay constraint continues to tighten, the energy consumption of the 
algorithm’s satisfying delay is increasing. This is because when the delay con-
straint is tightened, the algorithm will look for an offloading location with lower 
delay, but it often takes lower latency means energy consumption will typically 
be higher. Then judging from the upward trend line in the figure, IGAWTC has 
the smallest growth potential compared to IGA, AGA and SGA. However, its 
Random cannot find the energy consumption that satisfies the delay constraint 
when the delay constraint is tightened to 3/5, and SGA cannot find the energy 
consumption that satisfies the delay constraint when it is tightened to 1/5. This 
shows that IGAWTC has better optimization performance than other algorithms 
when the delay is tightened. 

3) When the number of tasks is 100 and the delay constraint is 4/5, it can be 
seen that the energy consumption that satisfies the delay found by each algo-
rithm is basically the same. As the delay constraint continues to tighten to 2/5, it 
can be seen that by the time the optimization performance of SGA has developed 
a certain gap with the other three types of algorithms, and when it is tightened to 
1/5, the optimization performance of Random and SGA has a significant gap 
compared with IGAWTC. 

At the same time, as the number of tasks increases, it can be seen that the gap 
between IGAWTC and other algorithms is gradually widening. When the num-
ber of tasks is 700, it can be calculated that IGAWTC is better than IGA and 
AGA by more than 6%, and is better than other algorithms by more than 30%.  

The above conclusion is generated because IGAWTC sorts the population in a 
better way and sets a more reasonable adaptive crossover mutation probability, 
and avoids the deterioration of the solution set to the greatest extent. Therefore, 
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IGAWTC satisfies the delay constraint in each case. The energy consumption is 
the smallest, indicating that IGAWTC has the best performance in searching for 
optimal energy consumption under different constraints compared with existing 
algorithms. 

 

 
Figure 4. Optimal energy consumption under different delay 
constraints when the number of subtasks is 100. 

 

 
Figure 5. Optimal energy consumption under different delay 
constraints when the number of subtasks is 400. 

 

 
Figure 6. Optimal energy consumption under different delay 
constraints when the number of subtasks is 700. 
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Experiment 2: This experiment tests the impact of changes in the number of 
tasks on the performance of each algorithm. The number of iterations is 100. 
When the number of tasks generated by the terminal device increases from 100 
to 600, set the delay constraint α to 4/5 and 2/5. The energy consumption gener-
ated by each algorithm is shown in Figure 7, Figure 8. 

From the simulation results in the above figure, the following conclusions can 
be drawn:  

1) When the delay constraint is 4/5, IGAWTC has the greatest advantage over 
other algorithms. As the delay constraint tightens to 2/5, it will increase the dif-
ficulty of algorithm optimization, so the advantages of IGAWTC are shrinking. 
But it can still be found to be better than other algorithms. 

2) As the number of tasks increases, the energy consumption of each algo-
rithm to meet the delay constraint gradually increases. However, it can be seen 
that since IGAWTC has the optimal energy consumption under different num-
ber of tasks, the time delay of IGAWTC to meet is the growth rate of constrained 
energy consumption is also the lowest. It is also found that as the number of 
tasks increases, the advantages of IGAWTC gradually increase. 

 

 
Figure 7. The optimal energy consumption of different task 
numbers when the delay constraint is 4/5. 

 

 
Figure 8. The optimal energy consumption of different task 
numbers when the delay constraint is 2/5. 
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Experiment 3: This experiment evaluates the convergence of each algorithm 
under delay constraints. The delay constraint is fixed at 4/5, and the number of 
tasks generated by the terminal device is limited to 100, 400, and 700 respectively. 
When the number of iterations increases from 1 to 100, the energy consumption 
generated by each algorithm is shown in Figures 9-11. 

From the simulation results in the above figure, the following conclusions can 
be drawn: 

1) From the perspective of the number of tasks, when the number of tasks is 
small, the gap between IGAWTC and other algorithms is small. As the number 
of tasks increases, it can be seen that the advantages of IGAWTC compared with 
other algorithms gradually increase. This is because other algorithms can also 
find better solutions when the number of tasks is small, but as the number of 
tasks increases, the difficulty of optimization by other algorithms increases. It 
also shows that IGAWTC has more stable optimization performance. 

 

 
Figure 9. Algorithm convergence analysis when the number of 
tasks is 100. 

 

 
Figure 10. Algorithm convergence analysis when the number of 
tasks is 400. 
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Figure 11. Algorithm convergence analysis when the number 
of tasks is 700. 

 
2) From the perspective of convergence performance, compared with other 

algorithms, IGAWTC has little difference in the early stage of iteration, and be-
gins to have greater advantages after stabilizing in the later stage. At the same 
time, it can also be seen that the convergence performance of IGAWTC is also 
better than other algorithms, the convergence speed is faster and the effect is 
better, which verifies that IGAWTC has faster convergence performance and 
better optimization performance than other algorithms. 

5. Conclusion and Suggestion 

This article considers that a large number of studies on edge cloud computing 
ignore the resources of the central cloud. At the same time, task models and of-
floading strategies often only consider the optimal energy consumption when 
the delay is not limited, ignoring the situation when the delay is limited. In order 
to achieve optimal energy consumption, an improved genetic algorithm suitable 
for delay constraints was designed, and a comparative experiment was con-
ducted between IGAWTC and existing algorithms. 

The conclusions obtained through three sets of experiments verify that IGA- 
WTC has faster convergence speed and optimization performance. At the same 
time, it still has great advantages under different delay constraints and different 
number of tasks, indicating that the IGAWTC proposed in this article can be 
more effective. Effectively reduce energy consumption while meeting delay con-
straints. 

In the next step of work, it is planned to consider expanding the serial task 
model into a parallel task model, which requires focusing on task dependencies 
and parallelism. At the same time, further in-depth research on offloading strat-
egies is required. 
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