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Abstract 
In this paper, we study a nonlinear Schrödinger equation with competing po-

tentials ( ) ( ) ( ) ( )2 22 1
1 2 , ,p q Nv V x v W x v v W x v v v Hε − −− ∆ + = + ∈   where 

0ε > , ( )*, 2,2p q∈ , p q> , ( )* 22 : 2
2

N N
N

= >
−

, ( )V x , ( )1W x  and 

( )2W x  are continuous bounded positive functions. Under suitable assump-
tions on the potentials, we consider the existence, concentration, convergence 
and decay estimates of the ground state solution for this equation. Further-
more, the multiplicity of semi-classical solutions is established by using Benci 
pseudo-index theory, and the existence of sign-changing solutions is obtained 
via Nehari method.  
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1. Introduction 

In this paper, we are interested in the nonlinear Schrödinger equation  

( )( ) ( ) ( )2 22
1 21 ,p qi V x W x W x

t
ψε ε ψ ψ ψ ψ ψ ψ− −∂

= − ∆ + + − −
∂

      (1.1) 

where ( ), Nt x +∈ ×  , i is the imaginary unit, 0ε >  is the Planck constant, 

( )*, 2,2p q∈ ,  p q> ,  ( )* 22 : 2
2

N N
N

= >
−

,  ( )V x ,  ( )1W x  and ( )2W x  are  

continuous bounded positive functions. An important issue concerning the 
above nonlinear evolution equation is to study its standing wave solutions of the 
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form ( ) ( ), e itx t v xεψ −= . For small 0ε > , these standing wave solutions are 
referred to as semi-classical states. Byeon and Wang [1] are concerned with the 
existence and qualitative property of standing waves ( ) ( ), e iEtx t v xεψ −=  for 
the following Schrödinger equation  

( ) ( )
2

1 , , ,
2

p Ni V x t x
t
ψ εε ψ ψ ψ ψ−

+
∂

= − ∆ + − ∈ ×
∂

   

where ( )inf Nx
V x E

∈
=


 with E being a critical frequency. It is easy to see that 

( ) ( ), e itx t v xεψ −=  solves Equation (1.1) if and only if ( )v x  solves  

( ) ( ) ( )2 22
1 2= , .p q Nv V x v W x v v W x v v xε − −− ∆ + + ∈       (1.2) 

Research on concentration phenomenon began many years ago, Ambrosetti, 
Badiale and Cingolani [2] considered  

( )( ) 2 , ,p Nv V x v v v xλ −−∆ + + = ∈  

where λ∈  and v is a real-valued function, ( )lim 0x v x→∞ = , V has a possibly 
degenerate local minimum or maximum at 0x . Up to translations, they as-
sumed that 0 0x =  and ( )0 0V = , then obtained the solution vε  concentrates 
near 0 0x =  as 0ε → . Wang and Zeng [3] studied the nonlinear elliptic equa-
tion with competing poentials , ,V K Q   

( ) ( ) ( )2 22 , ,p q Nv V x v K x v v Q x v v xε − −− ∆ + = + ∈         (1.3) 

where *2 2q p< < < , and they proved the ground state concentrates at a global 
minimum point of ground energy function by the concentration-compactness 
lemma. Ding and Liu [4] considered the existence, convergence and concentra-
tion phenomena of the ground state solution by using Mountain pass technique 
for  

( )( ) ( ) ( )2 2 , ,p Ni A x v V x v W x v v xε −− ∇ + + = ∈  

where ( )*2,2p∈ , V and W are bounded positive functions. For other conven-
gence and concentration results on nonlinear elliptic equation, we can refer to 
[5] [6] [7]. 

In the past few decades, the research on the multiplicity of solutions has been 
widely concerned. For example, Cingolani and Lazzo [8] improved the existence 
result for Equation (1.3) in [3], and they studied the multiple positive solutions 
by the topology of the global minima set for energy function. Sun [9] studied the 
existence and multiplicity for a class of the quasilinear elliptic equations by 
Morse theory and the minimax method. Bartolo and Bisci [10] proved the exis-
tence and multiplicity of solutions to a fractional equation whose nonlinearity is 
subcritical and asymptotically linear at infinity by using a pseudo-index theory 
related to the genus. Papageorgiou, Rădulescu and Repovš [11] studied the exis-
tence and multiplicity to a class of double-phase Robin problems by the Morse 
theory, and using the notion of homological local linking. Wu, Tahar, Rafik, 
Rahmoune and Yang [12] established the existence of infinitely many solutions 
for the sublinear Schrödinger equations by using the linking theorem and the 
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variant fountain theorem. Wang, Cheng and Wang [13] proved the multiplicity 
of positive solutions for the fractional Kirchhoff-Choquard equation with mag-
netic fields by using the penalization method and the Ljusternik-Schnirelmann 
theory. In [14], Guo and Li considered the multiplicity of nontrivial solutions by 
using a global compactness result and Krasnoselskii’s genus theory for the fol-
lowing fractional Schrödinger equation in an open bounded domain of N ,  

( ) ( )
2 2

2 ,
Ns

N sv V x v v v−
−−∆ + =  

where ( )0,1s∈ , 2N s> , V is a sign-changing function. For the multiplicity of 
solutions to the nonlinear Schrödinger equation, we can refer to [15] [16] [17]. 

Recently, Ding and Wei [18] considered the nonlinear Schrödinger equation  

( ) ( ) 22 , ,p Nv V x v W x v v xε −− ∆ + = ∈  

where 0ε > , ( )*2,2p∈ , ( )V x , ( )W x  are bounded positive functions, and 
studied the existence, concentration phenomena of the positive ground state and 
multiplicity of semi-classical solutions by Benci pseudo-index theory and Nehari 
method. Liu and Tang [19] studied the following Choquard equation  

( ) ( ) ( )( ) 22 , ,p p Nv V x v W x I W v v v xθ
θε ε −−− ∆ + = ∗ ∈  

where 0ε > , 2N > , Iθ  is the Riesz potential with order ( )0, Nθ ∈ , 

2,
2

Np
N

θ+ ∈  − 
, min 0V >  and inf 0W > , they established the multiplicity of  

semi-classical solutions by Benci pseudo-index theory and the existence of 
sign-changing solutions by minimizing the energy on Nehari nodal set, they also 
studied the concentration phenomenon, convergence, decay estimate of ground 
state solutions. Similar studies appear in [20] [21]. 

Motivated by the above works, in this paper, we consider the multiplicity of 
solutions and the existence, concentration, convergence and decay estimates of 
the ground state solution for Equation (1.2). There appear the combined nonli-
nearities in our equation, which make more difficulties in our arguments. Finally, 
we use the Benci pesudo-index theory to obtain the multiplicity of the semi- 
classical solutions for Equation (1.2), and we get the sign-changing solutions by 
resorting to the method. We extend the research in [18] and develop the method 
in [4] [19] [20]. 

Our basic assumptions and the main results are the following. 
(P1): ( ), ,N

jV W C∈    are bounded, ( )V x  attains a global minimum on 
N  with ( )min 0N V x >



, and ( )jW x  attains a global maximum on N  
with ( )inf 0N jW x >



, 1,2j = . 
To describe our results, for 1,2j = , we denote by  

( ){ } ( ): min , : : , : liminf ;
N

N

x
V x V x V xτ τ τ∞ →∞

= = ∈ = =


V  

( ){ } ( ): max , : : , : limsup .
N

N
j j j j j j j

x
W x W x W xς ς ς ∞

→∞
= = ∈ = =



W  
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(P2): 1 2∩ ≠∅W W . 
We continue to denote by  

( ) ( ), : max = , 1,2;jv jv j j jvx W x W x jς∈ = =
V

V  

( ) ( )
1 2

1 2 , : min .w w wx V x V xτ
∩

∈ ∩ = =
W W

W W  

For vector ( ) 2
1 2,b b b= ∈



 , we set  

( )

2 2
2 2 22 2 1 2 1

1 2 1

2
22 2 2

2

if
, ,

otherwise

q p qp N
p p pp

q N
qq

b a
a b b

m a b
b

a

τ ς ς
ς τ

τ
ς

− −
− − − −−

∞ ∞ ∞

∞ ∞

− −−
∞

∞


         ≤                 = 

         



 

and let ( )1 2,ς ς ς=
 , ( )1 2,ς ς ς∞ ∞ ∞=

 , ( )1 2,v v vς ς ς=
 . For  

( ) ( )2
1 2, 1,2i i ib b b i= ∈ =



 , we use 1 2b b≤
 

 to signify { }2 1 2 1
1 1 2 2min , 0b b b b− − ≥ , 

and use 1 2b b<
 

 to signify { }2 1 2 1
1 1 2 2min , 0b b b b− − ≥  and  

{ }2 1 2 1
1 1 2 2max , 0b b b b− − > . 

(P3): 1) τ τ∞< , and there is 0vR >  such that ( )j jvW x ς≤ , 1,2j =  for  

vx R≥ ; 
2) ς ς∞>

  , and there is 0wR >  such that ( ) wV x τ≥  for wx R≥ . 
If (P3) - (1) holds, we set  

( ){ } ( ) ( ){ }1 1 2 2: : , 1,2 : orv j jv v vx W x j x W x W xς ς ς= ∈ = = ∪ ∉ > > V V . If (P3) - 
(2) holds, we set ( ){ } ( ){ }1 2 1 2: : :w w wx V x x V xτ τ= ∈ ∩ = ∪ ∉ ∩ < W W W W . In 
the following,   stands for v  in the case (P3) - (1), and w  in the case (P3) 
- (2). Clearly,   is bounded. Furthermore, ( )1 2= ∩ ∩ V W W , if  

( )1 2∩ ∩V W W  is not empty. 
Theorem 1.1. Assume that (P1) holds and τ τ∞< , vς ς∞≥

  . Then there exists 
( ),v vm m τ ς≥
  such that for the maximal integer m +∈  with vm m< , Equa-

tion (1.2) has at least m pairs of solutions for small 0ε > . Moreover, among the 
solutions, at least one is positive, one is negative and two change sign if 2m ≥ .  

Theorem 1.2. Assume that (P1) - (P2) hold and wτ τ∞≤ , ς ς∞>
  . Then there 

exists ( ),w wm m τ ς≥
  such that for the maximal integer m +∈  with wm m< , 

Equation (1.2) has at least m pairs of solutions for small 0ε > . Moreover, 
among the solutions, at least one is positive, one is negative and two change sign 
if 2m ≥ .  

Theorem 1.3. Assume that (P1) - (P3) hold. Then for 0ε >  large small, Eq-
uation (1.2) has a positive ground state solution vε . If ( )1, ,N

jV W C∈    ad-
ditionally and , jV W∇ ∇  are bounded, 1,2j = , then vε  satisfies that 

1) There is a maximum point xε  of vε  such that ( )0lim dist , 0x→ =ε ε ; 

2) There are , 0C c >  such that ( ) e
c x x

v x C εε
ε

− −
≤  for all Nx∈ ; 

3) Setting ( ) ( )ˆ :u x v x xε ε εε= + , then for any sequence 0x xε →  as 0ε → , 
there holds û uε →  in ( )1 NH   as 0ε → , where u is a ground state solution 
of  
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( ) ( ) ( )1 1
0 1 0 2 0 , 0.p qu V x u W x u W x u u− −−∆ + = + >          (1.4) 

If particularly ( )1 2∩ ∩V W W  is not empty, then  
( )( )0 1 2lim dist , 0x→ ∩ ∩ =ε ε V W W , and up to a sequence, û uε →  in ( )1 NH   

as 0ε → , where u is a ground state solution of  
1 1

1 2 , 0.p qu u u u uτ ς ς− −−∆ + = + >                   (1.5) 

Now we give some preliminary lemmas which will be useful for our argu-
ments. 

Lemma 1.4. ([22]) For every ( )1 Nv H∈   and 0v ≥ , there are  

( ) ( ) ( ) ( ){ }* 1 1: :N N
rv H v H v x v x∈ = ∈ =   and * 0v ≥  such that  

2 2* *d d , d d , 1.N N N Nv x v x v x v x
µ µ µ∇ ≤ ∇ = ∀ >∫ ∫ ∫ ∫   

 

Lemma 1.5. ([22]) The embedding ( )1 NH  ↪ ( )NLµ   is continuous for 
*2,2µ  ∈   and the embedding ( )1 NH  ↪ ( )N

locLµ   is compact for )*2,2µ ∈ . 
Furthermore, ( )1 N

rH  ↪ ( )NLµ   is compact for ( )*2,2µ∈ .  
Lemma 1.6. ([23]) Let 0R >  and )*2,2µ ∈ . If { }nv  is bounded in  

( )1 NH   and 
( ) ( )sup d 0N

R
ny B y

v x x
µ

∈
→∫

 as n →∞ , then 0nv →  in  

( )t NL   for ( )*2,2t∈  as n →∞ .  
For simplicity, we denote by  

( ) ( ) ( ) ( ) ( )1 1: , : , , : , .N N NH L H
v v v v u v u vµµ

= = =
  

 

{ } { } ( ): max 0, , : min 0, , : 0, , : .v v v v+ −
+ + += = = ∞ = ∩     

And we shall use different patterns of C to denote any positive constant, 
whose values may change from line to line, and ( )1o  to denote the quantities 
that tend to 0 as n →∞  or k →∞ . 

This paper is organized as follows: In Section 2, we give some preliminary re-
sults which are proved by Nehari method and play a key role in the arguments of 
main theorems. In Section 3, we prove the multiplicity of semi-classical solutions 
by using Benci pseudo-index theory and show the existence of sign-changing 
solutions. In order to get more detailed and accurate characterization of the 
properties of solutions, we also study the convergence, concentration phenome-
non, and exponential decay estimates of the positive ground state solution. 

2. Preliminary Results 
2.1. Constant Coefficient Equation 

We first consider the following equation  

( )2 2 1
1 2 , ,p q Nu au b u u b u u u H− −−∆ + = + ∈             (2.1) 

where ( )*, 2,2p q∈ , p q> , 0a > , 0jb > , 1,2j = . 
For each ( )1 Nu H∈  , the energy functional associated to Equation (2.1) is  

( ) ( )2 2 1 21 d d d .
2 N N N

p qab b bu u au x u x u x
p q

= ∇ + − −∫ ∫ ∫
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The weak solutions of Equation (2.1) are critical points of  

( )( )1 1 ,ab NC H∈


  . We denote the least energy by inf ab
ab abΘ = 

 


 , where  

( ) { } ( ) ( )1: \ 0 : , 0ab N abu H u u
 ′ = ∈ = 
  

 

   is the Nehari manifold. The set 

of least energy solutions can be denoted by  

( ) ( ) ( ) ( )1 : , 0ab N ab ab abu H u u
 ′= ∈ = Θ = 
 

   

   . In particular, we set  

: τ ς∞ ∞∞ =


  , : τ ς∞ ∞∞ =


   and : τ ς∞ ∞∞Θ = Θ


. 

Lemma 2.1. The functional ab


  satisfies that 
1) There exist 0ρ >  and 0κ >  such that ( )ab u κ>



  for all u ρ= ; 
2) For 0u ≠ , ( )ab tu →−∞



  as t →+∞ .  
Similar to the proof of Lemma 2.4 in [20], we have the following result.  
Lemma 2.2. Let [ ] ( )( ) ( ) ( )( ){ }1: 0,1 , : 0 0, 1 0ab N abC Hγ γ γϒ = ∈ = <

 

  , then  

( ) { }
( )

[ ]
( )( )

1 0 0,1\ 0
inf max inf max 0.

N ab

ab ab ab

t tu H
tu t

γ
γ

≥ ∈∈ ∈ϒ
Θ = = >



  



   

Lemma 2.3. abΘ


 is achieved and ab


  is compact in ( )1 NH  .  
Proof. For any ( )1 Nu H∈  , we choose the equivalent norm  

( )2 2 2
1 dNu u au x= ∇ +∫ . Clearly, ab



  is not empty. Let ab
nu ∈



  with 
0nu ≥  and ( )ab ab

nu →Θ
 

  as n →∞ , By Lemma 1.4, there is ( )* 1 N
n ru H∈    

with * 0nu ≥  such that *
11n nu u≤ , *

n n pp
u u= , *

n n qq
u u= . Observe that 

2* * *
1 21

p q

n n np q
u b u b u≤ + . If 

2* * *
1 21

p q

n n np q
u b u b u= + , then * ab

nu ∈


 . If  
2* * *

1 21

p q

n n np q
u b u b u< + , then there exists ( )0,1nt ∈  such that * ab

n nt u ∈


  and  

( ) ( )2*
11

2
2

pab ab ab ab
n n n n np

q p qt u u b u u
q pq
− −

Θ ≤ < + = →Θ
   

   as n →∞ . Hence  

( )*ab ab
n nt u →Θ

 

  as n →∞ . Define *:n n nw t u= , then ( )1 N ab
n rw H∈ ∩



  , 
0nw ≥ , and ( )ab ab

nw →Θ
 

  as n →∞ . 
Clearly, { } ( )1 N

nw H⊂   is bounded. We assume nw w  in ( )1 N
rH   as 

n →∞  up to a subsequence if necessary. By Lemma 1.5 and ab
nw ∈



 , we 
have ( )2

1 1 1

p q
n n nw C w w≤ + , which ensures that 0w ≠  by letting n →∞ . 

Due to the weakly lower semi-continuity of norm, we obtain 2
1 21

p q
p qw b w b w≤ + . 

Thus we have abw∈


 .  
In the end, we can obtain ( ) ( ) 0ab w′ =



 , where abw∈


  is positive and ra-
dially symmetric. With similar arguments as aboves, ab



  is compact in 

( )1 NH  .  
Lemma 2.4. Let 0ia > , 1 2, 0i ib b > , 1,2i = . 
1) If { }1 1 2 2

2 1 1 2 1 2min , , 0a a b b b b− − − ≥ , then 1 1 2 2a b a bΘ ≤Θ
 

; 
2) If { }1 1 2 2

2 1 1 2 1 2min , , 0a a b b b b− − − ≥  and { }1 1 2 2
2 1 1 2 1 2max , , 0a a b b b b− − − > , 

then 1 1 2 2a b a bΘ <Θ
 

.  
Lemma 2.5. If u is a ground state solution of  

( )2 2 1
1 2 ,p q Nu u u u u u u Hτ ς ς− −

∞ ∞ ∞−∆ + = + ∈            (2.2) 
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with the energy ∞Θ . Setting ( ) az x u xλ
τ∞

 
=   

 
, then z is a ground state solu-

tion of  

( )2 22 2 11 2
1 2

1 2

,p qp q Na az az b z z b z z z H
b b
ς ς

λ λ
τ τ

− −− −∞ ∞

∞ ∞

   
−∆ + = + ∈   

   
   (2.3) 

with the energy ( )
1

2
2

N

aλ λ
τ

−

∞

∞

 
Θ = Θ 

 
. 

Proof. Observe that u is a ground state solution of Equation (2.2) if and only if 
z is a ground state solution of Equation (2.3). Indeed,  

2 22 21 2 .p qp q

a a az az u x u x

a az z z z

λ τ
τ τ τ

ς ς
λ λ

τ τ

∞
∞ ∞ ∞

− −− −∞ ∞

∞ ∞

    
−∆ + = −∆ +            

   
= +   
   

 

Furthermore, u ∞∈  if and only if ( )z λ∈ . Hence  

( )
1

2
2

N

aλ λ
τ

−

∞

∞

 
Θ = Θ 

 
.  

Lemma 2.6. Assume that a τ∞≤ , b ς∞≥


 . Then ( ), abm a b ∞Θ ≤ Θ




.  

Proof. Note that if 0λ >  satisfies 2 21 2

1 2

max , 1p qa a
b b
ς ς

λ λ
τ τ

− −∞ ∞

∞ ∞

 
≤ 

 
, we have 

( )ab λΘ ≤ Θ


. By the definition of ( ),m a b


, we can find two cases:  

2
2 2

2 1

2 1

q p q
p pa

b b
ς ς

τ

− −
− −

∞ ∞

∞

     
≤     

     
                   (2.4) 

or  
2

2 2
1 2

1 2

.

p q p
q qa

b b
ς ς

τ

− −
− −

∞ ∞

∞

     
<     

     
                   (2.5) 

If (2.4) holds, we choose 

1
2

1

1

pa
b
ς

λ
τ

−
∞

∞

 
=  
 

, then  

( )
2

2 2 2
1

1

p N
p pa

b
ς

λ
τ

−
− −

∞∞

∞

   
Θ = ⋅ Θ   

   
. Thus we get ( ), abm a b ∞Θ ≤ Θ





. 

If (2.5) holds, we choose 

1
2

2

2

qa
b
ς

λ
τ

−
∞

∞

 
=  
 

, then  

( )
2

2 2 2
2

2

q N
q qa

b
ς

λ
τ

−
− −

∞∞

∞

   
Θ = ⋅ Θ   

   
. Thus we get ( ), abm a b ∞Θ ≤ Θ





.  

Lemma 2.7. If , vτ τ ς ς∞ ∞< ≥
  , then ( ), 1vm τ ς >

  and vτς ∞Θ < Θ


. If 
,wτ τ ς ς∞ ∞≤ >
  , then ( ), 1wm τ ς ≥

  and wτ ς ∞Θ < Θ


.  
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Proof. Choose , , 1,2j jva b jτ ς= = =  in Equation (2.1), Equations (2.3), (2.4) 
and (2.5), respectively. By the definition of ( ), vm τ ς , we have ( ), 1vm τ ς >

 . By 
Lemma 2.6, we have vτς ∞Θ < Θ



. 
Similarly, we choose , , 1,2w j ja b jτ ς= = =  in Equation (2.1), Equations 

(2.3), (2.4) and (2.5), respectively. By the definition of ( ),wm τ ς , we have  

( ), 1wm τ ς ≥
 . If (2.4) holds, we choose 

1
2

1

1

p
wτ ς

λ
τ ς

−
∞

∞

 
=  
 

, then ( )wτ ς λ ∞Θ ≤ Θ ≤ Θ


  

by Lemma 2.4 and Lemma 2.5. If 1 1ς ς ∞> , then ( )wτ ς λ ∞Θ ≤ Θ < Θ


 by Lemma 
2.5. If 2 2ς ς ∞> , then ( )wτ ς λ ∞Θ < Θ ≤ Θ



 by Lemma 2.4. Hence wτ ς ∞Θ < Θ


. If  

(2.5) holds, we choose 

1
2

2

2

q
wτ ς

λ
τ ς

−
∞

∞

 
=  
 

, then ( )wτ ς λ ∞Θ ≤ Θ ≤ Θ


. If 1 1ς ς ∞> ,  

then ( )wτ ς λ ∞Θ < Θ ≤ Θ


. If 2 2ς ς ∞> , then ( )wτ ς λ ∞Θ ≤ Θ < Θ


. Thus wτ ς ∞Θ < Θ


.  
Lemma 2.8. There exist constants , 0C c >  such that for every abu∈



 , 
( ) e c xu x C −≤  for all Nx∈ .  
Proof. Let 2 2

1 2: p qa a b u b u− −′ = − − , we obtain 0u a u′−∆ + = . For R large 
enough, we get 2a a′ ≥  for x R≥ . Define ( ) 2

1e
c xx Cφ −=  or ( ) 2

1e
c ss Cφ −= , 

where 1 0C > , s x= . Choose C1 large enough such that ( ) ( )x u xφ ≥  for  

x R= . Since ( ) ( ) ( )2
22

ax a x c sφ φ φ ′−∆ + ≥ − 
 

, we choose 20
2
ac< ≤  such 

that ( ) ( ) 0x a xφ φ′−∆ + ≥  for x R≥ . Therefore,  

( ) ( )
( ) ( )

x a x u a u x R
x u x x R
φ φ

φ
′ ′−∆ + ≥ −∆ + ∀ ≥

 ≥ ∀ =
 

By comparison principle, ( ) ( )x u xφ ≥  for all x R≥ , then ( ) 2
1e

c xu x C −≤  
for all x R≥ . For C1 large enough, we get that ( ) 2

1e
c xu x C −≤  for all x R< . 

Thus ( ) 2
1e

c xu x C −≤  for all Nx∈ .  

2.2. Auxiliary Equation 

In this subsection, we consider the following equation for ( )*, 2,2p q∈  and 
p q> ,  

( ) ( ) ( ) ( )1 22 2 1
1 2 , ,p qb ba Nu V x u W x u u W x u u u Hε ε ε

− −−∆ + = + ∈       (2.6) 

where aτ τ∞≤ ≤ , bς ς∞≥ ≥


  , ( ) ( ) ( ){ }: : max ,a aV x V x a V xε ε= =  and  
( ) ( ) ( ){ }: : min ,j jb b

j j j jW x W x b W xε ε= = , 1,2j = . 
For each ( )1 Nu H∈  , the energy functional associated to Equation (2.6) is  

( ) ( )( ) ( )

( )

1

2

2 2
1

2

1 1d d
2

1 d .

N N

N

pbab a

qb

u u V x u x W x u x
p

W x u x
q

ε ε ε

ε

= ∇ + −

−

∫ ∫

∫



 




 

The weak solutions of Equation (2.6) are critical points of  

( )( )1 1 ,ab NC Hε ∈


  . We denote the least energy by inf ab
ab ab

ε
ε εΘ = 

 


 , where 
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( ) { } ( ) ( )1: \ 0 : , 0ab N abu H u uε ε

 ′ = ∈ = 
  

 

   is the Nehari manifold. The set 

of least energy solutions was denoted by  

( ) ( ) ( ) ( )1 : , 0ab N ab ab abu H u uε ε ε ε ε ε ε
 ′= ∈ = Θ = 
 

   

   . In particular, we set  

: , : , : ;τ ς τ ς τ ς
ε ε ε ε ε ε

∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞= = Θ = Θ
  

     

: , : , 1,2.j
j jV V W W jςτ

ε ε ε ε
∞∞∞ ∞= = =  

Lemma 2.9. The functional ab
ε



  satisfies that 
1) There exist 0ρ >  and 0κ >  both dependent on , , , ,N p q τ ς  and inde-

pendent of ,a b


 such that ( )ab uε κ>


  for all u ρ= ; 
2) For 0u ≠ , ( )ab tuε → −∞



  as t →+∞ .  
Lemma 2.10. Let [ ] ( )( ) ( ) ( )( ){ }1: 0,1 , : 0 0, 1 0 ,ab N abC Hε εγ γ γϒ = ∈ = <

 

   
then  

( ) { }
( )

[ ]
( )( )

1 0 0,1\ 0
inf max inf max 0.

N ab

ab ab ab

t tu H
tu t

ε
ε ε ε

γ
γ

≥ ∈∈ ∈ϒ
Θ = = >



  



   

Lemma 2.11. If ε
∞  has a ( )c

PS  sequence, then either 0c =  or c ε
∞≥ Θ . 

Furthermore, ε
∞ ∞Θ ≥ Θ .  

Proof. Let { } ( )1 N
nu H⊂   is a ( )c

PS  sequence of ε
∞ , then ( )nu cε

∞ →  
and ( ) ( ) 0nuε

∞ ′ →  in ( )1 NH −   as n →∞ . We will show that c ε
∞≥ Θ  

when 0c ≠ . Since { } ( )1 N
nu H⊂   is bounded, we may assume nu u  in  

( )1 NH   as n →∞ . Hence ( ) ( ) 0uε
∞ ′ = . Set :n ny u u= − . By Lemma 1.32 in 

[23], we obtain  

( ) ( ) as .ny c u nε ε
∞ ∞→ − →∞                  (2.7) 

For all ( )1 NHϕ∈  , we have  

( ) ( ) ( ) ( )

( )( )
( )( )

2 2 2
1

2 2 2
2

, ,

d

d .

N

N

n n

p p p
n n n n

q q q
n n n n

y u

W x u u y y u u x

W x u u y y u u x

ε ε

ε

ε

ϕ ϕ

ϕ

ϕ

∞ ∞

− − −∞

− − −∞

′ ′−

= − −

+ − −

∫

∫




 

         (2.8) 

For any 0σ > , there is 0R >  such that dp p
x R

u x σ
>

<∫  and  

dq q
x R

u x σ
>

<∫ . By mean value theorem and Hölder inequality, we obtain  

( )2 2 dp p
n n n nx R

u u y y x Cϕ σ ϕ− −

>
− ≤∫ . Furthermore, by Hölder inequality 

again, we get that 2 dp

x R
u u x Cϕ σ ϕ−

>
≤∫ . Thus  

( )( )2 2 2
1 d .p p p

n n n nx R
W x u u y y u u x Cε ϕ σ ϕ− − −∞

>
− − ≤∫      (2.9) 

Similarly,  

( )( )2 2 2
2 d .q q q

n n n nx R
W x u u y y u u x Cε ϕ σ ϕ− − −∞

>
− − ≤∫      (2.10) 
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By Lemma 1.5, we obtain 2 2 0n nu u u uµ µ− −− →  in ( )1 N
locL
µ
µ−   as n →∞  

with ,p qµ = , respectively. Hence  

( )( ) ( )2 2 2
1 d 1 .p p p

n n n nx R
W x u u y y u u x oε ϕ ϕ− − −∞

≤
− − =∫     (2.11) 

Similarly,  

( )( ) ( )2 2 2
2 d 1 .q q q

n n n nx R
W x u u y y u u x oε ϕ ϕ− − −∞

≤
− − =∫     (2.12) 

By (2.8) - (2.12), we get that ( ) ( ) 0nJ yε
∞ ′ →  in ( )1 NH −   as n →∞ . 

For all n +∈ , if 0ny ≠ , there is 0nt >  such that n nt y ε
∞∈ . Thus  

( )n nt yε ε
∞ ∞≥ Θ                       (2.13) 

and ( ) ( )0 ,n n n nt y t yε
∞ ′=  . By ( ) ( ) ( )1 ,n no y yε

∞ ′=  , then we obtain  

( ) ( ) ( ) ( ) ( )2 2
1 21 1 d 1 d .N N

p qp q
n n n no t W x y x t W x y xε ε
− ∞ − ∞= − + −∫ ∫ 

   (2.14) 

Moreover, ( )( ) ( ) ( )2 2 2 d 1N
p q

n n n n np qy C y V x y x C y y oε
∞≤ ∇ + ≤ + +∫ . If  

0n py →  and 0n qy →  as n →∞ , we can get nu u→  in ( )1 NH   as  
n →∞  and c ε

∞≥ Θ . If 0n py σ≥ >  or 0n qy σ≥ >  in (2.14), we obtain  
1nt →  as n →∞ . Hence by (2.7), we have ( ) ( )n nt y c uε ε

∞ ∞→ −   as n →∞ . 
By (2.13), we get that c ε

∞≥ Θ . If there is 0
kny ≡ , then ( ) 0u cε

∞ = ≠  and  
u ε

∞∈ . Hence c ε
∞≥ Θ . 

Observe that ( ) ( )u uε
∞ ∞≥   for all ( )1 Nu H∈  . According to Lemma 2.2 

and Lemma 2.10, we obtain ε
∞ ∞Θ ≥ Θ .  

Similar to the proof of Lemma 2.11, we also have the following result. 
Lemma 2.12. If ab

ε



  has a ( )c
PS  sequence, then either 0c =  or abc ε≥ Θ



.  
Lemma 2.13. For all c ε

∞< Θ , ab
ε



  satisfies ( )c
PS  condition.  

Proof. Let { } ( )1 N
nu H⊂   is a ( )c

PS  sequence of ab
ε



 , then ( )ab
nu cε →



  
and ( ) ( ) 0ab

nuε
′ →



  in ( )1 NH −   as n →∞ . We assume nu u  in  

( )1 NH   as n →∞ . Hence ( ) ( ) 0ab uε
′ =



 . Set :n ny u u= − . Due to the proof 

of Lemma 2.11, we obtain  

( ) ( ) ( ) ( ) ( )1, 0 in as .ab ab ab N
n ny c u y H nε ε ε

−′→ − → →∞
  

       (2.15) 

Next, we will show that ( ) ( )ab
ny c uε ε

∞ → −


   and ( ) ( ) 0nyε
∞ ′ →  in  

( )1 NH −   as n →∞ . By definition, we get that for all 0σ > , there is 0R >  
such that for all x R> ,  

( ) ( ) ( ) ( ), , 1,2.jba
j jV x V x W x W x jε ε ε εσ σ∞ ∞− ≤ − ≤ =         (2.16) 

Thus by (2.16), we have  

( ) ( )

( ) ( ) ( )( )2
2 2

2

1 1 1 ,
2 p q

R R R

ab
n n

p q p q
n n n n n np q L B L B L B

y y

y y y C y y y
p q

ε ε

σ

∞ −

 
≤ + + + + + 
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which together with Lemma 1.5 and (2.15) imply that  

( ) ( ) as .ab
ny c u nε ε

∞ → − →∞


                 (2.17) 

Similarly, by Lemma 1.5 and (2.15) again, we have  

( ) ( ) ( )10 in as .N
ny H nε

∞ −′ → →∞             (2.18) 

By (2.17) and (2.18), we obtain { }ny  is a ( ) ( )abc u
PS

ε−



 sequence of ε

∞ . By 
Lemma 2.11, either ( )abc uε=



  or ( )abc uε ε
∞≥ + Θ



 . The latter contradicts 
our assumption c ε

∞< Θ . Hence ( )abc uε=


  and  

( ) ( ) as .ab ab
nu u nε ε→ →∞

 

                  (2.19) 

Now we prove that nu u→  in ( )1 NH   as n →∞ . Since  

( ) ( ) ( )1 ,ab
n no u uε

′=


 , we get  

( ) ( )( ) ( ) ( )12 2
1

2 d d 1
2 N N

pbab a
n n n n

q p qu u V x u x W x u x o
q pqε ε ε
− −

= ∇ + + +∫ ∫


 
 . By  

( ) ( )0 ,ab u uε
′=



 , we obtain  

( ) ( )( ) ( )12 2
1

2 d d
2 N N

pbab aq p qu u V x u x W x u x
q pqε ε ε
− −

= ∇ + +∫ ∫


 
 . By Lemma 1.6, 

we assume there exist 0R >  and 0δ >  such that 
( )

d 0
R n

p
nB x

y x δ≥ >∫  for 

some N
nx ∈ . Moreover,  

( ) ( ) ( ) ( )

( ) ( )( )
1

1lim lim d 1

lim d 1 0,

R n

R n

pbab
n nB xn n

p
nB xn

p qy W x y x o
pq

C y x o C

ε ε

δ

→∞ →∞

→∞

 −
≥ + 

 

≥ + ≥ >

∫

∫




 

which is impossible. By (2.19), we conclude that nu u→  as n →∞ . Thus 

nu u→  in ( )1 NH   as n →∞ .  

Lemma 2.14. 0limsup ab ab
ε ε→ Θ ≤ Θ







 , where ( )0aa V= , ( )0jb
j jb W= , 1,2j = , 

( )1 2,b b b=


   . Meanwhile, if ( )0V a≤ , ( )0j jW b≥ , 1,2j = , then  

0lim ab ab
ε ε→ Θ = Θ

 

.  

Proof. Setting ( ) ( ): aV x V x aε ε= −

  and ( ) ( ): jb
j j jW x b W xε ε= − , 1,2j = , we 

have  

( ) ( )0, 0, 1,2 a.e. on as 0.N
jV x W x jε ε ε→ → = →         (2.20) 

Furthermore,  

( ) ( )
( ) ( ) ( )2

1 2d d d
.

2
N N N

p q

ab ab
V x u x W x u x W x u x

u u
p q

ε ε ε
ε − = + +∫ ∫ ∫







  

    (2.21) 

Due to Lemma 2.3, there is abα ∈




  satisfying ( )ab abα = Θ
 

 

   for abα ∈




 . 
Let 0tε >  such that abtε εα ∈



 , we obtain  
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( ) ( )
0

max .ab ab ab

t
t tε ε ε εα α

≥
= ≥ Θ

  

                 (2.22) 

Observe that ( )lim ab
t tε α→+∞ = −∞



 , there is 0T >  such that  

( ) 0, .ab t t Tε α < ∀ >


                   (2.23) 

Combining (2.22) with (2.23), we have t Tε ≤ . Let 0t tε →  as 0ε → . By 
applying (2.20) - (2.22) and the Lebesgue dominated convergence theorem, we 
obtain ( ) ( ) ( )0

ab ab ab ab abt tε ε εα α αΘ ≤ → ≤ = Θ
  

 

  

      as 0ε → . Hence  

0limsup ab ab
ε ε→ Θ ≤ Θ







 . 
In the end, a a=  and j jb b= , 1,2j =  when ( )0V a≤  and ( )0j jW b≥ , 

1,2j = , namely, for all Nx∈ , we obtain ( ) 0V xε ≥ , ( ) 0jW xε ≥ , 1,2j = . By 
Lemma 2.2, Lemma 2.10 and (2.21), we have ab ab

εΘ ≥ Θ






 . According to  

0 0liminf limsupab ab ab ab
ε ε ε ε→ →Θ ≤ Θ ≤ Θ ≤ Θ

 

 

 

  , we obtain 0lim ab ab ab
ε ε→ Θ = Θ = Θ



 



 .  
Lemma 2.15. If ,a bτ τ ς ς∞ ∞≤ < ≥ ≥



   or ,a bτ τ ς ς∞ ∞≤ ≤ > ≥


  , then there is 
0abε >



 such that ab
εΘ


 is achieved at 0abuε >


 for all abε ε≤


.  
Proof. By Lemma 2.7, we have ab ∞Θ < Θ





 , where ( )0aa V= , ( )0jb
j jb W= , 

1,2j = . By Lemma 2.11 and Lemma 2.14, there is 0abε >


 such that  
ab
ε ε

∞ ∞Θ < Θ ≤ Θ


 for all abε ε≤


. By Lemma 2.13, ab
ε



  satisfies the ( ) abPS
εΘ
  

condition for all abε ε≤


, which combined Lemma 2.9 with Lemma 2.10, we 
have ab

εΘ


 is achieved at ( )1ab Nu Hε ∈


 . We set abuε



 is a ground state solution 
of Equation (2.6). If ( ) 0abuε

±
≠



, by  

( ) ( ) ( ) ( ) ( ) ( )0 , ,ab ab ab ab ab abu u u uε ε ε ε ε ε

± ± ±′ ′  = =  
 

     

   implies that  

( )ab abuε ε

±
∈

 

 . Thus ( ) ( ) ( ) 2ab ab ab ab ab ab ab abu u uε ε ε ε ε ε ε ε

+ −   Θ = = + ≥ Θ   
   

       

   ,  

which is impossible. Hence abuε



 does not change the sign. Then we may assume 
0abuε ≥



. By the elliptic regularity theory, ( )2ab Nu Cε ∈


 . By strong maximum 
principle, we have 0abuε >



.  

3. Proofs of the Main Results 

Setting ( ) ( ):u x v xε= , Equation (1.2) is a solution of  

( ) ( ) ( ) ( )2 2 1
1 2 , .p q Nu V x u W x u u W x u u u Hε ε ε− −−∆ + = + ∈      (3.1) 

If ( )u xε  is a solution of Equation (3.1), then ( ) xv x uε ε ε
 =  
 

 is a solution of 

Equation (1.2). 
Since ( ) ( )V x V xτ

εε = , ( ) ( )j
j jW x W xς

εε = , 1,2j = , we denote by  

: , : , : , : .τς τς τς τς
ε ε ε ε ε ε ε ε= = Θ = Θ =

   

       

3.1. Proof of Theorem 1.1 

Without loss of generality, we assume 0jvx = . Then ( )0V τ= , ( )0j jvW ς= , 
1,2j = . 

Lemma 3.1. Equation (3.1) has at least m pairs of solutions.  
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Proof. We choose , , 1,2j jva b jτ ς= = =  in Equation (2.1) and by Lemma 2.3 
and Lemma 2.8, there are vu τς∈



  and 0u > . Let 0s > , ( )0s Cζ ∞
+∈   satis-

fies ( ) 0s tζ =  if 1t s≥ +  and ( ) 1s tζ =  if t s≤  with ( ) 1s tζ ′ ≤ . Assume  
( ) ( ) ( ):s su x x u xζ=  for Nx∈ . By 0su u− →  as s →∞ , we get that  

su u→  in ( )1 NH   as s →∞  and su u→  in ( )NLµ   for *2,2µ  ∈   as 
s →∞ . There is a unique 0st >  such that s st u τς∈



 . Therefore,  

( )

( )

( ) ( )

1 20

1 2

0

2 2max d d
2 2

2 2d d
2 2

max .

v
N N

N N

v v v

p qp q
s s v s s v st

p q
v v

t

p qtu t u x t u x
p q

p qu x u x s
p q

tu u

τς

τς τς τς

ς ς

ς ς

≥

≥

− −
= +

− −
→ + →∞

= = = Θ

∫ ∫

∫ ∫



  

 

 



 

    (3.2) 

Furthermore,  

( ) ( ) ( ) ( )0 , 0 , 1,2 as 0j j jvV x V W x W jε τ ε ς ε→ = → = = →      (3.3) 

uniformly of x on any bounded set. There is a unique 0st ε >  such that s st uε ε∈ . 
Observe that s st tε →  as 0ε → . Hence (3.2) and (3.3) imply that  

( ) ( ) ( )

( )

( ) ( )

1 21 10

1 21 1

0

2 2max d d
2 2

2 2d d 0
2 2

max .v v

p qp q
s s s s sx s x st

p qp q
s v s s v sx s x s

st

p qtu t W x u x t W x u x
p q

p qt u x t u x
p q

tu s

ε ε ε

τς τς

ε ε

ς ς ε

≤ + ≤ +≥

≤ + ≤ +

≥

− −
= +

− −
→ + →

= →Θ →∞

∫ ∫

∫ ∫
 





 (3.4) 

By Lemma 2.7, ( ), 1vm τ ς >
 . We choose ( ),v vm m τ ς=

 . For the maximal in-
teger m +∈  with vm m< , we have 1m ≥ . Define  

( ) ( )( )1 2: 2 1 , , ,sl s Nx u x l s x xξ = − +   for 0,1, , 1l m= − , and set  
( ){ }: span : 0,1, , 1sm slE x l mξ= = − . Clearly, ( ), 0si sjξ ξ =  if i j≠ . Hence  

dim smE m= . Combining (3.2) with (3.3) again, for all 1,2, , 1l m= − , we have 

( ) ( ) ( )

( )

( ) ( )

1 21 10

1 21 1

0

2 2max d d
2 2

2 2d d 0
2 2

max ,v v

p qp q
sl l sl l slx s x st

p qp q
l v sl l v slx s x s

st

p qt t W x x t W x x
p q

p qt x t x
p q

tu s

ε ε ε

τς τς

ξ ε ξ ε ξ

ς ξ ς ξ ε

≤ + ≤ +≥

≤ + ≤ +

≥

− −
= +

− −
→ + →

= →Θ →∞

∫ ∫

∫ ∫
 





 

where lt ε  and lt  are the unique constants satisfying l slt ε εξ ∈  and  
v

l slt τςξ ∈


 , respectively, and l lt tε →  as 0ε → . Therefore, for all 0δ > , 
there are 0sδ >  and 0δε >  such that for all 0,1, , 1l m= − , we get  

( )
0

max , , .v
slt

t s sτς
ε δ δξ δ ε ε

≥
≤ Θ + ∀ ≥ ∀ ≤



             (3.5) 

Let ( )0 0 1 1 1 1s s m s mu t t tξ ξ ξ− −= + + +  for any smu E∈ , where 0 1, , mt t − ∈  . 
According to (3.5), for all s sδ≥  and δε ε≤ , we obtain  

( ) ( ) ( ) ( )( ) ( )0 0 1 1 1 1
v

s s m s mu t t t m τς
ε ε ε εξ ξ ξ δ− −= + + + ≤ Θ +



    . Thus  
( ) ( )sup v

smu E u m τς
ε δ∈ ≤ Θ +



  for all s sδ≥  and δε ε≤ . By Lemma 2.6,  

vm τς ∞Θ < Θ


. We choose 0 v

m
τςδ

∞Θ
< < −Θ



, then there exist 0ms >  and 0mε >  
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such that  

( )sup , , .
sm

m m
u E

u s sε ε ε∞

∈
< Θ ∀ ≥ ∀ ≤                (3.6) 

Next, we shall define constants 1 2, , , mc c c  and prove that they are critical 
values of ε . Consider the symmetric group { }2 id, id= −  and we denote by 

( ){ }1: : is closed andNA H A A AΣ = ⊂ = −  and  

( ) ( )( ){ }1 1: , : is an odd homeomorphism .N Nh C H H h= ∈    

For any A∈Σ , we define a version of Benci pseudo-index of A as follows, 
( ) ( )( ): min genhi A h A Bρ∈= ∩∂ , where  

( ) { }( ){ }gen : inf : , \ 0 and is oddnA n g C A g= ∃ ∈   is the Krasnoselskii genus of 
A, and 0ρ >  is a constant given in Lemma 2.9. Let ( ) ( ): inf supl u Ai A lc uε∈≥=  , 

1,2, ,l m=  . Observe that 1 2 mc c c≤ ≤ ≤ . For any A∈Σ  and ( ) 1i A ≥ , we 
have ( )gen 1A Bρ∩ ∂ ≥ , then A Bρ∩ ∂  is not empty. By Lemma 2.9, it follows 
from ( )supu A uε κ∈ >  that 1c κ≥ , where κ  is defined in Lemma 2.9. 

Noticing that ( )gen A  satisfies dimension property in [24], for all h∈ , we 
have ( )( )gen dimsm smh E B E mρ∩ ∂ = = . Hence ( )smi E m= , then we obtain 

( )sup
smm u Ec uε∈≤  . Combining (3.6) with Lemma 2.11, we have  

( )1 2 sup .
sm

m
u E

c c c uε εκ ∞ ∞

∈
≤ ≤ ≤ ≤ ≤ < Θ ≤ Θ             (3.7) 

Let 0 :c κ= , ( ): sup
smu Ec uε∞ ∈=  , ( ) ( ){ }1: :c Nu H u cε ε= ∈ ≤  , and 

( ) ( ) ( ){ }1: : , 0N
c u H u c uε ε′Ψ = ∈ = =   . Clearly, ε  is an even functional. 

For all [ ]0 ,c c c∞∈ , we obtain  

and .c
cε ∈Σ Ψ ∈Σ                     (3.8) 

By using (3.7) and Lemma 2.13, for all [ ]0 ,c c c∞∈ , ε  satisfies ( )c
PS  

condition and  

( )1is compact in .N
c HΨ                     (3.9) 

Set ( ) ( ) ( ){ }1: : dist ,N
c cu H u

ι
ιΨ = ∈ Ψ < , where 0ι >  for any [ ]0 ,c c c∞∈ , 

then we choose 
4
ιδ = , we have there is 0ε >  such that  

( ) [ ]( ) ( )1

2

8 , 2 , 2 \ .cu u c c ιε ε
ε ε ε
δ

−′ ≥ ∀ ∈ − + Ψ


           (3.10) 

Let ( ) ( )1: \N
cP H

ι
= Ψ , then ( ) ( )1

2
2

\N
cP H ιδ = Ψ . By (3.10), we have 

( ) 8uε
ε
δ

′ ≥


  for all [ ]( )1
22 , 2u c c Pε δε ε−∈ − + ∩  . By Lemma 2.3 in [23], 

there is [ ] ( ) ( )( )1 10,1 ,N NC H Hη ∈ ×    such that for all [ ]0,1t∈ , ( ),tη ⋅  is  

an odd homeomorphism of ( )1 NH   and ( )1, c cPε ε
ε εη + −∩ ⊂   . Set 

( ): 1,η η= ⋅ , then η  is an odd homeomorphism of ( )1 NH   and  

( )( )\ .c c
c

ε ε
ε ει

η + −Ψ ⊂                    (3.11) 

For any A∈Σ  and 0cA ε⊂ , it follows from ( )uε κ>  for all u Bρ∈∂  
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that A Bρ∩ ∂ =∅ . Hence ( )gen 0A Bρ∩ ∂ =  and  

( ) ( )( )min gen 0.
h

i A h A Bρ∈
= ∩∂ =


              (3.12) 

Moreover,  

( )and 1.c
sm smE i E mε

∞⊂ = ≥              (3.13) 

By applying the Theorem 1.4 in [24], (3.8), (3.9) and (3.11) - (3.13), we have 

1, , mc c  are critical values of ε , and ( )gen 1c sΨ ≥ + , if  

1: k k k sc c c c+ += = = =  with 1k ≥  and k s m+ ≤ . Since ε  is even, then 

ε  has at least m pairs of critical points being solutions of Equation (3.1).  
Lemma 3.2. Equation (3.1) has at least one positive and one negative ground 

state solutions for 1m ≥  and has at least a pair of sign-changing solutions for 
2m ≥ .  

Proof. If a τ= , j jb ς= , 1,2j =  in Equation (2.1), then ( ) ( )0 0a V Vτ τ= = = , 
( ) ( )0 0j

j j j jvb W Wς ς= = = , 1,2j = . By Lemma 2.9 and Lemma 2.13, τς
ε



  has a 
( )PS

εΘ
 sequence and satisfies ( )PS

εΘ
 condition. By Lemma 2.15, there exists 

0 0ε >  such that εΘ  is achieved at 0uε >  for all 0ε ε≤ . Thus uε  and uε−  
are positive and negative ground state solutions of Equation (3.1), respectively. 

Let vτςα ± ∈


  with 0α+ > . Define ( ) ( ) ( ):s sx x xα ζ α± ±=  for Nx∈ , 
where sζ  is given in Lemma 3.1. Then sα α± ±→  in ( )1 NH   as s →∞ .  

Choose 0s > , sx ∈  with sx  large enough and ( ) ( )( )1 1dist 0 , 0s s sB B x+ + > .  

Let st
± ∈  such that :s s su t εα+ + += ∈  and ( ):s s s su t x εα− − −= ⋅ − ∈ . Then 

0su+ ≥  and 0su− ≤ , supp supps su u+ −∩  is empty and :s s su u u ε
+ −= + ∈ . Define 

{ }: :L u uε ε ε
±= ∈ ∈  , then we have su Lε∈ . Define ( ): infu Ll u

εε ε∈=  , then 
2 0lε ε≥ Θ > . 

Next, we will prove lε ε
∞< Θ  for ε  small enough. Due to ( )sl uε ε≤ , we 

get  

( )
0 0

lim lim lim .ss
l uε εε ε→ →∞ →
≤                      (3.14) 

Observe that 1st
± →  as s →∞  and  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

0

2

2 .

v v

v v v

v

s s s s s

s s s s s

u u u u J u

t t x x s

τς τς
ε ε ε

τς τς τς

τς

ε

α α α

+ − + −

+ + − −

= + → + →

= + − → →∞

= Θ

 

  



   

      (3.15) 

By 2m ≥  and combining Lemma 2.6 with Lemma 2.11, we have  

2 .vτς
ε

∞ ∞Θ < Θ ≤ Θ


                      (3.16) 

By (3.14) - (3.16), we get that lε ε
∞< Θ  for ε  small enough, which implies 

ε  satisfies ( )l
PS

ε
 condition for ε  small enough. 

Now we show that there is a ( )l
PS

ε
 sequence of ε . Since { }nu ε⊂  , then 

nu ε
± ∈ . We assume nu u± ±

  in ( )1 NH   with 0u± ≠ . There exist 0t+ >  
and 0t− <  such that t u ε

± ± ∈ , u t u t u Lε
+ + − −= + ∈ , we get  

( )u lε ε= . Assume by contradiction that if u  is not a sign-changing solution 
of Equation (3.1), there exists ( )1 NHϕ∈   such that ( ) , 1 2uε ϕ′ ≤ − . We 
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choose ˆ 0ε >  small enough, satisfying ( ) 1, 2tu huε ρϕ ϕ+ −′ + + ≤ −  for all 
ˆ1 1t h ρ ε− + − + ≤ . Let η  be a cut off function such that  

( )
ˆ ˆ1 2 1 21 1 and 1

, .
ˆ ˆ0 1 or 1

t h
t h

t h
 − ≤ − ≤=  − ≥ − ≥

ε ε
η

ε ε
 

Then ( )( ) ( )ˆ ,tu hu t h u l+ −+ + ≤ = ε ε εεη ϕ . Hence  
( )( )0 , 2 ˆmax ,t h tu hu t h l+ −

≤ ≤ + + < ε εεη ϕ . By a degree theory argument in [25], 
we find ( ), 0,2a b∈  such that ( )ˆ: ,u au bu a b L+ −= + + ∈ εεη ϕ  and ( )u l< ε ε , 
which contradits that the defination of lε . 

In the end, we prove lε  is achieved at some u L∈ε ε . Let { }nu L⊂ ε  and 
( )nu l→ ε ε  as n →∞ . By Ekeland vainational principle there is { }nu L⊂ ε  

such that ( )nu l→ ε ε  and ( ) 0nu′ → ε  as n →∞ , then 0n nu u− →  as 
n →∞ . Hence { }nu  is a ( )l

PS
ε

 sequence of  ε . Going of necessary to a 
subsequence, for ε  small enough we may assume nu u→ ε  in ( )1 NH   as 
n →∞ . Hence ( )u l= ε ε ε  and ( ) 0u′ = ε ε . Then u ∈ε ε , we have 0u± ≠ε , 
u± ∈ε ε . Thus u L∈ε ε  and u± ε  are a pair of sign-changing solutions of  

Equation (3.1). Let ( ) xv x u  =  
 

ε ε ε
, then v± ε  are a pair of sign-changing solu-

tions of Equation (1.2).  
This completes the proof of Theorem 1.1.  

3.2. Proof of Theorem 1.2 

We can assume without loss of generality that 0wx = . Then ( )0 wV =τ , 
( )0j jW = ς , 1,2j = . Letting wa =τ , j jb = ς , 1,2j =  in Equation (2.1), there 

is wu∈


τ ς  by Lemma 2.3. Due to Lemma 2.7, ( ), 1wm ≥
τ ς , we choose  

( ) ( )

( )

, if , 1
.3 if , 1

2

w w

w
w

m m
m

m

 >
= 

=

 



τ ς τ ς

τ ς
 

For the maximal integer wm m< , then 1m ≥ . By Lemma 2.6 and Lemma 2.7, 
we have wm ∞Θ < Θ

τ ς . The following proof of Theorem 1.2 is similar to that of 
Theorem 1.1 and so is omitted. 

3.3. Proof of Theorem 1.3 

In this subsection, we will consider the case (P3) - (1), the other case can be han-
dled similarly. Without loss of generality, we assume 0jvx = . Then ( )0V =τ , 

( )0j jvW = ς , 1,2j = . 
Lemma 3.3. u u→ε  as 0→ε  up to a sequence after translations.  
Proof. Let 0k →ε  as k →∞ , :

k kku u= ∈ε ε  with 0ku > . By Lemma 2.14, 
we obtain lim

kk→∞ Θ = Θ
τς

ε , which together with  

( ) ( )( )2 222 d
2 Nk k k k k k k

pu u V x u x C u
p
−

Θ = ≥ ∇ + ≥∫ε ε ε , implies that  

{ } ( )1 N
ku H⊂   is bounded. By Lemma 2.8, there exist 0>σ , 0R >  and 
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N
kz′ ∈  such that  

( )
2d .

R k
kB z

u x
′

≥∫ σ                        (3.17) 

Let ( ) ( )ˆ :k k ku x u x z′= + , ( ) ( )( )ˆ : k kk
V x V x z′= +ε ε , ( ) ( )( )ˆ :j j k kk

W x W x z′= +ε ε , 
1,2j = . Then ˆku  is a solution of  

( ) ( ) ( )1 1
1 2

ˆ ˆ ˆˆ ˆ ˆ ˆ .
k k k

p q
k k k ku V x u W x u W x u− −−∆ + = +ε ε ε             (3.18) 

Furthermore,  

( ) ( )ˆˆ ˆ .
k k k kk ku uΘ = = = Θ ε ε ε ε                 (3.19) 

Since { }ˆku  is bounded, we can assume that ˆku u  in ( )1 NH   as k →∞ . 
Then ˆku u→  in ( )N

locL µ  for )*2,2∈µ  as k →∞ . By (3.17), 0u ≠ . 
Since V and jW , 1,2j =  are bounded, up to a subsequence if necessary, we 

can assume  

( ) ( )0 0, , 1,2 as ,k k j k k jV z V W z W j k′ ′→ → = →∞ε ε       (3.20) 

and ( )0 10 20: ,W W W=


. For all Nx∈ , by the boundedness of ( ):V V x C∇ ∇ ≤ , 
for given arbitrarily 0R > , we obtain ( ) ( )k k k k k kV x z V z CR′ ′+ − ≤ε ε ε ε  for all 

( )0Rx B∈ . Hence ( ) 0
ˆ

k
V x V→ε  as k →∞  uniformly on any bounded set of x. 

Similarly, ( ) 0
ˆ

kj jW x W→ε , 1,2j =  as k →∞  uniformly on any bounded set 
of x. Similar to the proof of Lemma 2.14, we have  

0 0ˆlimsup .
k

V W

k→∞
Θ ≤ Θ



ε                       (3.21) 

By (3.18), for any ( )0
NC∞∈ ϕ , we obtain  

( ) ( ) ( )( )
( )

1 1
1 2

1 1
0 10 20

ˆ ˆ ˆˆ ˆ ˆ ˆ0 lim d

d ,

N k k k

N

p q
k k k kk

p q

u V x u W x u W x u x

u V u W u W u x

− −

→∞

− −

= ∇ ∇ + − −

= ∇ ∇ + − −

∫
∫





ε ε εϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
 

which implies that u is a ground state solution of  
1 1

0 10 20
p qu V u W u W u− −−∆ + = +                  (3.22) 

with the energy functional  

( )0 0 0 0
10 20

2 2d d .
2 2N N

V W V Wp qp qu W u x W u x
p q
− −

= + ≥ Θ∫ ∫
 

 
       (3.23) 

By Fatou’s Lemma,  

( ) ( )

10 20

1 20

2 2d d
2 2

2 2ˆ ˆˆ ˆliminf d ,
2 2

N N

N k k

p q

p q
k kt

p qW u x W u x
p q

p qW x u W x u x
p q→

− −
+

 − −
≤ + 

 

∫ ∫

∫

 

 ε ε

       (3.24) 

Combining (3.19) with (3.22) - (3.24), we have  

( ) ( )0 0 0 0 0 0ˆ ˆˆliminf limsup .
k k

V W V W V W
kk k

u u
→∞ →∞

Θ ≤ ≤ ≤ Θ ≤ Θ
  

  ε ε  

Hence  

( )0 0 0 0ˆlim .
k

V W V W

k
u

→∞
Θ = Θ =

 

ε                   (3.25) 
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Set ( )0C∞∈ η  satisfies ( ) 0t =η  if 2t ≥  and ( ) 1t =η  if 1t ≤ . Define 

( ) ( )2
:k

x
u x u x

k
 

=  
 

 η  and ( ) ( ) ( )ˆk k kz x u x u x= −   for Nx∈ . Then ku u→   

and 0kz   in ( )1 NH   as k →∞ , ku u→  in ( )NL µ  for *2,2 ∈ µ  
and 0kz →  in ( )N

locL µ  for )*2,2∈µ  as k →∞ , ku u→  and 0kz →  
a.e. on N  as k →∞ . We define  

( ) ( )( )
( ) ( )

2 2

1 2

1ˆ ˆ: d d
2
1 1ˆ ˆd d

Nk k

N Nk k

k k k

p q
k k

z z x V x z x

W x z x W x z x
p q

ε ε

ε ε

= ∇ +

− −

∫

∫ ∫



 


. Now we show that  

( )ˆ 0
k kz → ε  and ( )ˆ , 0

k k kz z′ → ε  as k →∞ . By Remark 1.33 in [23], we 
have  

( )2 2 2ˆ 1 .k k kz u u o= − +                  (3.26) 

For any 0>σ , there exists 0 0k >  such that  

0ˆ d , .N k k ku z u x C k k− − ≤ ∀ >∫ 



µ µ µ σ            (3.27) 

By choosing 2, ,p q=µ  in (3.27), respectively, we obtain  

( ) ( ) ( ) ( )2 2 2ˆ ˆ ˆˆ d d d 1 ,N N Nk k kk k kV x u x V x z x V x u x o= + +∫ ∫ ∫ 

  ε ε ε     (3.28) 

( ) ( ) ( ) ( )1 1 1
ˆ ˆ ˆˆ d d d 1 ,N N Nk k k

p p p
k k kW x u x W x z x W x u x o= + +∫ ∫ ∫ 

  ε ε ε  (3.29) 

( ) ( ) ( ) ( )2 2 2
ˆ ˆ ˆˆ d d d 1 .N N Nk k k

q q q
k k kW x u x W x z x W x u x o= + +∫ ∫ ∫ 

  ε ε ε  (3.30) 

By using the Lebesgue dominated convergence theorem,  

( ) ( )2 2
0

ˆ d d 1 ,N Nk kV x u x V u x o= +∫ ∫

 ε              (3.31) 

( ) ( )1 10
ˆ d d 1 ,N Nk

p p
kW x u x W u x o= +∫ ∫

 ε            (3.32) 

( ) ( )2 20
ˆ d d 1 .N Nk

q q
kW x u x W u x o= +∫ ∫

 ε            (3.33) 

Moreover,  

( )2 2
22 1 .ku u o∇ = ∇ +                     (3.34) 

Combining (3.25) - (3.34) and (3.18) with (3.22), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0ˆ ˆ ˆ ˆˆ 1 1 1
k k k k

V W
k k kz u u o u o o= − + = Θ − + =



   ε ε ε ε  (3.35) 

and  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 0

ˆ ˆ ˆˆ ˆ, , , 1

ˆ ˆ ˆ, , 1 1 .

k k k

k

k k k k k k

V W
k k

z z u u u u o

u u u u o o

′ ′ ′= − +

′′= − + =


   

 

ε ε ε

ε

  (3.36) 

In the end, by (3.35) and (3.36), we have  

( ) ( ) ( ) 21ˆ ˆ1 ,
k kk k k ko z z z C z

p
′= − ≥ ε ε , which implies that 0kz →  in  

( )1 NH   as k →∞ . Thus ˆku u→  in ( )1 NH   as k →∞ .  
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Lemma 3.4. ( )ˆ 0ku x →  as x →∞  uniformly in k +∈ .  
Proof. We use the contradiction method to obtain that there are 0>σ  for 

N
nx ∈ , nx →∞  as n →∞  such that ( )ˆ

nk nu x ≥σ . Moreover, there exists  

0C >  (independent of k) such that ( ) ( )( )
1

1
22ˆ ˆ d

n nn
k n kB x

u x C u x≤ ∫ . Thus by the 

Minkowski inequality, we have  

( ) ( ) ( )( )
1

11
2 22 2ˆ ˆ d d 0Nn n n

k n k B x
u x C u u x C u x≤ − + →∫ ∫

 as n →∞ , which is im-

possible.  
Lemma 3.5. { }k k k

z′ε  is bounded on N .  
Proof. Assume by contradiction that there is k kz′ →∞ε  as k →∞  up to a 

subsequence. Hence 0V ∞≥ >τ τ  and 0j j jvW ∞≤ <ς ς , 1,2j = . By Lemma 2.4, 
we have 0 0 vV WΘ >Θ



τς . According to (3.19), (3.25) and Lemma 2.14,  
0 0 ˆlim lim limsup v

k k k

V W
k k k→∞ →∞ →∞Θ = Θ = Θ ≤ Θ ≤ Θ



τς
ε ε ε , which is impossible.  

By Lemma 3.5, we may assume 0k kz x′ →ε  as k →∞ . By (3.20), we obtain 
( )0 0V V x=  and ( )0 0j jW W x= , 1,2j = . Applying (3.22), we get that u is a 

ground state solution of Equation (1.4). 
Lemma 3.6. { }zε ε

ε  is bounded, where Nz ∈ε  is a maximum point of 
uε .  

Proof. If the thesis were not true, there were 0k →ε  with k kz →∞ε , where 
:

kkz z= ε  is a maximum point of :
kku u= ε . Repeating Lemma 3.3 - Lemma 3.5, 

we can get that there exists N
kz′ ∈  such that ( )ˆ 0k k ku u z u′= ⋅ + → ≠  in  

( )1 NH   as k →∞ , ( )ˆ 0ku x →  as x →∞  uniformly in k +∈ , { }k k k
z′ε  

is bounded on N . Thus k k k kz z′− →∞ε ε  as k →∞ , then k kz z′− →∞  as 
k →∞ . Since ( ) ( )ˆmax 0N k k k k k ku u z u z z′= = − →


 as k →∞ , then  

( )ˆ 0ku x →  as k →∞  uniformly in Nx∈ , which contradicts with 0u ≠ .  
Lemma 3.7. ( )0lim dist , 0vz→ =ε εε .  
Proof. By Lemma 3.5 and Lemma 3.6, there exists 0k →ε  as k →∞  with  

0 0, as ,k k k kz x z z k′ → → →∞ε ε                 (3.37) 

where 
kkz z= ε  is a maximum point of 

kku u= ε . By Lemma 3.3 and Lemma 
3.5, there exists N

kz′ ∈  such that ( ) ( )ˆk k ku x u x z′= + . By Lemma 3.4, we may 
assume ( )ˆ ˆmax Nk k ku x u′ =


 and { }k k

x′  is bounded on N . Hence 

k k kz x z′ ′= +  and 0k kx′ →ε  as k →∞ . By (3.32) and (3.34), which imply that  

( ) ( )0 0 0 0 0 0, , , 1,2.j jz x V z V W z W j= = = =             (3.38) 

Assume indirectly that 0 vz ∉ , then ( )0V z >τ , ( )0j jvW z ≤ ς , 1,2j =  or 
( )0V z =τ , ( )1 0 1vW z < ς , ( )2 0 2vW z = ς  or ( )0V z =τ , ( )1 0 1vW z = ς ,  
( )2 0 2vW z < ς . By Lemma 2.4,  

( ) ( )0 0 .vV z W zΘ >Θ


τς                       (3.39) 

Combining (3.19), (3.25), (3.38) and (3.39) with Lemma 2.14, we have  
( ) ( )0 00 0ˆlim lim limsup ,v

k k k

V z W zV W

k k k→∞ →∞ →∞
Θ = Θ = Θ = Θ > Θ ≥ Θ





τς
ε ε ε  
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which is impossible. Hence 0 0 vx z= ∈ .  
By Lemma 3.6, if ( )1 2∩ ∩    is not empty, we assume  

( )0 1 2vx ∈ = ∩ ∩    , which implies that  

( )( ) ( ) ( )1 2 0 00
limdist , 0 and , , 1,2.j jz V x W x j
→

∩ ∩ = = = =  εε
ε τ ς  

Hence u is a groundstate solution of Equation (1.5). This completes the proof 
of Theorem 1.3. 

Similar to the proof of Step 6 in [18], we have the following result.  

Lemma 3.8. There exists 0C >  such that for small 0>ε , ( ) 2e
x z

u x C
− −

≤
ε

τ

ε  

for all Nx∈ .  
Now we prove Theorem 1.3 by Lemma 3.3 - Lemma 3.8. Set x z=ε εε , then 
( ) ( )v x u z=ε ε ε ε . By Lemma 3.6, xε  is a maximum point of vε  and { }xε ε

 is 
bounded on N . By Lemma 3.7, ( )0lim dist , 0vx→ =ε ε . By Lemma 3.3 and 
Lemma 3.4, ( ) ( ) ( )û x u x z v x x x′ ′= + = + −ε ε ε ε ε εε ε , where x z z′ ′= −ε ε ε  is a 
maximum point of ûε  with 0x′ →εε  as 0→ε . By Lemma 3.8, we obtain  

( ) e
c x x

v x C
− −

≤
εε

ε , where C depends on ,N τ . 

Consequently, we establish the multiplicity of the semi-classical solutions for 
Equation (1.2), and we obtain the existence, concentration, convergence, expo-
nential decay estimates of the positive ground state solution. We also prove the 
existence of sign-changing solutions of Equation (1.2). 
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