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Abstract
In this paper, we study a nonlinear Schrédinger equation with competing po-
tentials —&°AvV+V (X)v :Wl(x)|v|p'2 v+W, (x)|v|q'2 vV, Ve Hl(RN ) where

£>0, p,qe(2,2*), p>q, 2°: %

W, (X) are continuous bounded positive functions. Under suitable assump-

(N>2), V(x), Wi(x) and

tions on the potentials, we consider the existence, concentration, convergence
and decay estimates of the ground state solution for this equation. Further-
more, the multiplicity of semi-classical solutions is established by using Benci
pseudo-index theory, and the existence of sign-changing solutions is obtained
via Nehari method.
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1. Introduction

In this paper, we are interested in the nonlinear Schrédinger equation

. 0 - -
Igﬁl//:—gzm//+(V(X)+l)(//—W1(X)|l//|p ZV/—WZ(X)|I//|q ‘v,

(1.1)

where (t,x)eR, xRN, 7is the imaginary unit, £>0 is the Planck constant,

*

p,qe(2,2*), p>q, 2

%(mz), V(x), W(x) and W,(x) are

continuous bounded positive functions. An important issue concerning the

above nonlinear evolution equation is to study its standing wave solutions of the
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form y(xt)=e""v(x). For small £>0, these standing wave solutions are
referred to as semi-classical states. Byeon and Wang [1] are concerned with the
existence and qualitative property of standing waves (X,t)=e"*v(x) for

the following Schrédinger equation

2
ig%// = —%Az// +V (X)y —|y/|p71y/, (t,x)eR, xR",
where inf _,V(x)=E with Ebeing a critical frequency. It is easy to see that
l//(x,t) = e‘“/‘?v(x) solves Equation (1.1) if and only if V(X) solves

—&2AVHV (X)V =W, (X)V VW, (XYY, xe RN, (1.2)

Research on concentration phenomenon began many years ago, Ambrosetti,

Badiale and Cingolani [2] considered
_Av+(V (x)+/1)v :|v|p'2 v, xeRV,

where 1€R and vis a real-valued function, lim, , v(x)=0, Vhasa possibly
degenerate local minimum or maximum at X,. Up to translations, they as-
sumed that X, =0 and V(0)=0, then obtained the solution V, concentrates
near X, =0 as &£— 0. Wang and Zeng [3] studied the nonlinear elliptic equa-
tion with competing poentials V,K,Q

—’Av+V (X)v=K (x)|v|p'2 v+ Q(x)|v|q'2 v, xeRV, (1.3)

where 2<Qq< p<2',and they proved the ground state concentrates at a global
minimum point of ground energy function by the concentration-compactness
lemma. Ding and Liu [4] considered the existence, convergence and concentra-
tion phenomena of the ground state solution by using Mountain pass technique

for
(—igV + A(x))2 v+V (X)v=W (x)|v|p72 v, xeRV,

where pe (2, 2*) , V'and W are bounded positive functions. For other conven-
gence and concentration results on nonlinear elliptic equation, we can refer to
(5] [6] [7].

In the past few decades, the research on the multiplicity of solutions has been
widely concerned. For example, Cingolani and Lazzo [8] improved the existence
result for Equation (1.3) in [3], and they studied the multiple positive solutions
by the topology of the global minima set for energy function. Sun [9] studied the
existence and multiplicity for a class of the quasilinear elliptic equations by
Morse theory and the minimax method. Bartolo and Bisci [10] proved the exis-
tence and multiplicity of solutions to a fractional equation whose nonlinearity is
subcritical and asymptotically linear at infinity by using a pseudo-index theory
related to the genus. Papageorgiou, Riddulescu and Repovs [11] studied the exis-
tence and multiplicity to a class of double-phase Robin problems by the Morse
theory, and using the notion of homological local linking. Wu, Tahar, Rafik,
Rahmoune and Yang [12] established the existence of infinitely many solutions

for the sublinear Schrédinger equations by using the linking theorem and the
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variant fountain theorem. Wang, Cheng and Wang [13] proved the multiplicity
of positive solutions for the fractional Kirchhoff-Choquard equation with mag-
netic fields by using the penalization method and the Ljusternik-Schnirelmann
theory. In [14], Guo and Li considered the multiplicity of nontrivial solutions by
using a global compactness result and Krasnoselskii’s genus theory for the fol-

lowing fractional Schrédinger equation in an open bounded domain of R",
N A—Z
(=A) v+V (X)v=|v[n-2s "y,

where Se (0,1) , N>2s, Vis a sign-changing function. For the multiplicity of
solutions to the nonlinear Schrodinger equation, we can refer to [15] [16] [17].

Recently, Ding and Wei [18] considered the nonlinear Schrédinger equation
—£’Av+V (X)v=W (x)|v|p*2 v, xeRV,

where ¢>0, pe (2, 2*) , vV (x) , W (X) are bounded positive functions, and
studied the existence, concentration phenomena of the positive ground state and
multiplicity of semi-classical solutions by Benci pseudo-index theory and Nehari

method. Liu and Tang [19] studied the following Choquard equation
—&’AV+V (X)v=¢"W (x)( l, *(W v[° ))|v|p*2 v, xeR",
where £>0, N>2, I, is the Riesz potential with order HE(O,N) R

€ [2,%}, minV >0 and infW >0, they established the multiplicity of

semi-classical solutions by Benci pseudo-index theory and the existence of
sign-changing solutions by minimizing the energy on Nehari nodal set, they also
studied the concentration phenomenon, convergence, decay estimate of ground
state solutions. Similar studies appear in [20] [21].

Motivated by the above works, in this paper, we consider the multiplicity of
solutions and the existence, concentration, convergence and decay estimates of
the ground state solution for Equation (1.2). There appear the combined nonli-
nearities in our equation, which make more difficulties in our arguments. Finally,
we use the Benci pesudo-index theory to obtain the multiplicity of the semi-
classical solutions for Equation (1.2), and we get the sign-changing solutions by
resorting to the method. We extend the research in [18] and develop the method
in [4] [19] [20].

Our basic assumptions and the main results are the following.

(P1): VW, eC(RN,R) are bounded, V(X) attains a global minimum on
RN with min_, V (x)>0, and W, (x) attains a global maximum on R"
with inf_, W, (x)>0, j=12.

To describe our results, for j=1,2, we denote by

Ti= rELnV, 7 '::{XG]RN :V(x):r}, z,, =liminfV (x);

X}

¢ =maxW,, //j'::{XGRN :Wj(x):gj}, S, = limsupW, (x).

R [0
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(P2): 7| n7,#D.
We continue to denote by

X €7 g5 =maxW (x) =W, (x,, ), j=1,2;

1\

Xy € 7,075, 7= minV(x)=V(X,).

w >
e

For vector b= (b.,b,) e R?, we set

PN 2 a-p -2
S (B
— a gloo b2 B Too bl
m(a,b): o N ,
(L”)qz : [b—z]qz otherwise
a g200

andlet &=(61,5;)s G0 =(61062s)> G =(u162)- For
Biz(bli,b;)eRz(izl,Z), we use b'<b? to signify min{bf—bf,bzz—bg}zo,
and use b’ <b? to signify min{bf—bll,bzz—b;}ZO and
max {b; — b}, b ~b;} > 0.
(P3):1) r<r,,and thereis R, >0 such that Wj(X)ngv, j=12 for
|X|2Rv;
2) ¢>¢,,andthereis R,>0 suchthat V(x)>7,
If (P3) - (1) holds, we set
A ={xe7 W (X)=¢;,, =12} u{xe 7 W (X)>g, orW,(x)>g,, | .1 (73) -
(2) holds, we set Awlz{Xe’/'/lh '/'/2':V(x):rw}u{xg'/'/lh 7’/2':V(X)<rw}. In
the following, A stands for A, in the case (#3) - (1),and A, in the case (3)
- (2). Clearly, A isbounded. Furthermore, A=7 "N (7,N7,),if
7 'm('/'/'l n '//2') is not empty.

for |X|2 R,-

w

Theorem 1.1. Assume that (P1) holds and 7<7,_, &, =&, . Then there exists
m,>m(z,g,) such that for the maximal integer meZ, with m<m,, Equa-
tion (1.2) has at least m pairs of solutions for small & >0. Moreover, among the
solutions, at least one is positive, one is negative and two change sign if m>2.

Theorem 1.2. Assume that (P1) - (22) hold and 7, <7, , ¢>¢, . Then there
exists m, >m(z,,5) such that for the maximal integer meZ, with m<m,,
Equation (1.2) has at least m pairs of solutions for small ¢ >0. Moreover,
among the solutions, at least one is positive, one is negative and two change sign
if m>2.

Theorem 1.3. Assume that (1) - (P3) hold. Then for &£>0 large small, Eq-
uation (1.2) has a positive ground state solution v, . If V,Wj IS CI(RN ,R) ad-
ditionally and VvV, VW, are bounded, j=1,2,then Vv, satisfies that

1) There is a maximum point X, of v, suchthat lim diSt(Xg , .A) =0;

&0

x|

2) Thereare C,c>0 suchthat v, (x)< Ce ¢ forall xeR";

3) Setting 0, (X):=V,(&x+X,), then for any sequence X, >X, as £—0,
there holds U, —>u in Hl(RN ) as ¢ — 0, where uis a ground state solution
of
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—AU+V (X )u =W, (%, JuP +W, (% )u®™, u>0. (1.4)

If particularly 7 '"(7,N7,) isnotempty, then
lim dist(xg, 7 (7N /'/2')) =0, and up to a sequence, U, > U in Hl(RN )

-0

as ¢ — 0, where zzis a ground state solution of
~Au+7u=gUu "t +5utt, u>0. (1.5)

Now we give some preliminary lemmas which will be useful for our argu-
ments.

Lemma 1.4. ([22]) For every Ve HY(R") and v>0, there are
vV eH!(RY):= {VE Hl(RN):v(x):v(|x|)} and vV >0 such that

J.]RN

Lemma 1.5. ([22]) The embedding H'(R")o L“(R") is continuous for
HE [2, 2*] and the embedding Hl(RN ) o L. (RN ) is compact for pe [2, 2*) .
Furthermore, Hﬁ(RN ) o (RN ) is compact for pe (2, 2*) .

Lemma 1.6. ([23]) Let R>0 and ,ue[2,2*).1f {v,} isbounded in
Hl(RN) and sup . .[BR(y) vn(x)|” dx—>0 as n—>o,then v, >0 in
L'(RY) for te(2,2") as n—oo.

For simplicity, we denote by

M= Ml M, =M (09)= (09)

[ dx < [on IV dx, [

V[ dx = [V dx, V>,

vii=max{0,v}, v :=min{0,v}, R,:=(0,0), Z,=ZANR,.

And we shall use different patterns of C to denote any positive constant,
whose values may change from line to line, and 0(1) to denote the quantities
thattendto0as n—>o or k—>oo.

This paper is organized as follows: In Section 2, we give some preliminary re-
sults which are proved by Nehari method and play a key role in the arguments of
main theorems. In Section 3, we prove the multiplicity of semi-classical solutions
by using Benci pseudo-index theory and show the existence of sign-changing
solutions. In order to get more detailed and accurate characterization of the
properties of solutions, we also study the convergence, concentration phenome-

non, and exponential decay estimates of the positive ground state solution.
2. Preliminary Results
2.1. Constant Coefficient Equation
We first consider the following equation
—Au+au=b1|u|p’2u+b2|u|q72u, ueH1<RN), (2.1)

where p,qe(2,2*), p>q, a>0, b;>0, j=1,2.
Foreach ueH 1<RN ) , the energy functional associated to Equation (2.1) is

1J' (|Vu|2 +au’ )dx —%jRN |u|” dx —%LRN Ju[* dx.

Jaﬁ(u):E .
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The weak solutions of Equation (2.1) are critical points of
J* e Cl(Hl(RN ),R). We denote the least energy by 0% = inf J®, where

N® {u e HI(RN)\{O} <(Jab) (u), >:0} is the Nehari manifold. The set
of least energy solutions can be denoted by
S — {u c Hl(RN ) : jaﬁ (u) _ ®a5,(ja5 ), (u) = O} . In particular, we set

J* =g, N*=N™ and 0" =0 .
Lemma 2.1. The functional J% satisfies that
1) There exist p>0 and x>0 such that T (u)>x forall ||u|| =p;
2)For u=0, Jaf’(tu)—>—oo as t— 400,
Similar to the proof of Lemma 2.4 in [20], we have the following result.
Lemma 2.2. Let Y™ ={y C([0.], Hl(RN )):7(0)=0,7 (7(1)) <0} , then

ab H ab
O T 1= g 1)
Lemma 2.3. ®® isachievedand S® is compactin H' (RN ) .
Proof. Forany ueH’ (RN ) , we choose the equivalent norm
||u||12 f (|Vu| +au )dx Clearly, N'® is not empty. Let u e N'® with
u,>0 and T (u, )—)@ab as Nn—oo, By Lemma 1. 4 there is U’ € HI(RN)
) S"un”l, —|Un Un |, —|un|q . Observe that

2 «|P
=hb |u
bl p

n

P,

*|q

*p+b2unq.1f

*

u

«[d . 5
Lur[, then Ul e N If
q

Mg

q, then there exists t, €(0,1) such that tu; e N'*® and

Unl

@aﬁsjaﬁ(tnu:) 4= 2||u ||1 P qbl|u |p T (u )—)@a6 as n—>oo. Hence

jaﬁ(tnu:)—>®ati as n—o . Define w, =t.u,, then W, e H:(RN )mNaE ,
w,>0,and J*(W,)>0* as n—-ow.

Clearly, {w,}c Hl(RN) is bounded. We assume w, —W in H?(RN) as
n—o up to a subsequence if necessary. By Lemma 1.5 and W, e N, we
have ||w, ||f SC("Wn ||1p +|w, ||f), which ensures that w=0 by letting n—o0.
Due to the weakly lower semi-continuity of norm, we obtain ||W||f <b |W|E +b, |W|3 .
Thus we have we NV .

In the end, we can obtain (j ab ), (w)=0, where we S® s positive and ra-
dially symmetric. With similar arguments as aboves, S® is compact in
HY(R").

Lemma 2.4. Let a >0, b',b’>>0, i=12.

1) If min{a, -a,,b} —bj,bf —b3 }>0 then @ <@%;

2) If min{a, —a,b ~b;,b7 ~b7} >0 and max{a, —a,bf —b},b7 ~b}} >0,
then @ <@%™.

Lemma 2.5. If uzis a ground state solution of

i

AU+ u=g.[u" u+g,, |u|q_2 u, ue Hl(RN ) (2.2)
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with the energy ©~. Setting z(X) :iu[ ix}, then zis a ground state solu-
T

©

tion of

Az +az :{%lszbl|z|p2 z +£agi/l“'jbz |z|c'72 7, 7€ Hl(RN ) (2.3)
T b

o 02

-
2
with the energy ©(1) =47 [ij 0”.
T

©

Proof. Observe that uis a ground state solution of Equation (2.2) if and only if

zis a ground state solution of Equation (2.3). Indeed,

o)

_| B p2-p |z|p_zz+ B2e y2-a |z|q_2 z.
T T

© ©

Furthermore, ue N'™ ifand onlyif ze N (4).Hence

N
2 a 2 0
o(1)=22|2| "o
Lemma 2.6. Assume that a<r,, b>Z, . Then m(a,B)@aES(a“.

Proof Note that if 1>0 satisfies max{ag—lgizp,%/lzq}ﬁl, we have
T T b,

©

0* < @(/1) . By the definition of m(a, 5) , we can find two cases:

o

q-p -2
G
b2 T bl
p— p—

gloc a ﬁ gZoc qu
(EHZ) (E] | 2

oo
If (2.4) holds, we choose A= (agij , then

N

or

o
N

‘ -
N

T

©

PN 2
®(l) = [Tij e (%”] " ®”. Thus we get m(a,ﬁ)@aﬁ <O~

©

1

=2
If (2.5) holds, we choose A= [agqu , then

b,

©

9 N 2
O(4)= [Tiqu ’ '(gbﬁqu O~ . Thus we get m(a,B)@aE <O~
® 7)

Lemma 2.7. If r<7,,¢,>¢, , then m(7,g,)>1 and 0™ <@” . If
7,<7,,6>¢,,then m(7,,¢)>1 and 0™ <0~
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Proof. Choose a=r,b, =¢;,, j=12 in Equation (2.1), Equations (2.3), (2.4)
and (2.5), respectively. By the definition of m(z,g,), we have m(z,g,)>1. By
Lemma 2.6, we have O™ <@~ .

Similarly, we choose a=r,,b;=¢;,j=12 in Equation (2.1), Equations

(2.3), (2.4) and (2.5), respectively. By the definition of m(z,,5), we have

p-2 -
m(z,,,¢)=1. If (2.4) holds, we choose A= (ﬂj ,then O™ <©(1)<0©”
Toogl

by Lemma 2.4 and Lemma 2.5. If ¢, >¢,_, then 0™ < @(/1) <O®” by Lemma
25.If ¢,>¢,,, then @ <O(1)<O®” by Lemma 2.4. Hence ©™ <@ If

1

q-2 -
(2.5) holds, we choose A :(M] , then @™ <O(1)<O". If ¢ >¢,.,,
Toogz

then O™ <@(1)<@®”.If g, >g,, ,then O™ <O(1)<O®”.Thus O™ <O”.
Lemma 2.8. There exist constants C,C>0 such that for every ueS®,
u(x) <Ce™™ forall xeR".
Proof. Let a':=a-bu”-h,u’?, we obtain —~Au+a'u=0. For R large
enough, we get 2a’'>a for |X|>R. Define ¢(X):Clefcz‘x‘ or #(s)=Ce™",
where C, >0, s=|x|. Choose C, large enough such that ¢(x)>u(x) for

X|=R. Since —A¢(x)+a'¢(x)2(%—c§]¢(s), we choose 0<czg\/§ such
that —A¢(x)+a'¢(x)=0 for |x|>R. Therefore,
{—A¢(x)+a’¢(x)2—Au+a’u v|x>R
$(x)=u(x) V[x=R
By comparison principle, ¢(x)>u(x) for all [x|>R, then u(x)<Ce ¥

for all |X| >R. For C, large enough, we get that U(X)< Clefcz‘x‘ for all |X| <R.
Thus u(x)< Clefcz‘x‘ forall xeR".

2.2. Auxiliary Equation

In this subsection, we consider the following equation for p,q 6(2,2*) and
p>q,
—Au+VE (X)u =W (x)|ul** u+Wez (x)|u[u, ue HY(RY), (2.6)

where r<a<rz,, 2b>Z,, Vj(x):zva(gx)::max{a,V(x)} and
Wy (x):=W;" (ex):=min{b W, (x)}, j=12.

je

Foreach ueH 1<RN ) , the energy functional associated to Equation (2.6) is

jgaﬁ (u) :%.[]RN (|Vu|2 +V2 (X)Uz)dx _%JRNW]:} (X)|u|p dx

1

_a it

W,2 (X)|u[* dx.

The weak solutions of Equation (2.6) are critical points of

Jfﬁ € Cl(Hl(RN ),R). We denote the least energy by G)f;E = infM J®, where

rab Y&
:
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N® = {u € H1<RN)\{0} :<(Jf5) (u),u> = 0} is the Nehari manifold. The set
of least energy solutions was denoted by

S:B :{ug c Hl(RN ) : jgaB (ug) :®§5, (jgaﬁ )' (ug) = 0} . In particular, we set

Tr=Jr, NP =N, 07 =07,
V=V, We=We, j=1,2,

Je !

Lemma 2.9. The functional J f b satisfies that

1) There exist p>0 and x>0 both dependent on N, p,q,7,& and inde-
pendent of a,b such that \755 (u)>x forall |u|=p;

2) For u=0, j:b(tu)—>—oo as t—+oo.

Lemma 2.10. Let YZB = {y € C([O,l], HI(RN )) :7(0)=0, \7;5 (7/(1)) < 0},
then

ab _ : ab s ab
OF = inf maxJ (tu)= inf maxJ; (7(t))>o0.

ueHl(]RN )\{0} = er?b tf01]

Lemma 2.11. If J; has a (PS) sequence, then either c=0 or c>©;.
Furthermore, © >2@”.

Proof. Let {u} e Hl(RN) isa (PS) sequence of J,then J.(u,)—>c
and (J:O) (u,) >0 in Hfl(RN) as n—o. We will show that c>07
when c#0. Since {un}c Hl(RN) is bounded, we may assume U, —U in

Hl(RN) as n—oo. Hence (jf),(u)=0.8et Y, =U, —U. By Lemma 1.32 in

[23], we obtain
T (Ye)—>c—=T7(u) asn—oo, (2.7)

Forall peH'(R"), we have
(7 () 0)~(( ) (w0)0)
O T A A P P 9
[ W () [l =13 o = [ul" ) e
Forany o>0, thereis R>0 suchthat [ |uf"dx<o® and
I‘M |u]* dx < o . By mean value theorem and Hélder inequality, we obtain

J‘\x\>R

again, we get that LX‘>R

(|un|p—2 u, _|yn|p-2 yn)(p‘dx <Co|¢| . Furthermore, by Hoélder inequality

Jul"* ugldx < Calg] . Thus

I O T A A R A T T

<Col|g|- (2.9)

Similarly,

2 ) Jn " = 3, = ) e

<Col|g|- (2.10)
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U
. -2 -2 i
By Lemma 1.5, we obtain |un|” un—|u|" u—>0 in L' (RN) as N—oo

with = p,q, respectively. Hence

-[\X\SRW]-? (x)(|un|972 u, _|yn|P*2 y, |u|:r2 u)godx‘ = 0(1)||¢||. (2.11)

Similarly,

=o(1)|e| (212

R O A T M B My P

By (2.8) - (2.12), we get that (Jf)’(yn)—>0 in H_l(RN) as N—oo.
Forall neZ, ,if y, #0,thereis t,>0 suchthat t )y, e N . Thus

T7 (t,Y,)2 0] (2.13)
and 0=<(J:°)’(tnyn),tnyn>.By O(l)=<(Jf)’(yn),yn>,thenwe obtain

o(l):(l—tnp‘z) RNwlf(x)|yn|pdx+(1—tr?‘2) W (XY, A (2.14)

Moreover, |y, ||2 < C.[RN (|Vyn |2 +V(X) Y2 )dx <C (|yn|z +|Y, |2 ) +0(1).If
|yn|p —0 and |yn|q —0 as n—>w,wecanget U —Uu in H'(R") as
n—o and c20O;.If |yn|p >20>0 or |yn|q >0 >0 in (2.14), we obtain
t,—>1 as n—oo.Hence by (2.7), we have J.(t,y,)>Cc—J,(u) as n—>w.
By (2.13), we get that ¢>© . If thereis Y, =0,then J' (u)=c=0 and
ue N, .Hence c>07.

Observe that 7 (u)>7"(u) forall ue Hl(RN ) According to Lemma 2.2
and Lemma 2.10, we obtain @} >0”.

Similar to the proof of Lemma 2.11, we also have the following result.

Lemma 2.12.If J® hasa (PS), sequence, then either ¢=0 or c> o®.

Lemma 2.13. Forall ¢<®”, J% satisfies (PS )C condition.

Proof. Let {u,}c Hl(RN ) isa (PS)_ sequence of J® then J®(u,)—>c

’

and (jjﬁ)(un)—>0 in H’l(RN) as N—>o.Weassume U, —U in
Hl(RN) as Nn—oo. Hence (jfﬁ)y(u):o. Set y,:=U,—U. Due to the proof
of Lemma 2.11, we obtain

TE(y,) > -T2 (u), (555)'(yn)—>0 inH(R")asn—>o.  (215)

Next, we will show that jf(yn)éc—jfﬁ(u) and (j:’)l(yn)—>0 in
H’1<]RN) as n—>oo. By definition, we get that for all o >0, there is R>0
such that for all |X| >R,

V() -VE()| <o W (x) =W ()] <o, =12 (2.16)
Thus by (2.16), we have

p

1 1 1
SC{EMIZ ks +E|yn|3]+c(|y"|i2<sn> 90l +Holfe )
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which together with Lemma 1.5 and (2.15) imply that
J2(y,)—»c-J® (u) asn—o. (2.17)

Similarly, by Lemma 1.5 and (2.15) again, we have
(Jf)'(yn)—w in H’l(}RN) asn — . (2.18)

By (2.17) and (2.18), we obtain {y,} isa (PS )c—jas(u) sequence of J.. By
Lemma 2.11, either ¢=7"(u) or ¢=J(u)+®7. The latter contradicts
our assumption C<®©7.Hence ¢=J% (u) and

J*(u,) > J* (u) asn—ow, (2.19)

Now we prove that u, ->u in H1<RN> as n—oo. Since

o<1)=<(J:B)’<un>,un>,we e

ab :q P-4 by p
TE (uy) 2q (|Vu| +V2(X)u )dx+ - fRNwlg(x)|un| dx+0(1). By
O=<(jfﬁ)’(u),u>,weobtain

ab q P—Q
jgb(u):ﬁ (|Vu| +V2 (x)u )dx+WJ'RNW1§(x)|u|pdx.By Lemma 1.6,

we assume there exist R>0 and >0 such that IB( )|yn|pdx25>0 for
R (%Xn

N
some X, € R".Moreover,

Ilmjab(yn)>l|m(p qj |yn|pdx+o(1)j

n—o0

n—o0

> ||m(cj Il dx+o(1))205>0,

which is impossible. By (2.19), we conclude that ||un||—>||u|| as n—oo. Thus
u, >Uu in Hl(RN) as N—oo.

Lemma 2.14. limsup, ,, ®§B <O® | where é:Va(O) , Bj :ijj (O) , j=12,
b =(b,,b,). Meanwhile, if V(0)<a, W,(0)2b;, j=12, then
&0 ®2b =0,
Proof. Setting V, (x)=V}(x)-& and W, (x)=b;-W;) (x), j=12, we

have

lim

V,(x)—>0, W, (x) >0, j=1,2 ae.onR" ase—0. (2.20)

Furthermore,

jgaﬁ (u)—jég (U) _ IRN \75 (2X)u2dX 4 Imelg (::)'u'p dx 4 IRN V\72€ (qX)|U|q dx 2.21)

Due to Lemma 2.3, there is o€ S® satisfying J® (a)= 0 for ae N®.
Let t >0 suchthat t.@ e N, we obtain
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max J2 (ta)= 7% (t,z) > 0. (2.22)
t>0

Observe that lim, ., J® (ta)=-w, thereis T >0 such that

J® (ta)<0, Vt>T. (2.23)

Combining (2.22) with (2.23), we have t <T. Let t. >t, as £—>0. By
applying (2.20) - (2.22) and the Lebesgue dominated convergence theorem, we
obtain ©F < 7% (t &) > JT® (tya) < T™ (@) =0 as &->0.Hence
limsup,_, % <©® .

In the end, d=a and b;=b;, j=12 when V(0)<a and W,(0)>b,,
=12, namely, for all xe RN, we obtain VS(X)ZO, V\7j6(x)20 , j=12.By
Lemma 2.2, Lemma 2.10 and (2.21), we have @zﬁ > ®ég . According to
®® <liminf,_,©® <limsup,_,©® <®% , we obtain lim,_,0% =0® =@® .

Lemma 2.15. If r£a<rw,§252§w or rsaﬁrw,§>52§w, then there is
£® >0 suchthat ©® isachievedat U® >0 forall &<s®.

Proof. By Lemma 2.7, we have @ég <©®%, where é:Va(O), Bj =ijj (0),
j=1,2. By Lemma 2.11 and Lemma 2.14, there is £® >0 such that
©F <0” <@ for all <. By Lemma 213, J satisfies the (PS).s

condition for all &<¢&®, which combined Lemma 2.9 with Lemma 2.10, we

&0

have © is achieved at u® € Hl(RN ) . Weset U™ isa ground state solution

of Equation (2.6). If qu - #0,by

o-{( (5 ) )={ (2 () ) ) mpis o

(uF) e Thus ©F =72 ()= ((uj5 )+j+jj‘5 ((ufB )) > 20,
which is impossible. Hence ujB does not change the sign. Then we may assume
u® >0. By the elliptic regularity theory, u® e C? (RN ) By strong maximum
principle, we have u® >0.

3. Proofs of the Main Results

Setting U (X) = V(gx) , Equation (1.2) is a solution of

—AUHV (ex)u =W, (ex)|u] " u+W, (ex)|u Ty, ue Hl(RN ) (3.1)

If u,(x) isa solution of Equation (3.1), then v, (x)=u, [ﬁj is a solution of
&

Equation (1.2).
Since V (ex)=V,(x), W,(ex)=W;}(x), J=12,we denote by
J.=JF5, N, =NF, 0, =07, S, =5".

3.1. Proof of Theorem 1.1

Without loss of generality, we assume x;, =0. Then V (0)=r, W, (0)= Siv»
j=12.

Lemma 3.1. Equation (3.1) has at least m pairs of solutions.
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Proof. We choose a=r,b, =6y, 1=1,2 in Equation (2.1) and by Lemma 2.3
and Lemma 2.8, there are UeS™ and u>0.Let s>0, ¢ eCy(R,) satis-
fies ¢ (t)=0 if t=s+1 and ¢ (t)=1 5'('[)|Sl.Assume
U () =&, (|X)u(x) for xeR".By [u,—u|—>0 as s—>o,we get that
U, —>Uu in Hl(RN) as s—o and u;—U in L“(]RN) for ue[Z,Z*] as
s — . There is a unique t, >0 such that tu, € N'* . Therefore,

. -2 -2
ntLaOXj > (tu )_ p2_ptsp jRN S |us|p dX+qz—qtg J.]RN Sov |us|q dx

p-2 g-2
_)Z_p RN Sy |u|p dX+W RN g2v|u

=maxJ ™ (tu)=J™ (u)=0™.

t>0

[fdx(s >)  (3.2)

Furthermore,
Vv (gx) -V (0) =1, Wj (gx) —)Wj (0) =G j=1,2 ase—0 (3.3)

uniformly of xon any bounded set. There is a unique t,, >0 suchthat t u,eN,.
Observe that t, -t as & — 0. Hence (3.2) and (3.3) imply that

p-2 q-2
max 7, (tu; ) :Z—Dts'lf\x\gs+1wl(5x)|us|p Ot g 5 s (£x)|u|" dx

& J|x|<s+

D—Z q-2
22 Cheatulil &S0 e (25 0) G4

= rrtngfgv (tu,) > O™ (s > ).

By Lemma 2.7, m(7,G,)>1. We choose m, =m(z,¢, ). For the maximal in-
teger meZ, with m<m,, wehave m=>1. Define
55,( )—u ( 2|(S+1) '-,XN) for 1=0,1,---,;m-1, and set
E,, =span{&, (x):I =0,1,---,m—1} _Clearly, (&;,&;)=0 if i# ].Hence
dimE,, =m. Combining (3.2) with (3.3) again, forall 1=1,2,---,m—1, we have

2 2
maxj (tégsl) p pJ.\X\<S+1 1(&X |§S| |p ox+ q2q i |xj<s+1 W, gX |§s| |q dx
P PJ"X‘<S+1§1V |é:5| |p A J'Mqﬂgz\, |é:sl | dx (& —0)

—maxj’gv (tug) > @™ (s—>oo),

t>0

where t, and t, arethe unique constants satisfying t,_&, € N, and
t,&, e N*, respectively, and t, —t, as &-—>0. Therefore, for all §>0,
thereare s;>0 and &3>0 suchthatforall 1=0,1,---,m-1, we get

max 7, (t&,)<O% +6, Vsxs;, Ves<e. (3.5)

Let u=t¢,+t<&, +"'+tm—1§s(m—l) for any uekE,, , where t,,---,t,  eR.
According to (3.5), forall s>s; and &<g;, we obtain
T, (W)= T, (o) + T, (6€a) 4+ T, (tn 1€y ) SM(OF + ). Thus
Sup, e, J, (u) < m(@iV + 5) forall s>s; and &<g;.ByLemma 2.6,

0

o 0" . .
mO™ <O”. We choose 0<d <——0O™, then there exist 5, >0 and ¢,>0
m
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such that

sup J,(u)<®@~, Vs>s ,Ve<e,. (3.6)

ueEgy,

Next, we shall define constants c;,C,,---,C,, and prove that they are critical
values of J,. Consider the symmetric group Z, ={id,—id} and we denote by
z::{Ac H*(R" ): Ais closed and A:—A} and

H = {h € C(Hl(RN ) Hl(RN )) ‘hisan odd homeomorphism}.

For any AeX, we define a version of Benci pseudo-index of A as follows,
i(A):=min,_, gen(h(A)N 0B, ), where
gen(A) =inf {n ;dg e C(A,]R” \{O}) and g is Odd} is the Krasnoselskii genus of
A,and p>0 isa constant given in Lemma 2.9. Let ¢, = infi(A)2I SUPyca J, (U),
I=1,2,---,m. Observe that ¢, <c,<---<c,. For any A€eX and i(A)Zl, we
have gen(Am@B p) 21, then AndB, is not empty. By Lemma 2.9, it follows
from sup,.,J,(u)>x that ¢, >« ,where x isdefined in Lemma 2.9.

Noticing that gen(A) satisfies dimension property in [24], forall he H , we
have gen(h(Esm)ﬁaBp) =dimE,, =m. Hence i(Ey,)=m, then we obtain
Co <SUPyce,, T, (u). Combining (3.6) with Lemma 2.11, we have

k<c <c,<--<c <sup J,(U)<O” <O, (3.7)

ueEgy

Let Ci=x , C,=sup, J,(u), J; ::{UGHI(RN):jS(u)gc} , and
Y, :={u € Hl(RN):jg(u):C, J! (u):O}. Clearly, J, is an even functional.
Forall ce [C0 , Cw] , we obtain

JieX and Y el (3.8)

By using (3.7) and Lemma 2.13, for all Ce[co,cw], J, satisfies (PS)C

condition and

P is compact in Hl(RN ) (3.9)
Set (Tc), ::{u € HI(RN)ZdiSt(U,\PC)<l} , where >0 forany ce[c,cC,],

l N
then we choose & = 7 we have thereis £>0 such that

Let P:=H1(RN)\(‘I’C)1, then P25=H1(}RN)\(LPC)1. By (3.10), we have
2

, 8¢
Jg(u)||23

. VueJM([c-28,c+28])\(¥,).. (3.10)

j;(u)”zi—"’: for all UGJS’l([C—ZE,C+2§])ﬁP2§. By Lemma 2.3 in [23],

there is 77 €C([01]xH'(R"),H'(R")) such that for all te[0,1], 7(t,) is

an odd homeomorphism of Hl(RN ) and 77(1,\7;“: N P) cJ5F . Set
n= 77(1, ) ,then 7 isan odd homeomorphism of H 1(RN ) and

n(TN(E,), ) e T (3.11)

For any A€X and Ac J2, it follows from J,(u)>x for all uedB,
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that AnoB, = . Hence gen(AmaBp)=0 and

i(A):rgliggen h(A)maBp):O. (3.12)
Moreover,
EmcJ,> and i(Eg,)=m=>L1. (3.13)

By applying the Theorem 1.4 in [24], (3.8), (3.9) and (3.11) - (3.13), we have
C,,-+,C, arecritical values of 7, ,and gen(¥,)>s+1,if
c=C, =C, =-=C,, with k=1 and k+s<m. Since J, is even, then
J. has at least m pairs of critical points being solutions of Equation (3.1).

Lemma 3.2. Equation (3.1) has at least one positive and one negative ground
state solutions for m>1 and has at least a pair of sign-changing solutions for
m>2.

Proof If a=rt, b, =¢;> J=12 in Equation (2.1), then &=V~ (0) =V (0) =T,
Bj =ngj (0) =W, (0) =G> j=1,2. By Lemma 2.9 and Lemma 2.13, jf hasa
(PS) o, Sequence and satisfies (PS) o,
& >0 such that ©, isachieved at u, >0 forall §<g;. Thus u, and —u,

condition. By Lemma 2.15, there exists

are positive and negative ground state solutions of Equation (3.1), respectively.
Let a*eS™ with o' >0. Define a;(x)=¢,(]x|)a*(x) for xeR",
where ¢, is given in Lemma 3.1. Then o »>a” in Hl(RN) as S— 0.

Choose $>0, X,€R with |x/| large enough and dist(Bs+1(0) B (XS))>0.

» Bsig
Let t;eR such that uj=tja{eN, and u;:=tja;(-—x)eN, . Then
u; >0 and u; <0, suppu; Nsuppu, isempty and u,:=u. +u; € N,. Define
L, = {u eN, u* e/\fg} , then we have u; €L, . Define | :=inf, J,(u), then
I,>20,>0.

Next, we will prove |, <@ for & small enough. Due to |, <.7,(u,), we

get
liml, <limlim 7, (u,). (3.14)

#-0 © 7 5080
Observe that t; -1 as s—>o and
jg(us)=k7£(u;)+j€(u;)—>j’5v (u;)+JT§v (u;)(g—>0)
=J% (t;a:)+ T™ (t;a; (x—x )) —=2J% (a)(s>»)  (3.15)
=20™.
By m>2 and combining Lemma 2.6 with Lemma 2.11, we have
20™ <" <07, (3.16)
By (3.14) - (3.16), we get that |, <®] for & small enough, which implies
J, satisfies (PS )Ig
Now we show that thereisa (PS )I sequence of 7, . Since {u,}< N, then

u; e N,. We assume U; —U® in Hl(RN) with U* #0. There exist t* >0
and t” <0 suchthat t'u*eN,, u=t'u"+tu el,, weget

condition for & small enough.

J,(u)=1,. Assume by contradiction that if U is not a sign-changing solution
of Equation (3.1), there exists @€ Hl(RN) such that <jé’ (ﬂ),go>£—]/2. We
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choose £>0 small enough, satisfying <j6’ (tu+ +hu” + pq)),¢> <-1/2 for all
|t —1| + |h —l| + |p| <&.Let 1 bea cut off function such that
1 [t-1<1/2¢ and|h-1<1/2¢&

”(t'h):{o t-1>2 or [r-12

Then J, (tu* +hu™ +én(t, h)go) <J,(0)=1,. Hence
MaXg hep I, (tu+ +hu™ +én (t,h)gp) <l,. By a degree theory argument in [25],
we find a,be(0,2) such that G:=au" +bu” +én(ab)pel, and J,(0)<l,,
which contradits that the defination of 1.

In the end, we prove | is achieved at some u, el,. Let {u,jcL, and
J,(u,)—>1, as n—oo. By Ekeland vainational principle there is {U,}cL,
such that 7,(0,)—>1, and J.(0,)—>0 as n—oo, then ||lTn —un||—>0 as
n—o. Hence {0} is a (PS)
subsequence, for ¢ small enough we may assume U, > U, in Hl(RN ) as
n—>o.Hence J,(u,)=I, and J.(u,)=0.Then u, e NV,, we have u; =0,

u;eN,. Thus u,el, and +u, are a pair of sign-changing solutions of

sequence of J,. Going of necessary to a

IL‘

Equation (3.1). Let v, (x)=u, (ﬁj ,then *v_ are a pair of sign-changing solu-
&

tions of Equation (1.2).
This completes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2

We can assume without loss of generality that X, =0. Then V(0)=r7,,

W, (0):gj , j=1,2. Letting a=7,, b;=¢;, j=1,2 in Equation (2.1), there

is ueS™ byLemma 2.3. Due to Lemma 2.7, m(z,,,¢)>1, we choose
m(rw,f) if m(rw,§)>1

m, = .
N g if m(z,,5)=1

For the maximal integer m<m,,, then m>1. By Lemma 2.6 and Lemma 2.7,
we have mO™ <®”. The following proof of Theorem 1.2 is similar to that of

Theorem 1.1 and so is omitted.

3.3. Proof of Theorem 1.3

In this subsection, we will consider the case (P3) - (1), the other case can be han-
dled similarly. Without loss of generality, we assume x,,=0. Then V(0)=7,
W, (0):gjv, j=12.

Lemma 3.3. u, >u as £—0 up toa sequence after translations.

Proof. Let & —0 as k—>o, U =u, €S, with U, >0.By Lemma 2.14,
we obtain lim,_,, ©, =©%, which together with

2
e, =J,(u) zp—IRN (|Vuk|2 +V (gkx)uf)dx > Clu,

2 implies that
2p

{uk}cHl(RN) is bounded. By Lemma 2.8, there exist >0, R>0 and
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z; eR" such that

2
IBR(ZUukdx >0. (3.17)

&)

Let G (x)=u,(x+2), \7k (x)=V (& (x+1z)), V\AIJ.Ek (x) =W, (& (x+12)),
j=1,2.Then G, isa solution of
~AG, +V, (X)G, =W, (x)37 +W,, (x)ai. (3.18)
Furthermore,

6, =J, (4)=7, (u)=0,. (3.19)

£k

Since {0} isbounded, we can assume that (, —u in H 1(]RN ) as k—>o.
Then U, »>uU in L{QC(RN) for u 6[2,2*) as k—>o.By(3.17), u=0.
Since Vand W,;, j=1,2 arebounded, up to a subsequence if necessary, we

can assume

V(ez) >V W(62)>W,, j=1,2 ask—om, (3.20)
and W, :=(W,,W,,). Forall xeR", by the boundedness of VV :|VV (X)| <C,
for given arbitrarily R >0, we obtain [\/(gkx +&.2¢) -V (&2 )| <gCR for all
X € Bg(0). Hence \7€k (x)>V, as k—>oo uniformly on any bounded set of x.
Similarly, V\A/J-Ek (X)—)Wj0 , J=1,2 as k—oo uniformly on any bounded set
of x. Similar to the proof of Lemma 2.14, we have

Iimsup(:)gk <@, (3.21)

koo
By (3.18), forany @ €C; (RN ) , we obtain
0=lim[, (VaVp+V, (X)Gp W, ()3P0 -W,, (x)dip)dx
= .[RN (Vquo +Voup —W,ou e —Wzouq’l(p)dx,
which implies that zis a ground state solution of
—AU +V,u =W, uP ™ +W,ut™ (3.22)

with the energy functional

T (u) = pz—_pz o Wiou Pdx + qz—qZ [ Whoudx > 0", (3.23)

By Fatou’s Lemma,

-2 -2
p-c o Wil Pdx +qz_q-[]RN W,,udx

2p
(3.24)
o p-2 - p 02 ~q
<liminf | | =W, (X)0f +——=W,, (x)d |dx,
t—0 R 2p k 2q k
Combining (3.19) with (3.22) - (3.24), we have
@ < 7Y% ()< liminf jxk (G,)<limsup®, <@,
- k—o0
Hence
lim®, =6""% =7""% (u). (3.25)

k—o
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Set 7eCy (R) satisfies 7(t)=0 if t>2 and n(t)=1 if t<1. Define
Uk(x)::n(@ju(x) and z,(x)=0,(x)-0,(x) for xeR". Then G, —>u

and z, —0 in Hl(RN) as k—>ow, U0, —>U in L”(]RN) for /16[2,2*]
and z, >0 in L{;C(RN) for ye[Z,Z*) as k>, 0, >u and z, 50
ae.on R" as k — . We define
T ()= [ (v ax+, ()zs)dx

. Now we show that

1 -
—=[ W, (%) |zk|pdx 1) W, (X)]z [ dx

2£k
p
jgk(zk)—>0 and <jg’k(zk),zk>—>0 as k —oo. By Remark 1.33 in [23], we

have
2" =18 - [ +o(®). (3.26)

Forany o >0, there exists k, >0 such that
[ |8 =[] ~la[*

By choosing u=2,p,q in(3.27), respectively, we obtain

dx<Co, Vk>k,. (3.27)

[ WV, (x)d2dx = j WV, (X)zodx+ j x)aZdx+0(1),  (3.28)
Wlek )|ﬁk|pdx= W, (X)|z° dX+I X)|Uk|pdx+o(1), (3.29)
oW ([0 [ dx= [ Wy, (X[ dx+ [ Wy, (x)]0,["dx+0(2). (3.30)

By using the Lebesgue dominated convergence theorem,

[V, (x)agdx= [, Vou’dx+0(1), (3.31)
[oaWe, ()] dx = [ Wi [u]” dx+0(1), (3.32)
[ Wo ()]0 ]" dx = [ Wi [u[* dx+0(2). (3.33)
Moreover,
Va,[2 =|Vu[; +o(1). (3.34)

Combining (3.25) - (3.34) and (3.18) with (3.22), we have
jsk (Zk ) = jé’k (ﬁk ) - jé'k ('Jk )+ 0(1) = (:)tfk - JVOWO (u) + O(l) = O(l) (335)

and

< As’k (Zk)'zk>:<js'k (Gk)'0k>_<je,k (ak)'ﬁk>+0(1)

(7000 ((79) W) o=

In the end, by (3.35) and (3.36), we have

(3.36)

o(1)= jgk (Zk)—%<jg’k (z.), Zk> >Cllz, ||2, which implies that z, -0 in

Hl(RN) as k —>oo.Thus U, >U in HI(RN) as k—>o0.
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Lemma 3.4. (,(x)—>0 as |[X—o uniformlyin keZ,.
Proof. We use the contradiction method to obtain that there are >0 for

x, e RY, |Xn| —o© as Nn—oo such that l]kn (x,)= 0. Moreover, there exists

1
C>0 (independent of &) such that G (Xn)SC(I ﬁfﬂdx)z, Thus by the

Bi(%n)
Minkowski inequality, we have

1
G, (xn)SC(IRN Gy, —u|2 dx)2 +C(fBl(
possible.

Lemma 3.5. {57} isboundedon R".

Proof. Assume by contradiction that there is |€kZIL | — o as k—o uptoa

2 . ..
)uzdx) —0 as n— o, which is im-

Xn

subsequence. Hence V, 27, >7 and W,,<¢; <g¢;, J=12. By Lemma 2.4,
we have ©0% > @ . According to (3.19), (3.25) and Lemma 2.14,
0" =lim, e)  =lim_, 0, <limsup,,, 0, < ©™ , which is impossible.

By Lemma 3.5, we may assume &z, — X, as K —co. By (3.20), we obtain
Vo=V (%) and W;;=W,(X,), j=12. Applying (3.22), we get that u is a

ground state solution of Equation (1.4).

&)

Lemma 3.6. {¢z, }g is bounded, where z, e R" is a maximum point of
u,.
Proof. If the thesis were not true, there were & — 0 with |5ka | — o0, where
Z,'=2, isa maximum point of U, :=U, . Repeating Lemma 3.3 - Lemma 3.5,
we can get that there exists z; e R" such that 0§, =u, (‘+2,)>u=#0 in
Hl(RN) as k>, G, (x)>0 as |[X—>o uniformly in keZ,, lezi},
is bounded on R" . Thus |e§kzk —gkzu—)oo as k — oo, then |Zk —Z;|—>oo as
k —oo0. Since max_ Uy =u,(z)=0/(z -7)—>0 as k>, then
0, (x)—>0 as k—o uniformlyin xeR", which contradicts with u=0.

Lemma 3.7. lim,_,dist(¢z,,.4,)=0.

Proof. By Lemma 3.5 and Lemma 3.6, there exists & -0 as k—o with

&0

&Ly > %y, &L I, ask— oo, (3.37)

where 7, =2, is a maximum point of U, =U, . By Lemma 3.3 and Lemma
3.5, there exists 7, € R" such that G (X)=u,(x+Z;). By Lemma 3.4, we may
assume 0, (% )=max 0, and {x} is bounded on R" . Hence

Z, =X +2, and gX —0 as k—oo.By(3.32) and (3.34), which imply that
Zy =%, V(2)=Vy, W, (2,) =W,o, j =1,2. (3.38)
Assume indirectly that z, ¢ A4,, then V(z,)>7, W, (z,)< Sy>» J=1,2 or

V(ZO)ZT’ W1(20)<§1v’ Wz(zo):§2v or V(Zo):T’ Wl(zo):glv’
W, (2,) <&, - By Lemma 2.4,

@' (x)x) 5 @, (3.39)
Combining (3.19), (3.25), (3.38) and (3.39) with Lemma 2.14, we have

lime, =lim®, =% =@'*"®) 5 @% > limsupo, ,
koo %k kow %k %

k—w
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which is impossible. Hence X, =17, € A, .
By Lemma 3.6, if V(W NW}) is not empty, we assume
X, € A, =V (W nW,), which implies that

Ici_r](w)dist(gzg,Vm(V\{mVVZ)):O and V(x,)=7,W,(%)=¢;, j=1,2.

Hence u is a groundstate solution of Equation (1.5). This completes the proof
of Theorem 1.3.
Similar to the proof of Step 6 in [18], we have the following result.

Lemma 3.8. There exists C >0 such that for small £>0, u,(x)< Cef\g‘mg‘

forall xeR".

Now we prove Theorem 1.3 by Lemma 3.3 - Lemma 3.8. Set X =¢z_, then
V,(X,)=U,(z,). By Lemma 3.6, X, is a maximum point of v, and {x,} is
bounded on R". By Lemma 3.7, lim_dist(x,,.4,)=0. By Lemma 3.3 and
Lemma 3.4, U, (X)=u,(x+2z,)=V,(ex+x,—¢X.), where X =z, -7, is a
maximum point of U, with ¢x! >0 as £—>0. By Lemma 3.8, we obtain

x|

v,(x)<Ce ¢ ', where Cdependson N,7.

Consequently, we establish the multiplicity of the semi-classical solutions for
Equation (1.2), and we obtain the existence, concentration, convergence, expo-
nential decay estimates of the positive ground state solution. We also prove the

existence of sign-changing solutions of Equation (1.2).
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