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Abstract 

The Tully-Fisher law M v∝ α  is an empirical relationship between the mass 
of a galaxy and its asymptotic rotation velocity. The purpose of this research 
is to demonstrate that this relation can be theoretically obtained in General 
Relativity (GR) with a particular solution of dark matter (DM) in very good 
agreement with the observations. Several years ago, it was demonstrated that 
DM can theoretically be completely explained by a natural effect of GR with-
out exotic matter, the Lense-Thirring effect that exists exclusively in GR. In 
this explanation, the field generating the Lense-Thirring effect would be gen-
erated by the clusters of galaxies and not by the own field of the galaxy which 
is negligible. In this way, a uniform field (from galaxies’ clusters) would 
embed the galaxies. We retrieve the coefficients of this law thanks to the ex-
plicit values of this field required to explain DM. This demonstration shows 
how relevant this explanation of the DM is, not only theoretically (by obtain-
ing the expression of the law) but also practically (by obtaining the coeffi-
cients from the values required to explain the DM). The Tully-Fisher law 
would then reveal the Lense-Thirring effect of the clusters of galaxies on the 
galaxies. 
 

Subject Areas 
Cosmology, Astrophysics, Theoretical Physics 
 

Keywords 
Dark Matter, Tully-Fisher Law, Gravitation 

 

1. Introduction 

One of the most important scaling laws is the empirical Tully-Fisher relation [1], 
between the stellar mass or luminosity of a galaxy and its rotation velocity v. The 
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stellar Tully-Fisher is a power law M vα∝  with α ~ 4 - 5 depending on the 
method used to estimate stellar masses [2] [3] and depending on how the rota-
tion velocities are defined [4] [5]. When the baryonic mass Mb (stars + cold gas) 
is used instead of the stellar mass, the baryonic Tully-Fisher relation [6] becomes 
an extremely tight power law M vα∝ , with α ~ 4 [5] [7] [8]. 

In our study, we are going to demonstrate the Tully-Fisher law with the solu-
tion of DM explained without exotic matter but with a uniform gravitic field (the 
2nd component of GR similar to the magnetic field in EM) as proposed by the 
author [9]. This field would be generated by galaxy clusters [10] and would 
embed large areas of the Universe (and then the galaxies) explaining this excess 
of gravitation misnamed, in this explanation, DM. We will first remind you how 
Linearized General Relativity (LGR) is obtained from GR, how LGR equations 
can explain DM and the expected values of the uniform gravitic field required to 
explain DM component. We will secondly verify that the measured coefficients 
of the Tully-Fisher law M avα=  allow retrieving the expected gravitic field ex-
plaining the DM. Third, the main goal of this study, we will demonstrate the ex-
pression of Tully-Fisher law in our explanation of DM, making this theoretical 
DM explanation extremely consistent with the observations.  

2. Dark Matter Explained by General Relativity  
2.1. From General Relativity to Linearized General Relativity 

From GR, one deduces the LGR in the approximation of a quasi-flat Minkowski 
space ( g hµν µν µνη= + ; 1hµν � ). With the following Lorentz gauge, it gives  

the following field equations as in [11] (with 
2

2 2
1
c t

∂
= − ∆

∂
  and 2∆ =∇ ): 

4
80; 2 G T
c

h hµν µν µν
µ

π
∂ = = −                      (1) 

with: 
1 ; ; ;
2

h h h h hh hh hµν µν µν σ µ µσ
σ ν σνη η= − ≡ = = −              (2) 

The general solution of these equations is: 

( ) ( ) 3
4

,4, d
T ctGct

c
h

µν
µν − −

= −
−∫
x y y

x y
x y

               (3) 

In the approximation of a source with low speed, one has: 
00 2 0; ;i i ij i jT c T c u T u uρ ρ ρ= = =                   (4) 

And for a stationary solution, one has: 

( ) ( ) 3
4

4 d
TGh

c

µν
µν = −

−∫
y

x y
x y

                     (5) 

At this step, by proximity with electromagnetism, one traditionally defines a 
scalar potential ϕ  and a vector potential iH . There are in the literature sever-
al definitions as in [12] for the vector potential iH . In our study, we are going 
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to define:  

00 0
2

4 4; ; 0
i

i ijh H
cc

h hϕ
= = =                   (6) 

with gravitational scalar potential ϕ  and gravitational vector potential iH : 

( ) ( ) 3dG
ρ

ϕ ≡ −
−∫
y

x y
x y

 

( ) ( ) ( ) ( ) ( )3 1 3
2 d d

i i
i u uGH K

c
ρ ρ−≡ − = −

− −∫ ∫
y y y y

x y y
x y x y

        (7) 

with K (determined in [9]) a new constant defined by: 
2GK c=                             (8) 

This definition is 1 28 1~ 7.4 10 kg mK − − −× ⋅  very small compared to G. 
The field Equations (1) can be then written (Poisson equations): 

1
2

44 ; 4i i iGG H u K u
c

ϕ ρ ρ ρ−π
∆ = π = = π                (9) 

with the following definitions of g  (gravity field) and k  (gravitic field), those 
relations can be obtained from the following equations (also called gravitomagnet-
ism) with the differential operators “ = ∧rot ∇ ”, “ =grad ∇ ” and “ div = ⋅∇ ”: 

1

;
0; 0;

4 ; 4 p

div
div G K

ϕ

ρ −

= − =
= =

= − π = − π

g grad k rot H
rot g k

g rot k j

                 (10) 

with the Equations (2), one has: 

00 11 22 33 0
2

2 4; ; 0
i

i ijHh h h h h h
cc

ϕ
= = = = = =             (11) 

The equations of geodesics in the linear approximation give: 

( )
2

2
00 0 02

d 1~
2d

i
ij ik j

j k j j k
x c h c h h v
t

δ δ− ∂ − ∂ − ∂             (12) 

It then leads to the movement equations: 

( )
2

2
d ~ 4 4
dt

ϕ− + ∧ = + ∧
x grad v rot H g v k              (13) 

Remark: All previous relations can be retrieved starting with the parameterized 
post-Newtonian (PPN) formalism and with the traditional gravitomagnetic field 

gB . From [13] one has: 

( ) ( ) ( ) ( ) 3
0 1 2

1 4 4 ; d
2

i
i i i

uGg V V
c

ρ
γ α= − + + =

−∫
y y

x y
x y

       (14) 

The traditional gravitomagnetic field and its acceleration contribution are: 

( )0 ;i
g i g gg= ∧ = ∧B e a v B∇                   (15) 

And in the case of GR (that is our case): 

11; 0γ α= =                           (16) 
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It then gives: 

( )0 4 ; 4 i
i i g ig V V= − = ∧ −B e∇                    (17) 

And with our definition: 

( ) ( ) ( )3
2 d

j
ijj

i ij i

uGH H V
c

ρ δ
δ= − = =

−∫
y y

y x
x y

            (18) 

One then has: 

( ) ( )0 4 ; 4 4 4i j i
i i g i ijg H H Hδ= − = ∧ − = ∧ = ∧B e e H∇ ∇ ∇         (19) 

4g =B rot H  

with the following definition of gravitic field: 

4
g=

B
k                            (20) 

One then retrieves our previous relations: 

; 4g g= = ∧ = ∧k rot H a v B v k                   (21) 

The interest of our notation ( k  instead of gB ) is that the field equations are 
strictly equivalent to Maxwell’s idealization, in particular, the speed of the gravi-
tational wave obtained from these equations is the light celerity 2c GK=  just 
like in EM 2

0 01c µ ε= . Only the movement equations are different with the 
factor “4”. But of course, all the results of our study can be obtained in  

the traditional notation of gravitomagnetism with the relation 
4

g=
B

k .  

2.2. From Linearized General Relativity to DM 

In the classical approximation ( c�v ), the linearized general relativity gives 
the following movement equations from (13) with im  the inertial mass and 

pm  the gravitational mass: 

[ ]d 4
di pm m

t
= + ∧

v g v k                      (22) 

The traditional computation of rotation speeds of galaxies consists of obtain-
ing the force equilibrium from the three following components: the disk, the 
bugle, and the halo of dark matter. More precisely, one has [14]: 

( ) ( )2

with disk bulge halo

v r r
r r

ϕ
ϕ ϕ ϕ ϕ

∂
= = + +

∂
              (23) 

Then the total speed squared can be written as the sum of squares of each of 
the three-speed components: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2 2

bulgedisk halo

disk bulge halo

rr r
v r r r r

r r r

v r v r v r

ϕϕ ϕ ∂   ∂ ∂
= + +     ∂ ∂ ∂    
= + +

         (24) 

Disk and bulge components are obtained from gravity field. They are not 
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modified in our solution. So, our goal is now to obtain only the traditional dark 
matter halo component from the linearized general relativity. According to this 
idealization, the force due to the gravitic field k  takes the following form  

4k pm= ∧F v k  and it corresponds to previous term ( )halo
p k

r
m

r
ϕ∂

=
∂

F . As  

explained in [9], the natural evolution to the equilibrium state justifies that one 
assumes the approximation ⊥v k . This assumption is important because it 
leads to several important predictions. In particular, the motion of dwarf satellite 
galaxies of a host should be roughly in a plane (⊥ k ). It then gives the following 
equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 2

4 4bulge bulgedisk diskr v rv r r v r
k r v r k r v r

r r r r r
ϕϕ ∂∂

= + + = + +
∂ ∂

(25) 

Our idealization means that: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 4halo disk bulgev r v r v r v r rk r v r= − − =            (26) 

The equation of dark matter (gravitic field in our explanation) is then: 

( ) ( ) ( )( )1 2
2halov r rk r v r=                     (27) 

This equation gives us the curve of rotation speeds of the galaxies as we wanted. 
Because we know the curves of speeds that one wishes to have for DM compo-
nent, one can then deduce the curve of the gravitic field k  inside the galaxy: 

( ) ( )
( )

2

4
halov r

k r
rv r

=                         (28) 

2.3. Dark Matter as the 2nd Component of the Gravitational Field  
k  

This solution of DM as the gravitic field has been studied in [9] for 16 galaxies 
(Table 1). It shows that this solution is mathematically possible but with two 
physical mandatory unexpected behavior for ( )k r . First, the curve of the gra-
vitic field ( )k r  becomes necessarily flat at the end of the galaxies. For such a 
field (similar mathematically to a magnetic field in EM) it is only possible if the 
galaxies are immersed in a uniform gravitic field 0k . Second, the value of this 
field for these 16 galaxies is in the interval: 

16.62 1 16.3 1
010 s 10 s− − − −< <k                   (29) 

From these data (Table 1), one can deduce a mean value of 0k  and a mean 
value of 0r :  

20 20.43 16.40 1
0 0~ 9 kpc ~ 2.7 10 ~ 10 m; ~ 10 sr k − −×          (30) 

The position 0r  is the position where the gravitic component of the galaxy 
becomes negligible compared to the external uniform gravitic term explaining 
DM. It roughly represents the beginning of the flat part of the rotation speed 
curve of the galaxies. We will use these two values at the end of the article in the 
demonstration of the Tully-Fisher law. 
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Table 1. Distance r0 to the center of the galaxy where the internal gravitic field 1
2

K
r

 

generated by the galaxy becomes equivalent to the external gravitic field k0 generated by 
the galaxies’ cluster. k0 dominates for 0r r> . 

 1K  0k  1
0 02 ~

Kr k
r

 
  

 [ ]0 kpcr  

NGC 5055 1024.60 10−16.62 1020.61 13 

NGC 4258 1024.85 10−16.54 1020.695 16 

NGC 5033 1024.76 10−16.54 1020.65 15 

NGC 2841 1024.85 10−16.33 1020.59 13 

NGC 3198 1024.90 10−16.55 1020.725 18 

NGC 7331 1024.18 10−16.30 1020.24 6 

NGC 2903 1024.71 10−16.30 1020.505 11 

NGC 3031 1024.15 10−16.57 1020.36 8 

NGC 2403 1024.59 10−16.39 1020.49 10 

NGC 247 1024.30 10−16.30 1020.3 7 

NGC 4236 1024.00 10−16.34 1020.17 5 

NGC 4736 1024.54 10−16.30 1020.42 9 

NGC 300 1024.27 10−16.31 1020.29 6 

NGC 2259 1024.20 10−16.30 1020.25 6 

NGC 3109 1024.00 10−16.58 1020.29 6 

NGC 224 1024.00 10−16.50 1020.25 6 

3. TULLY-FISHER Law Obtained from a Uniform Gravitic  
Filed 0k  of LGR  

We will first verify that this theoretical solution of DM is consistent with the 
Tully-Fisher law by retrieving our value of DM 0k  from the coefficient of the 
law which has been experimentally observed. And secondly, we will demonstrate 
how 0k  and LGR can obtain the Tully-Fisher law.  

Let’s note Nv  the Newtonian rotational speed and N DMv +  the Newtonian 
rotational speed plus the halo DM component, (25) can be written: 

( ) ( ) ( )2 2 2
N DM N halov r v r v r

r r r
+ = +                   (31) 

And more explicitly with M the galaxy’s mass: 

( ) ( ) ( )
2

2 4N DM
N DM

v r GM k r v r
r r

+
+= +                (32) 

which gives: 

( ) ( ) ( )2 2

2

4
1N DM N DMv r k r v r rGM

r GMr
+ + 

= +  
 

             (33) 
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3.1. From the TULLY-FISHER Law to the Uniform Gravitic Field 0k   
of LGR 

The Tully-Fisher law is written M avα=  and can be rewritten  
( ) ( ) ( ) ( )log log log logM a v vα β α= + = + . Several couples ( ),α β  can be ob-

tained experimentally for this law [15] depending on the masses considered and 
the methods of obtaining the characteristic speed of rotation as previously said.  

Let’s rewrite our expression (33): 

( ) ( ) ( ) ( )
22

1
2

4
1 N DM

N DM

k r v r rGv r M M
r GM

α
α

α − +
+

  
= +      

        (34) 

which gives: 

( ) ( ) ( ) 2 2
1

2
4

1 N DM
N DM

k r v r rGM M v
r GM

α
α

α

−

− +
+

 
   = +         

         (35) 

In order to get an expression that looks like the Tully-Fisher law, we are going 
to use the following approximation for large r (in the flat part of the rotation 
speed curve): 

( ) ( ) ( ) ( ) ( )
2

~ 4 ~ 4N DM
N DM N DM

v r
k r v r v r k r r

r
+

+ +⇒           (36) 

Furthermore, in our explanation of DM, ( )k r  is a uniform field, i.e. ( ) 0~k r k . 
By replacing the occurrence of N DMv +  in the brackets, one has: 

( )
2
0

3 2
1

2
161 N DM

k rGM M v
r GM

α
α

α

−
−

+

 
   = +        

              (37) 

If one has: 
2 3
016 1k r

GM
�                            (38) 

The expression becomes: 

( )2 2 2
016 N DMM M k r v

α
α−

+

 
=  
 

                     (39) 

And finally: 

( )04
N DM

MM v
k r

α
α +

 
 =
  

                       (40) 

The couples ( ),α β  of 10M vβ α=  are in general given for a graph whose 
velocities are in km·s−1 and the masses in solar mass ( 302 10M = ×� ). One can 
then rewrite with M mM= �  and 310N DMv v+ = : 

( )

3

0

10
4

Mm v
M k r

α
α

α

 
 =
  �

                      (41) 

We want to verify that the values of ( ),α β  form the Tully-Fisher law allow 
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retrieving the values of the gravitic field 0k  explaining the DM to ensure that 
our theoretical solution is consistent with the Tully-Fisher law. For that, let’s re-
write: 

( )

3 3 1

0 1
0

10 10 110
4104

M Mk
M rMk r

α α
β

α α β α

 
 = ⇒ =
  � �

             (42) 

For these calculations, one will use: 
10 40 213 10 6 10 kg; 33 kpc ~ 10 mM M r= × = × =�             (43) 

This value of r justify the previous approximation (36) 
In [2] the observations give the following couple: 
( ) ( ), 4,1.67α β = : 

( )
( )1 4403

16.40 1
0 1 4 1.67 4 2130

6 1010 1 ~ 10 s
10 4 102 10

k − −
×

=
××

             (44) 

In [15], one has the 4 following couples: 
( ) ( ), 4.25,0.80α β = : 

( )
( )1 4.2540.783

16.32 1
0 1 4.25 0.8 4.25 21.630.3

1010 1 ~ 10 s
10 1010

k − −=              (45) 

( ) ( ), 3.51,2.61α β = : 

( )
( )1 3.5140.783

16.36 1
0 1 3.51 2.61 3.51 21.630.3

1010 1 ~ 10 s
10 1010

k − −=            (46) 

( ) ( ), 3.60,2.49α β = : 

( )
( )1 3.640.783

16.38 1
0 1 3.6 2.49 3.6 21.630.3

1010 1 ~ 10 s
10 1010

k − −=             (47) 

( ) ( ), 3.26,3.33α β = : 

( )
( )1 3.2640.783

16.41 1
0 1 3.26 3.33 3.26 21.630.3

1010 1 ~ 10 s
10 1010

k − −=            (48) 

Let’s verify the previous approximation (38) with the smallest value of  
16.41 1

0 ~ 10 sk − − : 
2 3 32.82 63

1.30
11 40

16 16 10 10 ~ 10 1
2 10 6 10

k r
GM

−

−

× ×
=

× × ×
�                  (49) 

These calculations show that the expected values of 0k  to explain DM with-
out exotic material ( 16.62 1 16.3 1

010 s 10 s− − − −< <k ) are consistent with the Tul-
ly-Fisher law. We will now go further by proving this law within the framework 
of the LGR and our explanation of DM. 

3.2. From the Uniform Gravitic Field 0k  of LGR to the  
TULLY-FISHER Law 

As we noticed in the previous paragraph, in our relation, there is the parameter 
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position r which appears while the Tully-Fisher relation does not explicitly de-
pend on it. To no longer explicitly depend on this parameter, we need to define a 
procedure to determine a characteristic position r. It should be noted that we are 
in the same situation for the TULLY-FISHER law to define the characteristic 
speed of rotation to be considered. Several methods are used [5] and the mean 
velocity along the flat part of the rotation curve seems to minimize the scatter of 
the relation [4]. The question in our context is somehow to find which method 
was adopted to define the characteristic position r corresponding to the charac-
teristic velocity on the curve of the rotational velocities of the galaxies. This cha-
racteristic speed is linked to the flat zone of the speed curve, the characteristic 
position will certainly be a characteristic position in this zone. We can imagine 2 
simple methods.  

A 1st would consist of finding the position of the beginning of the flat zone 

br  then placing the cursor at a fixed relative position, 1ω ≥  with respect to the 
beginning of this zone, br rω=  and finally determining the value of ω . We 
will see what it will be 1ω = . This method makes it possible to find punctually 
the good values for the law of Tully-Fisher but it doesn’t give the good slope of 
the law. 

A 2nd method would consist of finding a threshold for the value of the gravi-
tational forces SeuilF  from which the gravitational forces are sufficiently weak 
so that the influence of the DM dominates (a priori in the flat part of the curve). 
This method allows for demonstrating the Tully-Fisher law, values, and slope. 
But certainly, also the extent of the area to which this law is applicable.  

3.2.1. 1st Method to Demonstrate the Tully-Fisher Law 
The beginning of the flat zone of the rotational speed curve br  corresponds 
approximately to the place where the intensity of the Newtonian force is of the 
same order as the component of DM: 

02
0

4
4N DM b

N DMb

GM GMk v r
k vr +

+

= ⇒ =                   (50) 

We then write (to be somewhere in the flat zone):  

0

; 1
4b

N DM

GMr r
k v

ω ω ω
+

= = ≥                      (51) 

Our relation (32) gives: 

2
04N DM N DM

GMv k v r
r+ += +                       (52) 

2 0
0

0

4 4
4

N DM
N DM N DM

N DM

k vGM GMv k v
GM k v

ω
ω

+
+ +

+

= +             (53) 

2
0 0

1 4 4N DM N DM N DMv k v GM k v GMω
ω+ + += +              (54) 

2
0

1 4N DM N DMv k v GMω
ω+ +
 = + 
 

                   (55) 
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2
3

0

1 1
4 N DMM v

k G
ω

ω

−

+
 = + 
 

                     (56) 

2 3

2
041

N DMvM
k G

ω
ω

+ =  + 
                        (57) 

with 0.410ω =  and 16.4 1
0 ~ 10 sk − −  (red curve in Figure 1) one obtains a curve 

that is very close to the Tully-Fisher law, passing through the cloud of expected 
measured points. But the slope of the curve is unsatisfactory. This 1st method 
informs us that the position br  of the beginning of the flat zone is certainly a 
good order of magnitude for the definition of the position associated with the 
measurement of the speed of rotation for the law of Tully-Fisher. Even if this 
result is not completely satisfactory, it is very encouraging. With this informa-
tion, we will now improve our result with the 2nd method. 

3.2.2. 2nd Method to Demonstrate the Tully-Fisher Law 
Let’s define a threshold value of the intensity of the force for which, we hope to 
find the position on the rotation curve corresponding to the characteristic speed 
considered for the Tully-Fisher law: 

02
0

4
4N DM Seuil b

Seuil N DMb

GM GMk v F r
F k vr +

+

+ = ⇒ =
−

           (58) 

 

 
Figure 1. The red curve representing our relation obtained from our 1st method is super-
posed on graph from [15]. 
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This position is denoted br  because we have seen previously that it was most 
certainly the beginning of the flat zone. The following calculation will confirm 
this result. One can then rewrite our relation to LGR: 

2
04N DM N DM b

b

GMv k v r
r+ += +                     (59) 

( )2
0 0

0

4 4
4N DM Seuil N DM N DM

Seuil N DM

GMv GM F k v k v
F k v+ + +

+

= − +
−

    (60) 

2
2

4
0 0

0

4 4
4

N DM
N DM Seuil N DM

Seuil N DM

vv GM F k v k
F k v

+
+ +

+

 
 = − +
 − 

       (61) 

2
224 2

0 0
0

2

0 0
0

4 16
4

8 4
4

N DM
N DM Seuil N DM

Seuil N DM

N DM
Seuil N DM

Seuil N DM

vv GM F k v k
F k v

vk F k v
F k v

+
+ +

+

+
+

+


= − +
 −



+ −
− 

      (62) 

2
4 2

0 0 0
0

4 16 8
4

N DM
N DM Seuil N DM N DM

Seuil N DM

vv GM F k v k k v
F k v

+
+ + +

+

 
= − + + − 

   (63) 

2
4 2

0 0
0

4 16
4

N DM
N DM Seuil N DM

Seuil N DM

vv GM F k v k
F k v

+
+ +

+

 
= + + − 

        (64) 
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We then obtain our expression of Tully-Fisher law (red curve in Figure 2): 

4 5041
N DM N DM

Seuil Seuil

kM v v
GF F+ +

 
= − 

 
                  (68) 

An approximation of this relation in the form “ M avα= ” could be obtained 
and would lead to an analysis equivalent to what we have studied in the previous 
sections, but the more accurate relation between M and v in our explanation is 
the latter. And the result is impressive as one can see in Figure 2. Furthermore, 
the obtention SeuilF  is consistent with our definition of DM, as we are now 
going to see it. 

As calculated previously, if we take the average of the beginnings of the flat 
zones and the mean of the values of the gravitic field explaining DM (30) and by 
taking the characteristic mass previously used for our calculations (43), one has: 

20 20.43 16.40 1
0

10 40

9 kpc ~ 2.7 10 ~ 10 m; 10 s ;

3 10 6 10 kg
br k

M M

− −= × =

= × = ×�

            (69) 
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Figure 2. The red curve representing our relation obtained from our 2nd method is su-
perposed on the graph from [15]. 
 

For this value of mass, on the graphs (Figure 1 and Figure 2) the corres-
ponding characteristic rotational speed is around:  

5 12 10 m sN DMv −
+ = × ⋅                          (70) 

All these characteristic values allow defining our characteristic force threshold: 
11 40

16.40 5 10.08
02 40.86

6 10 6 104 4 10 2 10 ~ 10
10N DM Seuil

b

GM k v F
r

−
− −

+
× × ×

+ = = + × × ×  (71) 

The red curve in Figure 2 representing the relation (68) is obtained with  
10.0810SeuilF −=  and 16.40 1

0 10 sk − −= .  
This time, compared to the 1st method, not only does the curve pass well 

through the cloud of measured points, but the slope of the curve is also excellent. 
Add to this that the characteristic value of 0k  is also not only in the right order 
of magnitude but this time in the interval required to explain the DM. 

4. Discussion 

In the same way that there are several methods for defining the characteristic 
velocity used in the Tully-Fisher law giving more or less tight values of its coeffi-
cients, the role of SeuilF  provides a method for obtaining this characteristic ve-  

locity. Indeed, finally 
2
N DM

Seuil
vF

r
+=  implies N DM Seuilv rF+ = . The rotation  
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speed of the galaxy to be considered will be that at the intersection of this curve 
with its rotation speed curve. 

The fact of obtaining a value of SeuilF  from the explanation of the DM (i.e. by 
the expression of the uniform gravitic field of the LGR, “ 04 N DMk v + ” and by the 
values of this field “ 16.62 1 16.3 1

010 s 10 s− − − −< <k ”) and which accounts for the 
Tully-Fisher law is undeniably an extremely strong point which validates this 
explanation of the DM (without exotic matter and in agreement with the RG). 
One can remind that this solution predicts the existence of planes of corotating 
satellite galaxies [16] and that in the WLM’s dwarf galaxy case, these expected 
values of field 0k  can retrieve the density of the gaseous intergalactic medium 
and interstellar gaseous medium [17]. 

Another point seems important. The Tully-Fisher law in its form “ M avα= ” 
has no maximum limit. It gives no justification for not continuing beyond 

12~ 10M M� . Our relationship necessarily indicates a break from a certain 
maximum value of the mass of the galaxy (bending of the curve). This relation-
ship thus provides a justification for the fact that galaxies can have a maximum 
mass value which with our approximate study gives 12~ 10M M�  in agreement 
with observations. 

5. Conclusion 

In this study, we show that the explanation of dark matter in the form of a uni-
form gravitic field 0k  (the 2nd component of GR similar to the magnetic field in 
EM giving the Lense-Thirring effect) makes it possible to obtain the Tully-Fisher 
law. Obtaining this law is based on two important characteristics of this solution, 
one theoretical, namely the shape of this field, “ 04 N DMk v + ”, defined by the LGR, 
and the other practical, namely the values required to obtain the component of 
DM “ 16.62 1 16.3 1

010 s 10 s− − − −< <k ”. Thus, obtaining the Tully-Fisher law is un-
deniably linked to the validity of this solution. This demonstration reinforces 
this solution of the DM which is also extremely economical in hypothesis if we 
compare it to MOND (which calls into question the theoretical framework of 
gravitation) or to the existence of an exotic matter (with a new behavior and still 
not found). 

In addition to providing the correct values (passing through the measured 
points) and the correct slope of the Tully-Fisher law, this relationship goes fur-
ther by showing a systematic break in the curve for mass values roughly around 

12~ 10M M� . This new relationship thus provides a justification for the exis-
tence of a maximum mass for galaxies. 

This study finally leads to 3 major results, the demonstration of the Tul-
ly-Fisher law, a justification of a maximal mass of the galaxies but perhaps even 
more important a validation of the explanation of the DM in the form of a uni-
form gravitic field embedding the galaxies. 
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