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Abstract 

In this paper, I work on expanding the Quadratic ( )1 2,φ µ µ -function inequa-
lities by relying on the general quadratic functional equation with 2k-variables 
on the fuzzy Banach space. That’s the main result of this. 
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1. Introduction 

Let X  and Y  are fuzzy normed spaces on the same field  , and :f →X Y  be 
a mapping. I use the notation N are the norm on X  and on Y  respectively. In 
this paper, I study the relationship between Quadratic-type functional equations 
and Quadratic ( )1 2,φ µ µ -function inequalities when ( ), NX  is a fuzzy normed 
space and ( ), NY  is a fuzzy Banach space.  

In fact, when X  is a fuzzy normed space and Y  is a fuzzy Banach space we 
solve and prove the Hyers-Ulam stability of the following relationship between 
quadratic ( )1 2,φ µ µ -function inequalities and quadratic-type functional equa-
tions: 
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based on following Generalized Quadratic functional equations with 2k-variable  
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Note that: With k is a positive integer and 0h A∈ . 
The study of the functional equation stability originated from a question of 

S.M. Ulam [1], concerning the stability of group homomorphisms. Let ( ),∗  
be a group and let ( ), ,d′

  be a metric group with metric ( ),d ⋅ ⋅ . Geven 0ε > , 
does there exist a 0δ >  such that if :f ′→   satisfy the condition 

( ) ( ) ( )( ),d f x y f x f y δ∗ <
, 

for all ,x y∈  then there is a homomorphism :h ′→   with  

( ) ( )( ),d f x h x ε< , 

for all x∈ , if the answer, is affirmative, we would say that equation of ho-
momophism ( ) ( ) ( )h x y h y h y∗ =   is stable. The concept of stability for a func-
tional equation arises when we replace a functional equation with an inequality 
which acts as a perturbation of the equation. Thus the stability question of func-
tional equations is that how the solutions of the inequality differ from those of the 
given function equation. 

Hyers [2] gave a first affirmative partial answer to the question of Ulam for Ba-
nach spaces. Hyers’ Theorem was generalized by Aoki [3] for additive mappings 
and by Th.M. Rassias [4] for linear mappings by considering an unbounded Cauchy 
difference. A generalization of the Th.M. Rassias theorem was obtained by Găvrut 
[5] by replacing the unbounded Cauchy difference with a general control function 
in the spirit of Th.M. Rassias’ approach. The stability problems of several func-
tional equations have been extensive. 

Through the process of studying the works of mathematicians see ([6] [7] [8] 
[9] [10] [11]) in 2020, I set up a general quadratic equation with 2k-variables on 
the space Non-Archimedean Banach. 
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Next in 2020, I build quadratic inequalities on the application of groups and 
rings, 
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for all 0ε ≥  and  
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(4) 

for all 0δ ≥ . 
Next in 2021, Ly Van An construct the quadratic inequality functional inequa-

lities in non-Archimedean Banach spaces and Banach spaces, 
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Continuing into 2021, Ly Van An construct the quadratic inequality on 
γ-homogeneous complex Banach space, 
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Next in 2023, Ly Van An generalized stability of functional inequalities with 
3k-variables associated for Jordan-von Neumann-type additive functional equa-
tion,  
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Continuing into 2023, Ly Van An construct the broadly derivation on fuzzy 
Banach algebra involving functional equations and general Cauchy-Jensen func-
tional inequalities, 

( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

x y
f x f y f k z kf z

k= = = = =

+   
+ + ≤ +   

   
∑ ∑ ∑ ∑ ∑     (12) 

The paper is organized as followings: 
In section preliminary, we remind some basic notations in [12]-[18] such as 

Fuzzy normed spaces, Extended metric space theorem and solutions of the Jen-
sen function equation. 

Section 3: Setting up quadratic ( )1 2,φ µ µ -function inequalities (1) based on 
quadratic Equation (2). 

3.1: Condition for existence of solution of (1). 
3.2: Establishing a solution for the quadratic ( )1 2,h µ µ -function inequality 

(1). So that we solve and proved the Hyers-Ulam type stability for functional Equ-
ation (1) i.e. the functional equations with 2k-variables. Under suitable assump-
tions on spaces X  and Y , we will prove that the mappings satisfying the func-
tional Equations (1).  

Thus, the results in this paper are generalization of those in [19]-[65]. 

2. Preliminaries 
2.1. Fuzzy Normed Spaces   

Let X be a real vector space. Afunction [ ]: 0,1N X R× →  is called a fuzzy norm 
on X if for all ,x y X∈  and all ,s t∈ ,  

1) (N1) ( ), 0N x t =  for 0t ≤ ; 
2) (N2) 0x =  if and only if ( ), 1N x t =  for all 0t > ; 

3) (N3) ( ), , tN cx t N x
c

 
=   

 
 if 0c ≠ ; 

4) (N4) ( ) ( ) ( ){ }, min , , ,N x y s t N x s N y t+ + ≥ ; 
5) (N5) ( ),N x ⋅  is a non-decreasing function of   and ( )lim , 1t N x t→∞ = ; 
6) (N6) for 0x ≠ , ( ),N x ⋅  is continuous on  .  
The pair ( ),X N  is called a fuzzy normed vector space:   
1) Let ( ),X N  be a fuzzy normed vector space. A sequence { }nx  in X is said 

to be convergent or converge if there exists an x X∈  such that  
( )lim , 1n nN x x t→∞ − =  for all 0t > . In this case, x is called the limit of the se-

quence { }nx  and we denote it by limn nN x x→∞− = . 
2) Let ( ),X N  be a fuzzy normed vector space. A sequence { }nx  in X is 

called Cauchy if for each 0ε >  and each 0t >  there exists an 0n N∈  such 
that for all 0n n=  and all 0p > , we have ( ), 1n p nN x x t ε+ − > − .  
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It is well-known that every convergent sequence in a fuzzy normedvector 
space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is 
said to be complete and the fuzzy normed vector space is called a fuzzy Banach 
space. We say that a mapping :f X Y→  between fuzzy normed vector spaces 
X and Y is continuous at a point 0x X∈  if for each sequence { }nx  converging 
to 0x  in X, then the sequence ( ){ }nf x  converges to ( )0f x . If :f X Y→  is 
continuous at each x X∈ , then :f X Y→  is said to be continuous on X. 

Let X be an algebra and ( ),X N  a fuzzy normed space.  
1) The fuzzy normed space ( ),X N  is called a fuzzy normed algebra if  

( ) ( ) ( ), , ,N xy st N x s N y t≥ ⋅ , 

for all ,x y X∈  and all positive real numbers s and t.  
2) A complete fuzzy normed algebra is called a fuzzy Banach algebra.  
Let ( ), XX N  and ( ),Y N  be fuzzy normed algebras. Then a multiplicative 

 -linear mapping ( ) ( ): , ,XH X N Y N→  is called a fuzzy algebra homomor-
phism. Example:  

Let ( ),X ⋅  be a normed algebra. Let  

( )
0

,
0 0

t t
t xN x t

t x X

 > += 
 ≤ ∈

. 

Then ( ),N x t  is a fuzzy norm on X and ( )( ), ,X N x t  is a fuzzy normed alge-
bra. Let ( ), XX N  and ( ),Y N  be fuzzy normed algebras. Then a multiplicative 
 -linear mapping ( ) ( ): , ,XH X N Y N→  is called a fuzzy algebra homomor-
phism.  

2.2. Extended Metric Space Theorem  

Theorem 1. Let ( ),X d  be a complete generalized metric space and let  
:J X X→  be a strictly contractive mapping with Lipschitz constant 1L < . 

Then for each given element x X∈ , either  

( )1,n nd J J + = ∞ , 

for all nonnegative integers n or there exists a positive integer 0n  such that  
1) ( )1,n nd J J + < ∞ , 0n n∀ ≥ ;  
2) The sequence { }nJ x  converges to a fixed point *y  of J;  
3) *y  is the unique fixed point of J in the set ( ){ }1| ,n nY y X d J J += ∈ < ∞ ;  

4) ( ) ( )* 1, ,
1

d y y d y Jy
l

≤
−

 y Y∀ ∈ . 

2.3. Solutions of the Equation  

The functional equation  

( ) ( ) ( ) ( )2 2f x y f x y f x f y+ + − = +  

is called the Qquadratic equation. In particular, every solution of the quadratic 
equation is said to be a quadratic mapping. 
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2.4. Solutions of the Inequalities 

The solution of the quadratic function inequalities is called the quadratic map-
ping. 

3. Setting up Quadratic ( )1 2,µ µ -Function Inequalities (1)  
Based on Quadratic Equation (2)   

3.1. Condition for Existence of Solution of (1)  

In this section, assume that X  and Y  be a fuzzy normed vector spaces Under 
this setting, we can show that the mappings satisfying (1) is quadratic and h A∈ .  

Lemma 2. Suppose that ( ), NY  be a fuzzy normed vector space and let 
:f →X Y  be a mapping and it satisfies the functional inequality  
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For all , , 1i ix y i k∈ = →X  and all 0t >  then f is quadratic.  
Proof. I replacing ( )1 1, , , , ,k kx x y y   by ( )0, ,0,0, ,0   in (13), we have 

( )( ) ( )13 0 , 0, 1N k f t N tµ− ≥ =                  (14) 

Thus ( )0 0f = . 
Next I replacing ( )1 1, , , , ,k kx x y y   by ( ), , , , ,x x x x   in (13), we have  
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Next I put 2v t=  (18) I have  
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for all 1 1, , , , ,k kx x y y ∈  X , since ( )1 2 0,h Aµ µ ∈ . 
Hence f is quadratic mapping as we expected.                         □ 

3.2. Establishing a Solution for the Quadratic ( )h 1 2,µ µ -Function  
Inequality (1) 

In this section, assume that ( ), NX  is a fuzzy normed space and ( ), NY  is a 
fuzzy Banach space. Under this setting, we can show that the mappings satisfy-
ing (1) is quadratic and 0h A∈ . 
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for all ,j jx y ∈X  for 1j k= → , for all 0t > . Then  
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exists each x∈X  and defines a quadratic mapping :A →X Y  such that  
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for all x∈X . Now we consider the set  
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where, as usual, inf φ = +∞ . That has been proven by mathematicians ( ),d  
is complete (see [47]).  
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4
4 4 , , , , ,

= , , 0.
, , , , ,

N g x h x Lt N g kx h kx L t
k k

N g kx h kx L t

Lt
Lt kx kx kx kx

Lt
Lt L x x x x

t x t
t x x x x

ε ε

ε

ϕ

ϕ

ϕ

 − = − 
 

= −

≥
+

≥
+

∀ ∈ ∀ >
+

 

 

 

X

    (28) 
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So ( ),d g h ε=  implies that ( ),d Tg Th L ε≤ ⋅ . This means that  

( ) ( ), ,d Tg Th Ld g h≤ , 

for all ,g h∈ . It folows from (38) that 

( ) ( ) ( )
1

1 2 ,
, , , , , 4 4

t tN f x f kx
t x x x x k kϕ µ

 
≤ −  +   

     (29) 

for all x∈ . So ( )
1

1,
4

d f Tf
k µ

≤ . By Theorem 1, there exists a mapping  

:A →X Y  satisfying the following:  
1) A is a fixed point of T, i.e., 

( ) ( )2 4A kx kA x=                      (30) 

for all x∈X . The mapping A is a unique fixed point T in the set  

( ){ }: ,g d f g= ∈ < ∞  . 

This implies that A is a unique mapping satisfying (38) such that there exists a 
( )0,β ∈ ∞  satisfying 

( ) ( )( ) ( )
, , .

, , , , ,
tN f x A x t x

t x x x x
β

ϕ
− ≥ ∀ ∈

+  

X  

2) ( ), 0ld T f H →  as l →∞ . This implies equality  

( )
( )( ) ( )1lim 2

4
l

ll
N f k x A x

k→∞
− = , 

for all x∈X . 

3) ( ) ( )1, ,
1

d f A d f Tf
L

≤
−

, 

which implies the inequality. 

4) ( ) ( )
1,

4 1
d f A

k L
≤

−
. 

This implies that the inequality (24) holds.  
By (22)  

( )
( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

1 1

1 1 1 1

1 1

1 1

1min 2 2 2 2
4

2 2 , ,
4

2 , , 2 , 2 , , 2

k k k kn n
i i i in

i i i i

k kn n
i i n

i i

n n n n
k k

N kf k x y kf k x y
k

tf k x f k y
k

t

t k x k x k y k yψ

− −

= = = =

= =

           + + −              

− −





+ 


∑ ∑ ∑ ∑

∑ ∑

 

 

( )
( ) ( )

( )( ) ( )( )
( )

1

1 1 1 1

1 1

min 2 2
4

2 2 2 2 , ,
4

k k k kn n
i i i in

i i i i

k kn n
i i n

i i

N f k x y f k x y
k

tf k x f k y
k

µ
= = = =

= =

          ≤ + + −              
 − −   

∑ ∑ ∑ ∑

∑ ∑
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( )

( ) ( )

( )( ) ( )( )
( )

12

1 1 1 1

1 1

4 2 2 2
4

2 2 2 2 ,
4

k k k kn n
i i i in

i i i i

k kn n
i i n

i i

N kf k x y k f k x y
k

tf k x f k y
k

µ −

= = = =

= =

         + + −              
 − −   

∑ ∑ ∑ ∑

∑ ∑
 (31) 

for all ,j jx y ∈X  for 1j k= → , for all 0t >  and for all n∈ . So 

( )
( ) ( )

( )( ) ( )( ) ( )
( ) ( ) ( )

1 1

1 1 1 1

1 1 1 1

1min 2 2 2 2
4

4
2 2 , ,

4 4 , , , , ,

k k k kn n
i i i in

i i i i

kk kn n
i i k k

i i k k

N kf k x y kf k x y
k

k t
f k x f k y t

k t k x x y yψ

− −

= = = =

= =

           + + −              
 − −   + 

∑ ∑ ∑ ∑

∑ ∑
 

 

 

( )
( ) ( )

( )( ) ( )( )

( )
( ) ( )

1

1 1 1 1

1 1

12

1 1 1 1

min 2 2
4

2 2 2 2 , ,

4 2 2 2
4

k k k kn n
i i i in

i i i i

k kn n
i i

i i

k k k kn n
i i i in

i i i i

N f k x y f k x y
k

f k x f k y t

N kf k x y k f k x y
k

µ

µ

= = = =

= =

−

= = = =

          ≤ + + −              
− − 

 
         + + −             

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

( )( ) ( )( )
1 1

2 2 2 2 ,
k kn n

i i
i i

f k x f k y t
= =



− − 
 

∑ ∑

   (32) 

for all ,j jx y ∈X  for 1j k= → , for all 0t >  and for all n∈ . So since  

( )
( ) ( ) ( )1 1 1

4
lim 1

4 4 , , , , , , , ,

n

n n nn
k k k

k t

k t k L x x y y z zψ→∞
=

+   

, 

for all , ,j j jx y z ∈  for all j k→ , 0t∀ > , q∈ . So 

( ) ( )

( ) ( )

1 1

1
1 1 1

1 1 1 1

1

1 1

1

1

2

2 2 ,
2 2

min 2 2 , ,

4
2

k k k k k k
i i i i

i i
i i

k k k k k k

i i i i i i
i i i i i i

k k
i

i i i

i i

i

i

x y x y
N kA kA A x A y t

k k

N A x y A x y A x A y t

x y
N kA

k

γ

γ

= =

= = =

= = = =

= =

= = =

    + −
    + − −

        
      ≤ + + − − −            

+

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ( ) ( )
1 1 1 1

2 2 ,
k k k k

i i i i
i i i i

A x y A x A y t
= = = =

          + − − −         
∑ ∑ ∑ ∑

(33) 

So the mapping :A →X X  is a Quadratic mapping, as I desired.          □ 
Theorem 4. Let [ )2: 0,kψ → ∞X  be a function such that there exists an 

1
2

L
k

< ,  

 ( ) ( )1 1 1 1 1
1, , , , , 2 , ,2 ,2 , ,2

4k k kx x y y kx kx ky ky
kL

ψ ψ≤         (34) 

for all ,j jx y ∈X  for 1j k= → . 
Let :f →X Y  be a mapping satisfying  
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( ) ( ) ( )

( ) ( )

1 1 1 1

1
1 1 1 1 1 1

1 1 1 1min 2 2
2 2

, ,
, , , , ,

min 2 2 ,

k k k k
i i i i

k k

i i
i i k k

k k k k k k

i i i i i i
i

i i i

i i i i i

ix y x y
N kf kf

k k

tf x f y t
t x x y y

N f x y f x y f x f y t

ψ

µ

= =

= = = =

=

= =

= = =
     + −     +

        
− −  + 

     ≤ + + − − −     
    

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

 

( ) ( )2
1 1 1 1

1 1

,

4 2 2 ,
2

k k k k k k
i i

i i i i
i i

i

i

i

i

x y
N kf f x y f x f y t

k
µ

= = =

= =

=


  

   +       + − − −         

∑ ∑ ∑ ∑ ∑ ∑

(35) 

for all ,j jx y ∈X  for 1j k= → , for all 0t > . Then  

 ( ) ( )
( )

lim 4
2

n
nn

xA x N k f
k→∞

 
 = −
 
 

                 (36) 

exists each x∈X  and defines a quadratic mapping :A →X Y  such that  

 ( ) ( )( ) ( )
( ) ( )

1

1

4 1
,

4 1 , , , , ,
k L t

N f x A x t
k L L x x x x

µ
µ ψ

−
− ≥

− +  

       (37) 

for all x∈X  and 0t > .  
Proof. Suppose that ( ),d  be the generalized metric space defined in the 

proof of theorem 3.  
From (35) I have  

 
( ) ( )

( ) 1

4 ,
, , , , , 42 n

t x LtN f x kf
t x x x x kkϕ µ

  
  ≤ −

  +    

      (38) 

for all x∈X , and for all > 0.t  
Now we cosider the linear mapping :T →   such that  

( ) : 4
2
xTg x kg
k

 =  
 

, 

for all x∈X . So ( )
1

,
4

Ld f Tf
k µ

≤ . Thus 

( ) ( )1

, .
4 1

Ld f A
k Lµ

≤
−

 

which implies that the inequality (37) Satisfied. The rest of the proof is similar to 
the proof of Theorem 3.                                            □ 

From the above theorems we have the following corollary: 
Corollary 1. Suppose 0θ ≥  and let p be a real number with 0 2p< < . Let 

X  be a normed vector space with norm ⋅  Let :f →X Y  be a mapping sa-
tisfying  

1 1 1 1min 2 2
2 2

k k k k
i ii i i i i ix y x y

N kf kf
k k

= = = =
     + −     +

        

∑ ∑ ∑ ∑  
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( ) ( ) ( )
( ) ( )

1 1

1
1 1 1 1 1 1

2
1 1

1 1

1

1

1

, ,

min 2 2 , ,

4 2
2

k k

i i p pk k
i i i i

k k k k k k

i i i i i i
i i i i i i

k k k k
i i

i
i

i

i i

i

i
i

i

tf x f y t
t x y

N f x y f x y f x f y t

x y
N kf f x y

k

θ

µ

µ

=
= =

= = = =

=

=

=

=

=

=

= =


 − −   + + 


      ≤ + + − − −            

 +    + − −     

∑ ∑
∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( )
1

2 ,
k k

i i
i

f x f y t
=

  
  −
  

  
∑ ∑

(39) 

for all ,j jx y ∈X  for 1j k= → , for all 0t > . Then  

 ( )
( )

( )( )1lim 2
4

n
nn

A x N f k x
k→∞

= −                  (40) 

exists each x∈X  and defines a quadratic mapping :A →X Y  such that  

 ( ) ( )( )
( )( )

( )( )
1

1 1

4 2
,

4 4 2 2

p

p pk
ii

k k t
N f x A x t

k k k t kx

µ

µ θ
=

−
− ≥

− + ∑
     (41) 

for all x∈X  and 0t > .  
Corollary 2. Suppose 0θ ≥  and let p be a real number with 2p > .Let X  

be a normed vector space with norm ⋅  Let :f →X Y  be a mapping satisfy-
ing  

( ) ( ) ( )
( ) ( )

1 1

1

1 1

1 1 1 1 1

1 1

1

1 1

min 2 2
2 2

, ,

min 2 2 ,

i i i i

i

k k k k
i i i i

k k

i i p pk k
i i i i

k k k k k k

i i i i i i
i i

i

i i i i

x y x y
N kf kf

k k

tf x f y t
t x y

N f x y f x y f x f y t

θ

µ

= = =

= =

= = = =

=

=

= =

=

     + −     +
        


 − −   + + 



     ≤ + + − − −    
    

∑ ∑ ∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

( ) ( )2
1 1 1

1

1

1

,

4 2 2 ,
2

k k k k k k
i i

i i i i
i i i i

i ix y
N kf f x y f x f y t

k
µ

= = =

= =

=

 
    

   +       + − − −         

∑ ∑ ∑ ∑ ∑ ∑

(42) 

for all ,j jx y ∈X  for 1j k= → , for all 0t > . Then  

 ( ) ( )
( )

1lim 4
2

n
nn

A x N k f x
k→∞

 
 = −
 
 

                (43) 

exists each x∈X  and defines a quadratic mapping :A →X Y  such that  

 ( ) ( )( )
( )( )

( )( ) 1

1

1

4 4 2
,

4 4 2 4

p

p pk
ii

k k k t
N f x A x t

k k k t kx

µ

µ θ
=

−
− ≥

− + ∑
     (44) 

for all x∈X  and 0t > .  

4. Conclusion  

In this paper, I construct the ( )1 2,φ µ µ -function inequality on fuzzy space, 
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which is a great idea for the field of functional equations. Then I show how to 
find their solutions in spaces constructed by Mathematicians. 
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