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Abstract 
Machine learning systems have found extensive applications as auxiliary tools 
in domains that necessitate critical decision-making, such as healthcare and 
criminal justice. The interpretability of these systems’ decisions is of para-
mount importance to instill trust among users. Recently, there have been de-
velopments in globally-consistent rule-based summary-explanation and its max- 
support (MSGC) problem, enabling the provision of explanations for specific 
decisions along with pertinent dataset statistics. Nonetheless, globally-con- 
sistent summary-explanations with limited complexity tend to have small sup-
ports, if any. In this study, we propose a more lenient variant of the summary- 
explanation, namely the q-consistent summary-explanation, which strives to 
achieve greater support at the expense of slightly reduced consistency. How-
ever, the challenge lies in the fact that the max-support problem of the q- 
consistent summary-explanation (MSqC) is significantly more intricate than 
the original MSGC problem, leading to extended solution times using stan-
dard branch-and-bound (B & B) solvers. We improve the B & B solving process 
by replacing time-consuming heuristics with machine learning (ML) models 
and apply a heavy-head sampling strategy for imitation learning of MSqC prob-
lems by exploiting the heavy-head maximum depth distribution of B & B so-
lution trees. Experimental results show that using the heavy-head sampling 
strategies, the final evaluation results of trained strategies on MSqC problems 
are significantly improved compared to previous studies using uniform sam-
pling strategies.  
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1. Introduction 

Amidst the progressions within the realm of machine learning and the prolifera-
tion of applications within artificial intelligence, the imperative of transparency 
surrounding machine learning models has grown markedly pronounced across 
myriad contexts. Sectors necessitating discerning determinations, notably health-
care and the criminal justice system have commenced integrating machine learn-
ing systems in a supplementary capacity [1]. Nonetheless, models boasting ele-
vated accuracies frequently assume the form of enigmatic black boxes, characte-
rized by opacity and the veiling of their decisional rationales. This phenomenon 
is largely inadvertent and inexorable, as the construction of these models (or al-
gorithms) does not stem from direct human coding but rather emanates from in-
tricate hypothesis sets—neural networks or support vector machines, for instance, 
possessing a profusion of parameters, forged through machine learning facili-
tated by copious volumes of training data. 

To cultivate heightened transparency, the traditional modus operandi involves 
the deployment of global explicatory techniques, harnessed to elicit proximate 
interpretable models from the recesses of black-box machine learning counter-
parts, thus emulating their decisional logic. As an illustration, neural networks 
can yield extracted classification rules [2], while tree ensembles can yield derived 
decision trees [3]. Notwithstanding, each of these conventional global explica-
tion methodologies is tailored to specific model categories, encompassing neural 
networks and tree ensembles, thereby eschewing model-agnosticism. Moreover, 
given the intersection of intricate models and expansive datasets, the resultant 
interpretable models extracted may not effectively approximate the original in-
tricacies. 

The method most closely akin to this study is the globally-consistent rule-based 
summative explication posited by Rudin et al. [4], wherein IP optimization di-
lemmas are tackled to ascertain the rule-based summative explication of a given 
target observation with minimal intricacy (the MCGC conundrum) or augmented 
substantiation (the MSGC dilemma). The substantiation of a rule-based summa-
tive explication is contingent upon the frequency of instances within the dataset 
that align with the rule’s IF-condition. Illustratively, a globally-consistent sum-
mative explication, provided by the MaxSupport algorithm for an observation 
from the FICO dataset [5], is elucidated as follows, with a substantiation of 594: 
Among the 594 individuals for whom 63ExternalRiskEstimate ≤  and  

48AverageMinFile ≤ , the entirety exhibited default prognoses. Manifestly, ex-
plications endowed with substantial substantiations serve to instill confidence in 
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users’ vis-à-vis the explicatory framework. 
Nevertheless, owing to the constraint of global consistency, the application of 

the MSGC problem to voluminous datasets frequently engenders rules of ele-
vated intricacy or negligible substantiation, if not unviable altogether. In myriad 
pragmatic contexts, explications characterized by substantial substantiations wield 
considerable influence over users’ acquiescence, while trifling incongruity might 
prove tolerable. Piqued by this premise, the present study addresses the quan-
dary of maximizing substantiation with q-consistency (MSqC), where ( ]0,1q∈ , 
a paradigm that can markedly amplify the substantiation of the explicatory rule. 
A concrete instance of a 0.85-consistent summative explication, boasting a subs-
tantiation of 2000, is portrayed as follows: “Surpassing 85% of the 2000 individu-
als, whose 63ExternalRiskEstimate ≤  and 48AverageMinFile ≤ , were prognos-
ticated to default.” 

While the extension may appear uncomplicated, it transpires that the task of 
identifying a q-consistent summative elucidation is substantially more intricate 
than seeking its globally-consistent counterpart. The intricacy arises from the 
necessity to optimize q-consistent substantiation, which can encompass an in-
congruence fraction of up to 1 q−  among matched observations. This man-
dates the inclusion of all observations yielding divergent outcomes from the tar-
get observation within the MSqC formulation, diverging from the MSGC for-
mulation. Furthermore, conventional integer programming (IP) solvers em-
ploying the branch-and-bound (B & B) precise approach exhibit limited effi-
ciency in the context of MSGC. For instance, as reported in [4], a 60-second time 
constraint was imposed to achieve solution termination, and in our replication, 
complete resolution of MSGC employing the SCIP solver [6] necessitated an av-
erage of 101 seconds for a dataset size 1K=  and 1852 seconds for 10K= . 
The performance degradation is markedly exacerbated when tackling the more 
intricate MSqC, as substantiated in the experimental assessment. 

In recent years, in order to automate the tuning of B & B algorithms for dif-
ferent types of problems, machine learning (ML) methods have been developed 
to replace the hand-crafted expert heuristics, also known as branch-and-bound 
methods based on machine learning (ML-B & B), the ML-B & B model is trained 
using the imitation learning model expert strategy strong branching rules 

The main contribution of this paper is to use the heavy-head feature of the 
MSqC problem and apply the heavy-head sampling strategy, which improves the 
accuracy and efficiency of solving the MSqC problem and can better apply the 
MSqC problem to the field of credit evaluation systems. 

2. Background 

The initial body of explainability literature primarily delves into model-specific 
global elucidation techniques, aimed at delineating the overarching behavior of 
particular models. As an illustration, decision trees [7], and classification rules [2] 
[8] have been enlisted to expound the global aspects of neural networks. Diverg-
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ing from these conventional methods, there has been a surge in interest toward 
model-agnostic local explanation strategies in recent years, focusing on eluci-
dating the rationales underlying specific observations or predictions. This tra-
jectory’s inception is frequently attributed to the seminal contribution by Ribeiro 
et al. [9], wherein the LIME algorithm was introduced. The realization surfaced 
that model-level (i.e., global) explanation is not universally viable due to the po-
tential arbitrary complexity of black-box models; nonetheless, within a data in-
stance’s vicinity, the decision boundary should invariably exhibit sufficient sim-
plicity to be captured by an interpretable model. This premise is veracious for 
nearly all pragmatic models, rendering local explanations broadly applicable. 

Belonging to the class of model-available-agnostic methodologies, the LIME 
algorithm operates under the assumption that the black-box model is accessible 
for localized data generation pertaining to the target observation, albeit its spe-
cifics remain unknown. Specifically, for any arbitrary classifier, the LIME algo-
rithm [9] commences by generating perturbed data proximate to the target ob-
servation, and then it fits an interpretable model (a sparse linear model) onto the 
created local dataset to facilitate model-agnostic local elucidation. Subsequent 
studies have engendered extensions to this approach. For instance, in a subse-
quent endeavor [10], Ribeiro et al. proposed replacing the sparse linear model in 
LIME with if-then rules, designated as Anchors, to yield explanations that are 
both more intuitive and accurate. In another work [11], Guidotti et al. harnessed 
a genetic algorithm to generate the local dataset, consequently deriving decision 
rules and counterfactual rules from the trained local interpretable predictor. 
Addressing the data shift and instability stemming from random perturbations 
in LIME, Zafar et al. introduced Deterministic Local Interpretable Model-Agnostic 
Explanations (DLIME) [12]. Additionally, Huang et al. devised a comprehensive 
interpretative framework for general graph neural network models, termed Graph-
LIME [13], enabling localized interpretation of model outputs through nonlinear 
feature selection strategies such as the Hilbert-Schmidt Independence Criterion 
(HSIC) Lasso. 

Instances exist wherein the black-box model remains elusive for the genera-
tion of synthetic data, leaving historical or furnished data as the sole fount of 
knowledge. A prominent illustration of this circumstance is encapsulated in the 
FICO explainable machine learning challenge [5], wherein a dataset engendered 
by FICO’s proprietary black-box model is at disposal, yet the model itself re-
mains beyond the reach of researchers. In situations governed solely by data 
availability, a prevailing strategy for elucidation involves training an alternate 
predictive model founded upon the proffered dataset, serving as a surrogate to 
the original model. Two avenues unfold before us: the surrogate model can ei-
ther assume the form of an inherently interpretable model, or it can prioritize 
precision by adopting a black-box model for emulation. To synopsize, both ave-
nues mandate the cultivation of a secondary model to mirror the original model, 
with the requirement of minimizing approximation error for trustworthiness of 
explanations. Moreover, irrespective of the chosen trajectory, neither can furnish 
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explanations that encompass data-relative statistics, such as support information 
as manifested in [4]. 

Charting an alternate course, Rudin et al. [4] introduced the globally-consistent 
rule-based summative explication technique. This approach sidesteps the neces-
sity of generating local data via an accessible model. Instead, it engenders a rule- 
based summative explication through the resolution of an integer programming 
(IP) optimization dilemma. This endeavor hinges solely upon the dataset and can 
be steered towards either minimizing the intricacy of the rule or maximizing its 
substantiation. The substantiation of a rule-based summative explication is gauged 
by the number of instances within the dataset adhering to the rule’s IF-condition. 
Exemplifying this approach, an illustrative summary-explanation declaration con-
cerning an observation extracted from the FICO dataset resonates as follows: 
“For the entirety of 594 individuals exhibiting an 63ExternalRiskEstimate ≤  
and 48AverageMinFile ≤ , unanimous prognostications of default transpired.” 
The substantiation for this summary-explanation rests at 594, an informative 
metric eluding model-available-agnostic methodologies reliant on data genera-
tion. 

An advantageous attribute of Rudin et al.’s technique [4] resides in the sum-
mary-explanations it produces, being endowed with a certifiable global consis-
tency. In other words, for all instances adhering to the IF-condition within the da-
taset, the THEN-statement holds true. Nonetheless, procuring globally-consistent 
rules can present challenges. When confronted with sizable practical datasets, 
the method outlined in [4] frequently yields rules marked by heightened intrica-
cy or limited substantiation, or even infeasibility. Indeed, for many pragmatic 
scenarios, explanations possessing substantial substantiation aid in cultivating 
users’ confidence in the explicatory system, while minor incongruities might 
prove tolerable, contingent upon certain thresholds. Anchored in this notion, 
this study embarks on an extension of the MaxSupport framework outlined in 
[4], wherein a slight leeway for inconsistencies within the explanation is intro-
duced. This augmentation effectively augments the substantiation of the expli-
catory rule. The improved problem is called the MSqC problem. 

The MSqC challenge epitomizes a form of MILP dilemma. Existing open- 
source solvers, exemplified by SCIP, are encumbered by substantial computational 
burdens when addressing such quandaries. In tandem with the progression of 
machine learning, the nexus of MILP solution strategies and machine learning 
(ML) approaches has manifested. A paradigmatic instance is the machine learn-
ing-based branch-and-bound (ML-B & B) technique, wherein supervised learn-
ing expedites the computation of selection priority indices during MILP resolu-
tion, hastening variable branch and node selection decisions within the branch- 
and-bound framework. Alvarez et al. introduced machine learning methodolo-
gies to swiftly compute the variable branch priority strong branching (SB) value 
[14]; subsequently, an imitation learning (IL)-grounded B & B method surfaced 
[15]. This IL-oriented approach directly learns the relative priority sequence of 
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diverse decisions, obviating the intricate index computation process and further 
augmenting B & B efficacy. Capitalizing on Graph Convolutional Neural Net-
works (GCNN), a model is devised to assimilate B & B selection tactics, leverag-
ing bipartite graph representations of ongoing B & B states, and harnessing GCNN 
to distill insightful facets. The GCNN architecture exploits MILP’s bipartite graph 
formulation and shared parameterization to model dilemmas across varying di-
mensions. Trained via IL, this model approximates the proficiency of resource- 
intensive expert-heuristic SB. Gasse et al.’s method [16] has proven notably effi-
cacious across diverse MILP benchmark scenarios, prompting subsequent ex-
plorations and extensions [17] [18]. Building on this foundation, the endeavor to 
enhance the ML-B & B approach for the efficacious resolution of the MSqC quan-
dary holds both consequential practical and scientific implications. 

3. Problem Formulation  
3.1. Global Consistency Summary Explanation 

First convert the data set into a  -dimensional binary sample data set 
( ){ }, ,i ix y i∈ , where { }0,1 P

ix ∈ ,   is the sample index set, and   is the 
binary feature function index set. In general, such a binary dataset can be obtained 
from an ordered feature set { },1 ,1 ,20, 50, 0e e ex x x≥ ≥ ≥    Binarize it to 

{ } { },1 ,2 ,3, , 1,0,1e e e ex δ δ δ= = . The following terms “characteristic” and “characte-
ristic function” are used interchangeably. 

Let b represent a joint clause formed by the logical AND ( ∧ ) operation of 
multiple conditions, with each condition corresponding to a binary feature de-
noted by pF . In other words, for a subset of features ′ ⊆  , the joint clause is 
defined as ( ) ( )  p pb F′∈⋅ = ∧ ⋅ . Taking the given example, b could be either ,1 0ex ≥  
or ( ) ( ),1 ,250 0e ex x≥ ∧ ≥  . 

An overview explanation is represented by a rule ( )b y⋅ → , which defines a 
binary classifier as follows: 

( ) ( ) ( ) ( )  if 1
1 else

b y p py b x F x
h x

y
⋅ → ′∈ = ∧ =

= 
−

  

In the context of a sample value ( ),e ex y , a globally consistent overview expla-
nation is an overview explanation ( ) eb y⋅ →  that satisfies the following proper-
ties: 

1) Relevancy, i.e., ( ) 1eb x = ;  
2) Consistency, which states that for all sample values i∈ , if ( ) 1ib x = , 

then i ey y= .  
A more lucid mode of expression posits that a globally consistent overview 

elucidating the mapping ( ) eb y⋅ →  may be cast in the following form: For all 
sample values (e.g., individuals or customers) for which ( )b ⋅  holds true, the 
corresponding outcome (e.g., predicted risk or decision) is ey , identical to the 
value of sample e. Such an elucidation establishes a correlation between the cur-
rent sample value ( ),e ex y  and pre-existing records in the dataset, rendering it 
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more persuasive to users in domains such as credit evaluation. It is noteworthy 
that general global (model-level) rule-based explanations typically adopt lists of 
rules represented in either disjunctive normal form (DNF) or conjunction nor-
mal form (CNF). Suppose a DNF rule list ( ) ( ) ( ) ( )1 2b b⋅ ∨ ⋅ ∨  serves as the 
global interpretation of the black box; in that case, it can be inferred that for a 
given specific sample value ( ),e ex y , a globally consistent summary interpreta-
tion can be viewed as a clause ( )b ⋅  in the DNF global rule list, activated on ex , 
meaning ( ) 1eb x = . 

The quality of the clause ( )b ⋅  is assessed by two key metrics:  
1) Complexity b , defined as the number of conditions in b;  
2) Support ( )b , that is, the size of the support set ( )b , which is de-

fined as the sample value set (or index set) that satisfies the clause b, that is, 
( ) ( ){ }: 1N iS b i b x= ∈ = .  

As a matter of convention, the term “support” may pertain to either the set 
( )b  or its cardinality ( )b . Moreover, for convenience, when employing 

set notation, one may refer to either the indexed set or the original set, provided 
that such usage does not give rise to confusion. 

3.2. Minimize Complexity and Maximize Support 

In [4], the paper introduces two significant problems related to the Global Con-
sistency of the SE ( ) eb y⋅ → , namely the Global Consistency Minimizing Com-
plexity (MCGC) and Global Consistency Maximizing Support (MSGC) prob-
lems. The primary objective of the MCGC problem is to identify the SE b with 
the lowest possible complexity. This objective can be precisely formulated as an 
Integer Programming (IP) model, which can be stated as follows:  

min
e

pb
p P

b
∈
∑                          (1) 

( ),s.t. 1 1, \
e

e
p i p

p P

b iδ
∈

− ≥ ∀ ∈∑                  (2) 

{ }0,1 , e
pb p∈ ∀ ∈                      (3) 

where the binary decision variable 1pb =  indicates that the feature p appears in 
the resulting clause ( ) ( )  p pb F′∈⋅ = ∧ ⋅ , i.e.   p ′∈ ; and 0pb =  otherwise. As a 
result, pb  is also referred to as a feature variable. Moreover, the binary variable 

{ }, 0,1i pδ ∈  serves to indicate whether the observation value i satisfies the binary 
feature p, expressed as ( ),i p p iF xδ = . The set e , known as the activation fea-
ture set of the observation value e, consists of the feature subset that the observa-
tion value e fulfills, formally represented as { },: 1e

e pp δ= ∈ =  . Furthermore, 
e  designates the collection of consistent observations, i.e.,  

{ }:e
i ei y y= ∈ =  , while \ e   denotes the set of inconsistent observa-

tions where i ey y≠  for all \ ei∈  . Correlation is ensured by restricting the 
selection of features to e , while consistency is guaranteed by satisfying condi-
tion (2), ensuring that any observation for i ey y≠  will have ( ) 0ib x = . Al-
though the MC model is expeditious to solve due to its simplicity, it does not 
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guarantee a large support. 
The MSGC problem can be regarded as an extension of the MCGC problem, 

with its objective being to discover the SE b that maximizes the support ( )Ns b , 
while still adhering to the complexity constraint cb M< . In this context, the 
paper adopts a reasonable complexity threshold of 4cM =  for SE in credit 
evaluation. The formulation of the MSGC problem is as follows:  

,
max

e
ib r

i

r
∈
∑


                            (4) 

( ),s.t. 1 1, \
e

e
p i p

p

b iδ
∈

− ≥ ∀ ∈∑


                   (5) 

( ) ( ),1 1 ,
e

e
p i p i

p

b M r iδ
∈

− ≤ − ∀ ∈∑


                 (6) 

,
e

p c
p

b M
∈

≤∑


                          (7) 

{ }, 0,1 , ,e e
p ib r p i∈ ∀ ∈ ∀ ∈                    (8) 

Among these variables, the decision variable { }0,1ir ∈  indicates whether the 
observation i belongs to the support of the clause ( )b ⋅ ; specifically, ( ) 1ib x =  if 
and only if 1ir = . Furthermore, the constant M is introduced, satisfying the 
condition cM M≥ , where cM  is the complexity threshold. Equation (6) en-
sures that for an observation ei∈  to qualify as a support for ( )b ⋅ , it must 
fulfill all the conditions specified by ( )b ⋅ . The support of the MSGC SE is typi-
cally much more extensive compared to that of the MCGC SE. However, owing 
to its increased complexity, the computational process to solve the MSGC mod-
els (4)-(8) is significantly slower. 

3.3. Model Based on q-Consistency Improvement  

A globally consistent SE ( )b y⋅ →  can be interpreted as a 1-consistent or 100% 
consistent rule, as it necessitates the consistency property to hold for all observa-
tions i N∈ . However, locating such a 1-consistent rule can prove to be chal-
lenging. Particularly, in the context of significantly large datasets, the MCGC 
and MSGC models often yield rules with high complexity or limited support, or 
even infeasible solutions. The underlying reason is straightforward: for intricate 
datasets, the existence of a 1-consistency rule (e.g., 4cM ≤ ) with reasonable com-
plexity is improbable. Hence, it is natural to relax the requirement of 1-consistency 
to a lower agreement level, such as 0.9 or 0.8 agreement. Such a relaxation should 
be deemed acceptable for SE in numerous practical domains, including credit 
evaluation. 

Let us introduce the concept of q-consistency as a property of SE ( )b y⋅ →  
in the following manner: For at least a proportion of q of observations i∈ , 
the condition iy y=  holds true if ( ) 1ib x = . To further clarify, we define  

( ),NS b y  as the consistent support set, denoted by  
( ) ( ){ }, : 1,N i iS b y i b x y y= ∈ = = . The consistency level of the rule ( )b y⋅ →  

is formally expressed as ( ) ( ) ( ), ,c b y b y b=    . In simpler terms, the 
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q-consistency property asserts that ( ),Nc b y q≥ ; this implies that the rule is 
consistent for at least a proportion of q observations. For observations ( ),e ex y , 
q aligns with the SE ( )b y⋅ → , and it can be paraphrased as follows: “For a sub-
set of observations equal to or greater than q, where ( )b ⋅  holds true, the pre-
dicted outcome is ey .” As an illustrative example in credit assessment, the ob-
served q-consistent SE for the FICO dataset is as follows: “For all 100 individuals 
with 63ExternalRiskEstimate ≤  and 48AverageMinFile ≤ , the model predicts 
a high risk of default.” 

Indeed, the concept of q-consistency naturally extends the q-consistency sup-
port maximization problem (MSqC) from the framework of MSGC problems 
(4)-(8). The fundamental objective of the MSqC problem is to maximize the 
support of SE ( )b y⋅ → , while adhering to the q-consistency constraint 

( ),Nc b y q≥ . Formally, the MSqC problem can be articulated as follows:  

,
max ib r i

r
∈
∑


                            (9) 

( ),s.t. 1 1, \
e

e
p i p i

p

b r iδ
∈

− + ≥ ∀ ∈∑


                (10) 

( ) ( ),1 1 ,
e

p i p i
p

b M r iδ
∈

− ≤ − ∀ ∈∑


                 (11) 

,
e

p c
p

b M
∈

≤∑


                         (12) 

( ) 0,i i
i

a q r
∈

− ≥∑


                       (13) 

{ }, 0,1 , ,e
p ib r p i∈ ∀ ∈ ∀ ∈                    (14) 

Compared to the MSGC model (4)-(8), four modifications have been made:  
1) Binary variables ir , which indicate supportive observations, are now de-

fined for all observations i∈ , instead of being limited to ei∈ . 
2) Constraints (10) have been adapted to include ir , enabling the representa-

tion of inconsistent support ( ( 1ir = )) for observations \ ei∈  . 
3) Constraints (11) have been extended to cover all observations i∈  in-

stead of being restricted to e . 
4) Constraints (13) represents the q-consistency constraint (equivalent to 
( ),Nc b y q≥ ), where binary constants 1ia =  if and only if ei N∈ .  

4. Methodology 

The resolution of MCGC and MSGC models hinges on a branch and bound 
solver. Nevertheless, conventional branch-and-bound methodologies encounter 
significant challenges when grappling with expansive datasets. The applicability 
of branch and bound techniques to these models is fraught with inefficacy and 
inefficiency. While the MCGC model offers swift and uncomplicated resolution, 
its branch-and-bound exact solution support remains wanting. In contrast, the 
MSGC and MSqC models strive to optimize support, yet their solution time proves 
untenable for pragmatic applications. The MSqC problem is a special kind of 
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MILP problem. In recent years, there have been many ML-B & B methods to 
solve this kind of problem. This paper studies how the distribution of the sample 
branch data of the MSqC problem affects the performance of the ML-B & B model, 
so as to improve the solution to the MSqC problem’s efficiency. 

4.1. Optimization of the Sample Distribution 

Contemporary investigations [16] [19] frequently adopt uniform sampling of 
branching decisions across nodes. Consequently, the resultant ML-policies exhi-
bit akin approximation accuracies per node in a given B & B iteration. In con-
trast, our proposition herein is to endow crucial nodes with elevated sampling 
probability, thereby elevating approximation accuracies for pivotal choices. It is 
widely acknowledged that choices within shallower nodes bear greater signific-
ance than those in deeper nodes. Hence, our approach chiefly relies on depth- 
related insights to gauge the sampling probability per node. This strategy is then 
appraised by assessing the performance of the trained models. 

4.2. Problems of the q-Consistent Summary-Explanation Solution  
Depth and Nodes Characteristics 

Prior to delving into sampling strategies, it proves instructive to scrutinize the B 
& B solution process through the lens of depth and node attributes. Figure 1 de-
lineates the distribution of maximum depths and visited nodes for ten thousand 
solutions encompassing diverse MSqC instances. Evident from Figure 1(a), a 
substantial majority of MSqC instances converge within a B & B tree depth of 
100. The distribution of maximum visited nodes exhibits a prolonged tail, with 
the most extensive node visits reaching 25,746. As depicted in Figure 1(b), the 
upper echelon (the least populous) 90% of visited node counts illustrates a simi-
lar trend, reflecting a characteristic of pronounced skewness in the distribution 
of visited nodes. 
 

   
(a)                                                    (b) 

Figure 1. The distributions of the maximum depths and visited nodes of the B & B solution trees for two hundred MSqC in-
stances. (a) Max depth; (b) Max visited nodes (top 90%). 
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4.3. Sampling Strategies 

Within this subsection, an array of sampling strategies is elucidated. Primarily, 
the conventional uniform sampling approach, employed in earlier inquiries, is 
expounded upon. Following this, the innovative heavy-head sampling strategy is 
introduced, primarily directed towards shallower-depth nodes and nodes ac-
cessed early in the process. Figure 2 serves to exemplify the conceptual framework 
of these distinct sampling strategies, acknowledging a minor divergence from 
actuality due to the general incompleteness inherent in a B & B tree’s depiction. 

4.3.1. Uniform Sampling 
The precedent uniform sampling strategy finds broad application in antecedent 
investigations related to variable selection in ML-B & B [16] [19]. Within uni-
form sampling, a fixed probability p is utilized to record the state of the B & B 
process, along with the scores and actions furnished by the strong branching poli-
cy, prior to any branching decision on a given node. Following the resolution of 
a MILP instance, a fresh B & B solution episode commences with the sampler 
incorporating another instance. Notably, the sampling probability, often set at 

0.05p =  during implementation, serves to uphold the diversity of amassed sam-
ples for subsequent use as training data. 

4.3.2. Heavy-Head Sampling 
In light of the preexisting understanding that decisions of shallower depths tend 
to hold heightened significance, the formulated heavy-head sampling strategy is 
meticulously crafted to bolster the representation of such pivotal determinations 
within the amassed samples. Under the heavy-head sampling paradigm, a branch-
ing decision is subject to sampling with a probability exceeding p if its depth 
does not surpass depthK  and the count of visited nodes (within the ongoing so-
lution episode) remains within the confines of nodesK . Alternatively, should 
these conditions not be met, the decision is subjected to sampling with a consis-
tent probability p, analogous to the established uniform sampling method.  

5. Computer Experiments 

Figure 3 portrays the schematic illustration of our experimental framework, a 
derivation from Gasse et al.’s learn-to-branch project [16]. Notably, our experi-
mental methodology diverges through the following distinct aspects:  
 

 

Figure 2. Sample distributions resulted from different sampling strategies. 
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Figure 3. A schematic representation of the experimental framework. 
 

1) Divergent sampling strategies are deployed to amass branching data: the 
uniform sampling strategy and the heavy-head sampling strategy; 

2) The testing of GCNNs’ branching accuracies extends across two distinct 
sample distributions, thus facilitating a more pronounced observation of the ap-
proximation bias inherent in the trained GCNN model.  

5.1. Experimental Framework 

This work’s experiments unfold through a sequence of five pivotal stages.  
1) Generate MSqC problem instances: The instances set use the FICO datasets. 

It contains training examples, validation examples, test examples and three trans-
fer examples with different complexity, namely Easy, Hard; 

2) Gather Branching Data: Employing SCIP 7.0 [6], we solve the generated in-
stances while obtaining branching decisions through the uniform and heavy-head 
sampling strategies. This results in distinct training, validation, and testing datasets 
for each approach; 

3) Train GCNN Models: We adopt the GCNN model from [16], training it 
using the branching data derived from the two distinct sampling strategies. As a 
consequence, we develop two distinct GCNN models—GCNN and heavy-head 
GCNN; 

4) Assess Branching Accuracy: Our investigation entails evaluating the trained 
GCNNs’ branching accuracy across two distinct sample distributions—node- 
uniform and heavy-head. This aids in a more nuanced observation of the trained 
GCNN model’s approximation bias; 

5) Evaluate ML-B & B Efficiency: The yardstick for comparing the sampling 
strategies resides in the efficiency of the final Machine Learning Branch and 
Bound (ML-B & B) model for MSqC problem solving. By integrating the trained 
GCNNs into SCIP’s B & B solution process and replacing the default SCIP 
brancher, we finally test the effectiveness of the sampling strategies. 

We perform experiments with two different setups. The training scheme is the 
default setup used in previous studies [16] [19], Specifically, 10 K (1 K = 1000) 
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branching samples are extracted from 200 instances for training, 2 K branching 
samples from 50 instances for validation, and the same for testing. The training 
process uses a batch size of 8, epoch size (number of batches per epoch) of 312, 
and max epochs of 1 K. The experiments are performed separately for both the 
uniform sampling strategy and the heavy-head sampling strategy.  

5.2. Comparison of Sample Distributions 

We generate MSqC problems of varying complexities and subsequently solve the 
training instances using SCIP 7.0 [6]. Branching data is acquired through two 
distinct sampling strategies: uniform sampling and heavy-head sampling. For 
ease of reference, we denote the branching data sampled via uniform sampling 
as following a node-uniform distribution. This characterization indicates that 
selecting a branching decision from this distribution is equivalent to a uniform 
random choice from all nodes across B & B solution trees. Similarly, branching 
data collected through heavy-head sampling is said to follow a heavy-head dis-
tribution. Figure 4 visually demonstrates the depth distribution in these sample 
distributions. Notably, the heavy-head strategy significantly emphasizes collect-
ing branching data from shallow nodes (depth in [0, 19]), in contrast to the uni-
form strategy, which yields fewer data from deeper nodes.  

5.3. Comparison of Branching Accuracies 

This section assesses the GCNN models’ branching accuracy within the frame-
work of dataset training schemes. We examine models trained through uniform 
and heavy-head sampling strategies for their branching accuracy. To maintain 
consistency with [16], we adopt four metrics for measuring accuracy: acc@1, 
acc@3, acc@5, and acc@10. 
 

 

Figure 4. Distributions of the collected branching data over B & B node depths. 
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Table 1 presents a comprehensive comparison, revealing that the heavy-head 
GCNN exhibits superior overall branching accuracy when contrasted with both 
the GCNN and TREES models [20]. The observed enhancement in accuracy un-
derscores the statistically significant advantages associated with the heavy-head 
sampling strategy. 

5.4. Comparison of Problem-Solving Efficiency 

In this subsection, MSqC instances of different difficulties are generated. For 
consistency with [16], the metrics for problem-solving Efficiency are the em-
ployed metrics encompass: 1) the normalized 1-shifted geometric mean of solv-
ing times (Time), 2) the normalized final node counts of solutions (Node), and 3) 
the count of instances where each branching policy yields the fastest solving time 
among 100 attempts (Win). Considering the large variance in performance over 
different problem instances, the means of Time and Node metrics are norma-
lized against uniform-GCNN to facilitate comparison between different GCNN 
models. In the form of “mean r + std * 100%”, “r” represents the 1-shifted geo-
metric mean for GCNN. The ML-B & B models are obtained by embedding 
trained models into the SCIP’s B & B solution process to replace the default 
SCIP brancher. To evaluate each problem difficulty (Easy, Hard), five training 
seeds are used for 20 new instances, leading to 100 solving attempts for each dif-
ficulty. As shown in Table 2, the results show that the heavy-head sampling 
strategy performs better on all of the performance metrics. 
 
Table 1. ML-B & B model branch accuracy comparison. 

Problem 
Accuracy 

Level 

Model 

Trees GCNN Heavy-Head GCNN 

MSqC 

acc@1 0.2530 ± 0.0000 0.4839 ± 0.0063 0.5147 ± 0.0073 

acc@3 0.4665 ± 0.0000 0.7083 ± 0.0090 0.7488 ± 0.0045 

acc@5 0.5945 ± 0.0000 0.8008 ± 0.0111 0.8375 ± 0.0042 

acc@10 0.7325 ± 0.0000 0.8905 ± 0.0081 0.9151 ± 0.0044 

 
Table 2. ML-B & B solving problem efficiency comparison. 

Problem Type Model Node Time Wins 
T-Stats 

(p-Value) 

MSqC 

Easy 

Trees 2.7985r ± 30.88% 1.5641r ± 25.19% 6 12.58 (0.0000) 

GCNN 1.0000r ± 68.24% 1.0000r ± 59.10% 30 0.00 (1.0000) 

Heavy-head GCNN 0.8456r ± 50.41% 0.7338r ± 40.91% 64 −3.87 (0.0001) 

Hard 

Trees 2.8580r ± 38.31% 1.5915r ± 34.08% 7 7.59 (0.0000) 

GCNN 1.0000r ± 71.66% 1.0000r ± 63.64% 29 0.00 (1.0000) 

Heavy-head GCNN 0.8353r ± 48.63% 0.7386r ± 40.57% 64 −4.56 (0.0000) 
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6. Conclusion 

In this paper, we have advanced the proposition that demanding absolute 100% 
consistency from summary-explanations is prone to excessiveness within prag-
matic contexts. We contend that minor inconsistencies are inherent and accept-
able within summary-explanations for substantial, practical datasets, and that 
these inconsistencies can indeed be harnessed to enhance their overall support. 
Building upon this rationale, we introduce the MSqC problem, aiming to en-
hance support while allowing modest concessions in consistency. Subsequently, 
we discern that addressing the MSqC problem proves notably more intricate than 
its MSGC counterpart, rendering traditional B & B solvers for exact solutions un-
suitable. Consequently, we harness the heavy-head distribution of maximum depths 
within the MSqC problem and employ a heavy-head sampling strategy for imita-
tion learning in B & B for MSqC. Empirical findings substantiate that this strategy 
substantially heightens the accuracy and efficiency of solving MSqC issues, as 
demonstrated through statistical testing.  
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