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Abstract 
This article considered the development of a two-point hybrid method for the 
numerical solution of initial value problems of second order ordinary diffe-
rential Equations (ODEs) using power series and exponentially-fitted basis 
function. Interpolation and collocation techniques were used to derive the 
method. The method was implemented in predictor-corrector mode. In order 
to increase the accuracy of the results of the method, the predictor was de-
signed to have same order of accuracy as the corrector. The method is sym-
metric, consistent, zero-stable and has small error constant and has better ac-
curacy over other methods in the reviewed literature when tested with some 
numerical examples.  
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1. Introduction 

The pursuit of finding solutions to empirical problems in real life situations has 
given rise to mathematical models. These models most often resulted to diffe-
rential equations of various types and order. In this work, we consider one of 
such important differential equations—second order ordinary differential Equa-
tions (ODEs) expressed in the form 
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( ) ( ) ( )0 1, , , ,y f x y y y yµ ω µ ω′′ ′ ′= = =                (1) 

Equation (1) appears in almost all physical or biological processes in relation 
with a wide range of issues that arise in various facets of daily life. In the past, it 
was a convention to solve this type of equations by breaking it down into a set of 
first order ODEs and solve the resulting equations using analytical or numerical 
methods. Many authors, including [1]-[6], have thoroughly explored the direct 
numerical solution of equations of type (1) without reducing to system of first 
order. 

Many studies have also been done on the application of variants of numerical 
methods to obtain solutions to (1), which includes block mode. Due to its self- 
starting nature, which mitigates its inherent disadvantages compared to predic-
tor-corrector mode of implementation, where the predictor is of lower order, the 
block mode implementation has been reported in various papers to be superior 
[7] [8] [9]. In their study, Kayode and Adeyeye [10] examined a hybrid predic-
tor-corrector method for direct solution of second order ODEs. While the in-
troduction of hybrid points increases the order of accuracy of the method, the 
order of the major predictor in the work is equivalent to the order of the method 
itself to overcome the setback of predictor-corrector mode of implementation. 
Kayode and Obarhua [5] presented a 3-step y-function for second order ordi-
nary differential equations to overcome the cost of functions evaluation. The 
accuracy of this method is much higher than that of existing block methods. 

It has been found in literature that a number of methods have been developed 
using various basis functions as approximation solutions, which include power 
series, exponential function, legendry, trigonometric polynomial and Chebyshev 
polynomial, among others. Although the type of problems to be solved are some-
times influenced by the choice of the approximate solution. Alabi et al. [11] found 
that most of these methods do not have good stability features, which causes 
them to fail when the problem is stiff or oscillatory. 

Given the aforementioned, the motivation for this research is the need to de-
rive a predictor-corrector mode method that requires fewer function evaluations 
and a combination of power series with exponential functions. 

2. Derivation of the Method 
To derive this method, two off-grid points is introduced. The two off-grid points 
are 1

2
n

x
+

 and 3
2

n
x

+
. These points are carefully selected to guarantee symmetry  

and zero stability conditions. The basis function adopted as approximate solu-
tion to Equation (1) is a combination of power series with exponential function 
given as: 

( )
0 0 !

jp p
j

j j
j j

xy x x a
j

α
= =

= +∑ ∑                       (2) 

where ( ),x a b∈ , a s′  are real unknown parameters to be determined and 
c i+  is the sum of the number of collocation and interpolation points of a basis 
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function with a single variable x, where [ ],x a b∈ , ja s′  are real unknown pa-
rameters to be determined and c i+  is the sum of the numbers of collocation 
and interpolation points. 

The second derivative of (2) is 

( ) ( ) ( )
2

2

2 0
1

2 !

jp p
j

j j
j j

xy x j j x a
j

α
−

−

= =

′′ = − +
−∑ ∑               (3) 

Combination of (3) and (1) generates the differential system of the form:  

( ) ( ) ( )
2

2

2 2
1 , ,

2 !

jp p
j

j j
j j

xj j x a f x y y
j

α
−

−

= =

′− + =
−∑ ∑             (4) 

Equations (4) and (2) are respectively collocated and interpolated at  
1, 0 2
2n ix i+

 =  
 

 and , 0,1n ix i+ =  to give rise to the following 

2 3 4
2 3 4 5 6

25 121 7213 7
2 6 24n n n nf a a x a x a x a= + + + +  

2 3 4
1 2 3 1 4 1 5 1 6 1
2 2 2 2 2

25 121 7213 7
2 6 24n n n n n

f a a x a x a x a x
+ + + + +

= + + + +  

2 3 4
1 2 3 1 4 1 5 1 6 1

25 121 7213 7
2 6 24n n n n nf a a x a x a x a x+ + + + += + + + +  

2 3 4
3 2 3 3 4 3 5 3 6 3
2 2 2 2 2

25 121 7213 7
2 6 24n n n n n

f a a x a x a x a x
+ + + + +

= + + + +  

2 3 4
2 2 3 2 4 2 5 2 6 2

25 121 7213 7
2 6 24n n n n nf a a x a x a x a x+ + + + += + + + +  

2 3 4 5 6
0 1 2 3 4 5 6

3 7 25 121 7212 2
2 6 24 120 720n n n n n n ny a a x a x a x a x a x a x= + + + + + +  

2 3 4 5 6
1 0 1 1 2 1 3 1 4 1 5 1 6 1

3 7 25 121 7212 2
2 6 24 120 720n n n n n n ny a a x a x a x a x a x a x+ + + + + + += + + + + + +  (5) 

The system of linear Equations (5) is solved to have the values of the unknown 
parameters ja s′  to give 

2 3 4 5 6
0 1 2 3 4 5 6

1 3 7 25 121 7212
2 2 6 24 120 720n n n n n n na y a x a x a x a x a x a x = − − − − − −  

 

( ) ( )
( )

( )
( )

3 5 2 3 3 2 4 5
1 1 24

5 2 3 3 2 4 5
3
2

5 2 3 3 2 4 5
1

5 2 3 3 2 4 5
1

1 360 3 90 220 180 48
720

16 480 1120 840 192

30 1080 2280 1920 288

114 1440 2080 1080 192

n n n n n n n

n n n n n

n n n n n

n n n n n

a h y y h x h x h x h x f
h
h x h x h x h x f

h x h x h x h x f

h x h x h x h x f

+ +

+

+

+

− = + + − + + + +

+ − − − −

+ − + + + +

+ − − − −

( )
2

5 4 2 3 3 2 4 553 360 750 700 300 48n n n n n nh x h x h x h x h x f + + + + + +   

( )
( )

3 2 2 3 4
2 24

3 2 2 3 4
3
2

1 3 11 12 4
18

16 56 56 16

n n n n n

n n n n n

a h x x h x h x f
h

h x x h x h x f

+

+

= + + +

− + + +
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( )
( )

( )

3 2 2 3 4
1

3 2 2 3 4
1
2

4 3 2 2 3 4

36 114 96 24

48 104 72 16

6 25 35 20 4

n n n n n

n n n n n

n n n n n

h x x h x h x f

h x x h x h x f

h x h x h x h x f

+

+

+ + + +

− + + +

+ + + + + 

 

( )
( )

( )

( )

3 2 2 3
3 24

3 2 2 3
3
2

3 2 2 3
1

3 2 2 3
1
2

3 2 2 3

1 3 22 36 16
42

16 112 168 64

(36 228 288 96 )

48 208 216 64

25 70 60 16

n n n n

n n n n

n n n n

n n n n

n n n

a h x h x h x f
h

h x h x h x f

h x h x h x f

h x h x h x f

h x h x h x

+

+

+

+

− = + + +

− + + +

+ + + +

− + + +

+ + + + 

 

( ) ( )

( ) ( )

( )

2 2 2 2
4 2 34

2

2 2 2 2
1 1

2

2 2

1 11 36 24 56 168 96
75

114 144 288 104 216 96

35 60 24

n n n n n n

n n n n n n

n n n

a h x h x f h x h x f
h

h x h x f h x h x f

h x h x f

+
+

+
+

= + + − + +

+ + + − + +

+ + + 

 

( ) ( ) ( )

( ) ( )

5 2 3 14
2

4

1
2

4 3 4 14 18 24 24
121

18 16 5 4
15

n n n n nn

n n nn

a h x f h x f x h f
h

h h x f h x f

+ +
+

+

= − + − + + +

− + − + 

 

6 2 3 1 12
2 2

16 4 6 4
721 n n nn n

a f f f f f
h + +

+ +

 
= − + − + 

 
            (6) 

Substituting the values of ( ), 0 1 6ja s j′ =  into Equation (2) give the conti-
nuous hybrid method: 

( ) ( ) ( ) ( ) ( ){ }
1

2
1 2

0 0

k k

k j n j j n j n r n s
j j

y x x y h x f x y x yα β η η
−

+ + + +
= =

= + + +∑ ∑    (7) 

Applying the transformation 1n kx xt
h

+ −−
=  and d 1

d
t
x h
=  in Obarhua and 

Kayode [12], the coefficients are given as follows 

0 tα = −  

( )1 1tα = +  

2 3 4 5 6
0

1 1 1 1 1
72 36 72 30 45

h t t t t tβ  = + − − + 
 

 

2 3 4 5 6
1
2

13 2 2 1 4
45 9 9 15 45

h t t t t tβ  = − + + − 
 

 

2 2 4 6
1

13 1 5 2
60 2 12 15

h t t t tβ  = + − + 
 

 

2 3 4 5 6
3
2

1 2 2 1 4
45 9 9 15 45

h t t t t tβ  = − + + − − 
 
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2 3 4 5 6
2

1 1 1 1 1
360 36 72 30 45

h t t t t tβ  = − − + + 
 

             (8) 

The first derivative (8) gives 

0
1
h

α′ = −  

3
2

1
h

α′ =  

2 3 4 5
0

1 1 1 1 6
72 12 18 6 45

h t t t tβ  ′ = + − − + 
 

 

2 3 4 5
1
2

13 2 8 1 24
45 3 9 3 45

h t t t tβ  ′ = − + + − 
 

 

3 5
1

13 5 4
60 3 5

h t t tβ  ′ = + − + 
 

 

2 3 4 5
3
2

1 2 8 1 24
45 3 9 3 45

h t t t tβ  ′ = − + + − − 
 

 

2 3 4 6
2

1 1 1 1 6
360 12 18 6 45

h t t t tβ  ′ = − − + + 
 

              (9) 

Evaluating (8) and (9) at 1t =  yields the discrete scheme 
2

2 1 2 3 1 1
2 2

2 16 26 16
60n n n n n nn n

hy y y f f f f f+ + + +
+ +

 
= − + + + + +  

 
      (10) 

with its first derivative as 

2 3 2 3 1 1
2 2 2

1 59 240 450 112 3
360n n n n nn n n

hy y y f f f f f
h+ + +

+ + +

   
′ = − + + + − + +      

   
 (11) 

The predictor-corrector method and its derivative in Equations (10) and (11) 
above are zero stable, consistent and of order six with error constant  

6
8

1 8.267 10
120960

C −−
= = − ×  and 4

8
127 1.984 10

8570880
C −−

= = − ×  respectively. 

3. Implementation and Analysis of the Method 
3.1. Implementation of the Method 

To overcome the intrinsic drawback of predictor-corrector mode with predictors 
of lower order of accuracy to implement, the same approach is used to construct 
a predictor and its derivative of the same order of accuracy. 

2

2 1 1 3 1 1 3
2 2 2

16 34 16 2 11 2
3n n n n nn n n

hy y y y y f f f+ + + +
+ + +

 
= − − + − + + +  

 
   (12) 

and 

2 1 1 3
2 2

1 1 3
2 2

149 2920 6245 3176
21 21 21 21

18 3394 19531 2818
630

n n nn n

n nn n

y y y y y
h h h h

h f f f f

+ +
+ +

+
+ +

′ = − + + −

 
− − − −  

 

        (13) 
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The main predictor and its derivative in Equations (12) and (13) above are of 
order six with error constant 5

8 2.3768 10C −= − ×  and 4
8 2.2308 10C −= ×  re-

spectively. 
Other explicit systems were generated to evaluate the remaining values using 

Taylor series to evaluate the values for , 6n jy j+ = . 

( ) ( ) ( ) ( )
2 3

40
2! 3!

n n n
n j n n n n n

n n n

jh jh f f fy y jh y f y f h
x y y+

 ∂ ∂ ∂′ ′= + + + + + + ′∂ ∂ ∂ 
  (14) 

and 

( ) ( ) ( )
2

30
2!

n n n
n j n n n n n

n n n

jh f f fy y jh f f y f h
x y y+

 ∂ ∂ ∂′ ′ ′= + + + + + ′∂ ∂ ∂ 
      (15) 

3.2. Analysis of the Basic Properties of the Method 
3.2.1. Order and Error Constant of the Methods 
Let the linear difference operator L associated with the continuous implicit hy-
brid method be defined as: 

( ) ( ){ ( ) ( )

( )}

2

0

2

;

; 1,2, ,
i

k

j n vi n j n
j

n
v

L y x h y x jh y x vih h y x jh

h y x jh i m

α α β

β

=

′′  = + − + − + 

′′− + =

∑

�
 

where ( )y x  is an arbitrary test function that is continuously differentiable in 
the interval [ ],a b . Expanding ( )ny x jh+  and ( ) , 0, ,1n iy x jh j v′′ + = ;  

1,2, ,i m= �  in Taylor series about nx  and collecting like terms in h and y 
gives; 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 22
0 1 2; pp

pL y x h c y x c hy x c h y x c h y x  = + + + ⋅ ⋅ ⋅ +   

Definition: The difference operator L and the associated continuous implicit 
hybrid one step method are said to be of order p if in (3.1)  

0 1 2 1 0p pc c c c c += = = = = =� , 2 0pc + ≠ . 
Using the concept above, the method has order 6p =  and error constant 

6
8

1 8.267 10
120960

c −−
= = − × . 

3.2.2. Region of Absolute Stability 
Applying the boundary locus method, 

( ) 2 2 1r r rρ = − +  and ( )
3 1

2 12 21 16 26 16 1
60

r r r r rσ
 

= − + + + +  
 

 

( ) ( )
( )

( )
( )
e

e

i

i

r
h r

r

θ

θ

ρρ
σ σ

= =  

If e cos sinir iθ θ θ= = + , substituting and simplifying yields 

( ) 60cos2 120cos 60
3 1cos2 cos 26cos 16cos 1
2 2

X θ θθ
θ θ θ θ

− +
=

+ + + +
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At 0θ = �  and 180θ = �  for 0 180θ≤ ≤� �  at an intervals ( )0 ,180� �  gives 
(−10.00, 0). 

3.2.3. Consistency of the Methods 
For our method to be consistent, the following conditions must be satisfied 

1) order 1p ≥ . 

2) 
0

0
k

j
j
α

=

=∑ . 

3) ( ) ( )1 1 0ρ ρ′= = . 
4) ( ) ( )1 2! 1ρ σ′′ = . 

2

2 1 2 3 1 1
2 2

2 16 26 16
60n n n n n nn n

hy y y f f f f f+ + + +
+ +

 
= − + + + + −  

 
 

Condition (1) is satisfied since the scheme is of order 6. 
Condition (2) is satisfied since 0 1 21, 2, 1α α α= = − = ; 1 2 1 0− + = . 
Condition (3) is satisfied when the first characteristic polynomial and its first 

derivative in the form, ( ) ( ) 0r rρ ρ′= = , when 1=r . Therefore, 
( ) 2 2 1 0= − + =r r rρ  and ( ) 2 2 0′ = − =r rρ  for 1r = . 
Condition (4) is satisfied when ( ) ( )2!′′ =r rρ σ .  

Therefore, ( )1 2′′ =ρ  and the second characteristic polynomial 

( )
3 1

2 2 21 16 26 16 1
60

r r r r rσ
 

= + + + +  
 

 

when 1r = , 

( ) 1 16 26 16 1 601 2! 2 2
60 60 60 60 60 60

σ  = × + + + + = × = 
 

 

Therefore ( ) ( )2! 2r rρ σ′′ = = . 
Hence the four conditions are satisfied, the method is consistent. 

4. Numerical Examples 

Using the proposed method to solve linear, nonlinear, and electric current circuit 
problems in the literature demonstrates the method’s applicability and correctness. 

Problem 1 

( ) ( ) ( ) [ ]2 10, 0 1, 0 , 0,1
2

y x y y y x′′ ′ ′− = = = ∈  

Exact-solution: ( ) 1 2 11 ln ,
2 2 100

xy x h
x

+ = + = − 
. 

Problem 2: 

( )2
1 32 , ,

2 6 4 6 2
y

y y y y
y
′    ′′ ′= − = =   

   

π π  

Exact-solution: ( ) 2sin , 0.003125y x x h= = . 
Problem 3: 
Consider the direct circuit, DC of an electric current containing an inductance 
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L (Henries), a resistance R (Ohms), a condenser of capacitance C (Faraday’s) 
and an electromotive force E(t) measured in volts: 

( ) ( ) ( ) ( ) ( )

( ) ( )

1: 5 2500 110,
20

0 0 0, 0.01

q t
Lq t Rq E t q t q q t

c
q q h

′′ ′ ′′ ′+ + = + + =

′= = =
 

Exact solution: ( ) 11 sin50 19 11cos50 19 e 50
250 25019

ttq t t t
 

= − + − +  
 

 

where 110 VoltsE = , 5R = , 1
20

L = , 44 10C −= ×  and q is the charge in 

coulombs. 

5. Discussion of Results 

In Table 1, the results of the newly developed numerical method are presented 
and assessed with results in [13] [14]. The results revealed that our new method 
performed better than those authors in literature. Table 2 revealed the exact so-
lution and the computed solution and the absolute errors showed the consisten-
cy of the results produced by the new method. 
 

Table 1. Results of Problem 1, for k = 2, p = 6. 

x y-exact y-computed Error [13] Error [14] NMError 

0.1 1.050041729278491400 1.050041729278491400 6.661e−16 2.220e−16 0.00e+00 

0.2 1.100335347731075800 1.100335347731075800 1.332e−15 2.220e−16 0.00e+00 

0.3 1.151140435936466800 1.151140435936466800 4.441e−16 0.000e+00 0.00e+00 

0.4 1.202732554054081900 1.202732554196769900 1.332e−15 2.220e−16 0.00e+00 

0.5 1.255412811882994800 1.255412811882994842 3.775e−15 0.000e+00 4.20e−17 

0.6 1.309519604203111000 1.309519604203111076 1.066e−14 2.220e−16 7.60e−17 

0.7 1.365443754271395300 1.365443754271395300 2.642e−14 6.661e−16 0.00e+00 

0.8 1.423648930193600600 1.423648930193600532 5.862e−14 1.332e−15 6.80e−16 

0.9 1.484700278594050200 1.484700278594050200 1.266e−13 3.108e−15 0.00e+00 

1.0 1.549306144334053000 1.549306144334051240 2.711e−13 6.217e−15 1.76e−15 

Note: NME: New Method Error. 
 
Table 2. Computed results and errors for Problem 2, k = 2, p = 6. 

x y-exact y-computed NMError 

1.0 0.711340357839 0.711340678290 7.528437e−08 

1.1 0.797152508881 0.797152548656 5.648764e−07 

1.2 0.871118127112 0.871118146890 5.596659e−07 

1.3 0.930288436747 0.930288524186 4.568690e−07 

1.4 0.972304504262 0.972304521571 3.793242e−06 

1.5 0.995491281635 0.995496774918 3.369310e−06 
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Table 3. Numerical solution for Problem 3, k = 2, p = 6, h = 0.01. 

x y-exact y-computed NM Error 

0.10 0.0442774661415 0.0442795080355 6.041887e−06 

0.20 0.0439983305605 0.0439981507157 7.985700e−08 

0.30 0.0440000094666 0.0440000202637 7.811405e−10 

0.40 0.0439999999506 0.0439999998435 6.698385e−12 

0.50 0.0440000000002 0.0440000000410 5.308254e−14 

0.60 0.0439999999999 0.0447899999999 3.747003e−16 

0.70 0.0439999999999 0.0439980000000 2.081668e−17 

0.80 0.0439999999999 0.0439999999999 0.0 

0.90 0.0439999999999 0.0439999999999 0.0 

1.00 0.0439999999999 0.0439999999999 0.0 

 
The new method was applied on a real life problem in electronics to test and 

confirm its applicability and the results and the absolute errors produced → 0. 

6. Conclusion 

A linear multistep method implemented in predictor-corrector algorithms of 
order six is developed for direct integration of general second-order initial value 
problems of ordinary differential equations. The method is derived by interpola-
tion and collocation using power series and an exponential basis function. The 
main predictor has the same order of accuracy with the method. The results of 
computed numerical examples with the method were compared with [13] and 
[14], and these were presented in Tables 1-3. The basis of comparison of results 
of this predictor-corrector with the two-step third-derivative block method [13] 
and the hybrid block method [14] is that they are all of order six. The absolute 
errors of the new method show that the new method outperformed the earlier 
ones. 
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