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Abstract 
In modern life and production, there exists a global energy crisis, an increas-
ing demand for advanced medical services, and a need to integrate and mi-
niaturize industrial products. The applications based on conventional actua-
tors struggle to cope with crises and growing demands due to their low reso-
lution. To address the above issues, researchers have been working on and 
developing the excellent properties of piezoelectric materials since the dis-
covery of the piezoelectric effect. Nowadays, piezoelectric actuators (PEAs), 
which are based on piezoelectric materials, have become widely utilized in 
energy harvesting, micro-electro-mechanical systems (MEMS), biomedicine 
and other fields. The control accuracy of PEAs in applications is limited by 
the inherent hysteresis nonlinearity, which poses a challenge to their applica-
tions. Researchers are working on PEAs and their hysteresis models to better 
serve humans with PEAs. This paper reviews typical applications and classi-
fications of PEAs, typical hysteresis models, and classifications. At the end of 
the paper, we summarize the steps of the selective hysteresis modelling of 
PEAs and indicate the critical points of the hysteresis modelling and future 
research directions. The present paper provides a comprehensive review of 
classical hysteresis models and PEAs, which is expected to benefit researchers 
in the field of piezoelectric applications and efficient hysteresis modelling. 
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1. Introduction 

To solve the global energy scarcity crisis and serious pollution of the ecological 
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environment, and caused by the increase in non-renewable energy consumption 
[1], to cope with people’s high requirements for medical treatment [2], the na-
noscale resolution requirements of nano-positioning systems in industrial do-
mains, and the requirements of users for high performance, easy to use, reliabil-
ity and low cost of industrial products [3] [4]. Traditional fluid, electric, hydrau-
lic, pneumatic, and electromagnetic actuators are challenging to achieve mi-
cron/nanometre resolution due to the limitations of the driving source and its 
volume [5]. Since the discovery of the piezoelectric effect by Curie et al. [6] in 
1880, researchers have discovered properties of piezoelectric materials such as 
high resolution, elevated accuracy, rapid response, low power consumption, tiny 
size and flexible structural design [7]. Over time, researchers have developed 
piezoelectric single crystal, piezoelectric polycrystal (ceramic), piezoelectric po-
lymer, piezoelectric polymer composite materials [8], and PEAs based on the 
utilization of high-performance piezoelectric materials is prevalent in the field of 
energy harvesting, MEMS, and biomedicine [9]. Figure 1 illustrates different 
examples of applications of different PEAs. Various applications based on PEAs 
provide higher efficiency for human production and life. The study of PEAs is 
essential for better applications. Furthermore, the immanent hysteresis of PEAs, 
which is characterized by nonlinear behaviors based on piezoelectric materials 
can affect the control accuracy of PEAs. Therefore, the study of PEAs’ hysteresis 
modelling is fundamental to obtaining high-precision hysteresis models of PEAs. 
It also provides the necessary conditions for high-precision control of PEAs. 

The subsequent sections of the paper are structured as follows. The typical ap-
plications of PEAs and the characteristics of various PEAs have been described 
in Section 2. The typical hysteresis models of a PEAs are presented in Section 3. 
The general steps for the hysteresis modelling of PEAs have been given in Sec-
tion 4. The main findings of this paper and points out future innovative direc-
tions for high-precision hysteresis modelling have been summarized in Section 5. 

2. The Applications of PEAs 

This section presents a comprehensive overview of the common applications of 
PEAs, including their application background, current status, and operating 
principles. Additionally, it introduces and classifies the commonly used PEAs in 
typical applications. 

2.1. Applications 

The typical applications of PEAs in the fields of energy harvesting, MEMS, bio-
medicine are first presented, and classifies piezoelectric materials according to 
their molecular complexity. As shown in Figure 1, it is divided into piezoelectric 
single crystal [26] [27], piezoelectric ceramic [28] [29], piezoelectric polymer 
[30], piezoelectric polymer composite materials [31]. This paper provides read-
ers with a demand-oriented understanding of PEAs, and the introduction of 
their common applications serves as a reference for researchers. 
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Figure 1. Common applications of piezoelectric materials. (a) Piezoelectric nanogenerator [10] [11]. (b) 
Flexible-friction powered wearables [12] [13]. (c) Wind energy harvester [14]. (d) Remote control manipu-
lator [15] [16]. (e) Phonograph [17]. (f) LiNbO3 external modulator [18]. (g) Electronic control unit [19]. (h) 
Small scale robot [20]. (i) Ultrasonic piezoelectric catalysis [21]. (k) Biodegradable heart detector [22]. (j) 
High-frequency sonographer [23] [24]. (l) Sound wave detection [25]. 

2.1.1. Energy Harvesting 
Vibrational energy is also widely found in buildings, human bodies, and ve-
hicles. In order to collect a large amount of mechanical energy, researchers 
adopted a cantilever energy collector. Then they developed piezoelectric nano 
powered shoes with piezoelectric plates embedded in the sole, as shown in Fig-
ure 1(a) [1] [32]. 

For energy harvesting, researchers use PEAs to capture mechanical energy 
from living and natural environments and convert it into electrical energy. Be-
cause of conventional wind, hydroelectric and solar power, such technological 
devices are large, expensive and unsuitable for electronic power supplies. Exist-
ing chemical batteries provide unsustainable power and are difficult to recycle. 
To this end, researchers have developed friction nanogenerators suitable for re-
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covering mechanical energy from human movement and life. As shown in Fig-
ure 1(b), wearable electronic products made of multi-layer flexible piezoelectric 
materials worn by humans will produce friction when they move [6]. And fric-
tion nanogenerators are also self-contained power sources for wearable elec-
tronics [33]. 

The environmentally friendly wind energy is abundantly available in nature. 
Traditional wind conversion devices are not suitable for power micro devices 
due to their large volume and elevated cost. For researchers, piezoelectric harve-
sters have been developed to convert wind energy into electricity through me-
chanical structures [5]. To that end, researchers have developed piezoelectric 
wind harvesters, which converts wind-to-electricity energy. Figure 1(c) illu-
strates the fundamental principle of the piezoelectric wind energy harvester [34]. 
Researchers will utilize wind turbines to harness natural wind energy and con-
vert it into kinetic energy for rotational motion. When a windmill blade contacts 
a piezoelectric cantilever, it bends the cantilever and creates vibrations and vol-
tages. 

2.1.2. MEMS Systems 
Recently, with the development of interactive human-machine interfaces in 
MEMS, it is important to control the machine more accurately and collect the 
feedback information of the machine. Researchers have developed bending angle 
piezoelectric sensors made of flexible piezoelectric materials. As shown in Figure 
1(d), sensors based on flexible piezoelectric materials are embedded in the ma-
nipulator, which can transmit commands and feedback to the manipulator’s 
motion state in real-time in the two-way electronic system of human-machine 
interaction [7]. 

In order to enrich the recreational life of the people by recording sound, Edi-
son [35] invented the phonograph. As shown in Figure 1(e), researchers used 
ageing-resistant piezoelectric single crystals for phonograph pickup. When the 
record is flipped, the stylus produces different deformations depending on the 
texture of the record, which then generate different currents that pass through 
the microphone to produce sound waves [36]. 

In the information age, researchers have been devoted to rapid data transmis-
sion. The currently available frequency-stable lasers with narrow linewidth exhi-
bit exceptional properties and enjoy widespread utilization. However, to addi-
tionally achieve the requirements of narrower linewidth and faster frequency 
control, researchers have developed a modulator using lithium niobate chip. As 
shown in Figure 1(f), the lithium niobate external modulator developed by re-
searchers has less noise and lower voltage than the conventional modulator [9] 
[37]. MEMS are widely used in human production and life to improve their in-
tegration and miniaturization. The researchers used quartz crystal tuning forks 
as piezoelectric resonators to time MEMS. As shown in Figure 1(g), the elec-
tronic control unit adopts a tuning fork crystal resonator to time and generate 
clock frequency signals [38]. Robots have experienced significant growth in re-
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cent years. However, their effectiveness is limited in certain specialized situa-
tions such as disaster site search and rescue, infrastructure monitoring, and re-
connaissance missions. In addition, the robot is limited by traditional actuators’ 
size and manufacturing process. Therefore, the field of microrobots in MEMS 
has become a research hotspot [39]. As shown in Figure 1(h), researchers use 
piezoelectric materials as fly wings [11]. The piezoelectric material vibrates fast 
at high frequency and outputs enough vibration force to meet the requirements 
of the miniature robotic fly wing. 

2.1.3. Biomedicine 
As medical research deepens and more advanced medical devices become avail-
able, the level of awareness of malignant tumour-related diseases among medical 
workers is also improving. Current techniques for inducing apoptosis of tumour 
cells by reactive oxygen species are highly dependent on oxygen in the tumour 
microenvironment. Therefore, how to generate oxygen in the tumour microen-
vironment is key to efficient apoptosis of tumour cells. To induce specific cell 
apoptosis in cancer therapy, barium titanate nanoparticles have been developed 
based on ultrasonic catalysis and hydrolysis. As shown in Figure 1(i), ultrasonic 
piezoelectric catalysis is mainly used in the medical field, and ultrasonic stress- 
induced asymmetric piezoelectric catalysis of BaO3Ti nanoparticles is used to 
treat hypoxic tumours [21] [40]. 

The internal complexity of living organisms limits the diagnosis and treat-
ment of patients in modern medicine. Researchers have developed ultrasound 
detectors for medical imaging to assist doctors in diagnosing diseases. Next, the 
working principle of ultrasonic PEA is introduced. A sound wave is a form of 
energy transfer of an object in a mechanical vibrational state. The piezoelectric 
ultrasound transducer exploits the acoustic transmission properties of the object 
in the mechanical vibrational state to realize the mutual conversion of mechani-
cal and electrical energy [41]. As shown in Figure 1(j), the principle of a high- 
frequency ultrasonic instrument is to generate a high-frequency vibration wave 
by using the piezoelectric effect and then analyse the received vibration wave by 
using inverse piezoelectric effect and combine it with image processing to obtain 
the internal detection map of the object [23]. The piezoelectric materials that 
generate vibration are mainly KNbO3-based single crystals [42]. 

Human health and longevity are limited by heart disease, which accounts for 
one in three deaths worldwide. The most direct and effective way to treat pa-
tients with heart disease is with an electronic device implanted in the heart. 
However, when the battery of an implantable electronic device is depleted, the 
surgical replacement of the battery poses a significant risk and financial burden 
to the patient. As a result, researchers have used flexible piezoelectric materials 
and biodegradable materials to develop self-powered heart monitoring devices 
attached to human blood vessels [43]. It converts vibrational energy generated 
by the human body into PEAs and continuously stores it as electrical energy to 
power heart monitoring devices. As shown in Figure 1(k), the heart detector can 
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monitor the heart status in real-time [44]. The heart detector is mainly attached 
to the human heart by biodegradable flexible piezoelectric materials and is self- 
powered in the human body. 

Deaf individuals experience challenges in communication due to the impair-
ment or absence of cochlear hair cells. Existing cochlear implants struggle to 
recognize hearing in multiple sound sources. To this end, researchers have de-
veloped flexible, high-precision, high-sensitivity sound detection and recogni-
tion sensors [45]. As shown in Figure 1(l), there is a flexible piezoelectric sensor 
in the acoustic sounder, which is mainly composed of flexible poly (vinylidenef-
luoride-co-trifluoroethylene) (PVDF-TrFE) piezoelectric sheets [25] [46]. 

In addition to energy harvesting, biomedicine, MEMS, and PEAs are widely 
utilized in aerospace, precision machining, optical manipulation, and numerous 
more advanced technologies. With the extensive range of applications of PEAs 
in precision engineering, engineers and technicians are demanding higher accu-
racy in PEAs modelling [47] [48]. The distinct characteristics of PEAs vary ac-
cording to their types. To understand more about PEAs, the following sections 
further describe typical PEAs. 

2.2. PEAs 

In addition to the typical applications of PEAs mentioned in the previous sec-
tion, various types of PEAs are widely employed in precision engineering due to 
their higher requirements for integration and control accuracy [49] [50] [51], 
which facilitates researchers in the field of precision control. PEAs are catego-
rized in this section, and their fundamental operational principles are intro-
duced. As shown in Figure 2. In this manuscript, PEAs are categorized into 
conventional actuators, piezoelectric stepping actuators, and multi-degree of free-
dom (MDOF) actuators based on their design and functionality [52]. The com-
prehensive types of PEAs mentioned in this section are highly informative for 
application design and meaningful for further development of PEAs. 

2.2.1. Traditional PEA 
As depicted in Figure 2(a), conventional PEAs can be categorized into five 
types. The joint construction of unimorph PEAs involves the insertion of square, 
circular, annular or cantilevered unimorphs into a multilayer conducting metal 
electrode. 

Different actuators may undergo shrinkage, expansion or bending in their 
designated driving directions due to the varying orientations of electric field and 
polarization, as illustrated in Figure 2(b). Bimorph actuators are composed of 
two layers of piezoelectric material, each potentially attached to a metal gasket 
depending on the situation. Consequently, bimorph actuators can also be 
stretched/contracted or bent. 

In Figure 2(c), the piezoelectric tube actuator is formed by longitudinally po-
larizing a thin cylindrical piezoelectric material and bonding it to an electrode 
layer. Moreover, the piezoelectric tube actuators can be driven in axial/radial or 
transverse directions. 
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Figure 2. Category of PEAs. (a) Thunder actuator [53] [54]. (b) Bimorph piezoelectric actuator (PEA) [55] 
[56]. (c) Piezoelectric tube actuator [57] [58]. (d) Piezoelectric stack actuator [59] [60]. (e) Amplified PEA 
[61]. (f) Piezoelectric ceramics inchworm actuator [62]. (g) Inertial piezoelectric actuator [63]. (h) V-shaped 
linear ultrasonic actuator [64]. (i) Series-Paralle XY-Z PEA [65]. (j) Linear-Rotary inchworm PEA [66]. 

 
In Figure 2(d), the multilayer piezoelectric stack actuator drivers employ 

multiple layers of piezoelectric material stacked on top of each other, with ap-
propriate insulation separating the electrodes. Each layer is solely composed of 
piezoelectric material, and an electrode layer of the same polarity is connected to 
the external electrode. The driving range of these drivers varies from a few mi-
crometres to tens of micrometres, while their driving force ranges from hun-
dreds to thousands of newtons [67]. By applying different electric fields to the 
various piezoelectric layers, multilayer piezoelectric stack actuators can achieve 
more degrees of freedom and allow for longitudinal or shear displacements [68]. 

In Figure 2(e), the amplified PEA consists of a bending hinge or compliant 
mechanism with stacked piezoelectric materials, depending on the design [69]. 
The elastic deformations generated by the amplified PEAs enable amplified mo-
tion to be achieved. 
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2.2.2. Stepping PEAs 
In Figure 2(f), the piezoelectric stepper actuator is capable of producing conti-
nuous linear or rotational motion that satisfies the requirements for extensive 
range and high precision in manipulator applications [60]. Based on either a 
stack PEA or an amplified PEA as the power source, researchers have proposed 
an inchworm-inspired PEA that utilizes the crawling principle for clamping feed 
stepping [70]. To achieve precise control over a wide range, they employ the 
inchworm-inspired PEA featuring an alternating gripping and driving mechan-
ism. The most commonly utilized types include thrust-type actuators with fixed 
positions and walking-type actuators with moving positions [71]. 

In Figure 2(g), the inertial PEAs, also referred to as stick-slip actuators, are 
depicted. are typically driven by sawtooth waves [72]. These actuators harness 
the energy generated by the deformation of piezoelectric materials through iner-
tial and frictional forces. Based on different driving modes, researchers have 
classified them into two types: impact-driven and friction-driven. The former 
utilizes inertia to displace loads with the aid of static friction force and rapid 
contraction between loads [73]. The latter, known as a stick-slip PEA, generates 
its driving force by utilizing the difference in friction during stick-slip motion 
and rapid contraction [74]. 

The utilization of impact-type load inertia deviates from the primary charac-
teristics of friction-type as depicted in Figure 2(h). The ultrasonic PEA is pri-
marily distinguished by its employment of high-frequency ultrasonic resonance 
drive, which endows it with exceptional speed and a broad range of continuous 
motion. The ultrasonic PEA propels the piezoelectric material to generate high- 
frequency vibrations through voltage waveforms of travelling and standing waves, 
which in turn drives the elastic stator on the piezoelectric material to produce an 
elliptical trajectory. Ultimately, this stator conducts high-frequency excitation 
ultrasonic waves to either a slider or rotor. The aforementioned process facilitates 
the implementation of linear and rotational motion with the structure of the 
piezoelectric ultrasonic actuator [75]. 

2.2.3. Multi Degree Freedom PEAs 
In Figure 2(i), the MDOF PEA can be connected in series or parallel with a sin-
gle degree of freedom PEA, stacked PEA, or amplified PEA at a perpendicular 
angle to each other. Then, depending on the required degree of freedom, a hinge 
or flexible mechanism is designed to enable MDOF linear or rotational motion. 
Due to the different actuation modes, MDOF PEAs can be classified into two 
types: direct actuation and step actuation [76] [77]. The direct-drive MDOF 
PEAs offer high accuracy as an advantage, yet their range of motion is limited 
due to the utilization of multi-layer PEAs. 

In Figure 2(j), inchworm and ultrasonic actuators are commonly used in se-
ries or parallel to design multiple degrees of freedom (MDOF) stepping PEAs, 
which enable a more comprehensive range of motion. The accuracy and travel 
range of MDOF stepper PEAs depend on the type, precision, and arrangement 
of the PEAs [78]. 
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The typical actuator of this section is used as the foundation mechanism in a 
typical application shown in Figure 1. In designing a PEA, the first step is de-
termining the type of piezoelectric material and using a set of constants to assess 
whether the chosen piezoelectric material can achieve the desired performance. 
Second, researchers design the mechanism of the PEA and then study the mod-
elling of the PEA [79]. Researchers have sought to better utilize piezoelectric 
materials in the fields of sensing and micromanipulation. Numerous studies have 
been conducted on the modelling of PEAs. However, the hysteresis nonlinearity 
of PEAs limits their application in precision engineering [1] [80]. 

3. Hysteresis Models 

The positioning error of practical PEAs can be attributed to either rate-inde- 
pendent or rate-dependent hysteresis, with a maximum magnitude of 15% of the 
stroke range [81]. To enhance the utilization of PEAs, a comprehensive depic-
tion of the hysteresis model is presented. Hysteresis nonlinearity is an characte-
ristics of piezoelectric materials, and other properties such as multiple mapping, 
memory, and rate dependence further complicate accurate mathematical model-
ling of hysteresis characteristics [82]. The nonlinear hysteresis and creep of pie-
zoelectric materials can generate stochastic oscillations, which pose a challenge 
to their application in high-precision micro displacement systems. Given that 
piezoelectric devices are utilized for high-precision positioning in dynamic sce-
narios, the modelling accuracy of a nonlinear dynamic hysteresis system is the 
primary determinant of its robustness [81] [83] [84]. The non-local memory, con-
sisting of instantaneous input voltage value, historical voltage value, and histori-
cal voltage extreme value, exerts an influence on the current output displace-
ment. Moreover, the hysteresis characteristics of piezoelectric materials can be 
categorized into rate-independent or rate-dependent hysteresis based on input 
frequency. The nonlinear hysteresis of the PEA is depicted in Figure 3, where 
Figure 3(a) illustrates the voltage input waveform, Figure 3(b) presents the re-
lationship between voltage amplitude and output displacement, and Figure 3(c) 
displays different frequency hysteresis loops at identical voltage. The imprecise 
control of PEAs results in a system error that can reach up to 15% of its 
 

 

Figure 3. Major hysteresis loop of the piezoelectric micro positioning stage [86]. (a) 
Driving voltage waveform. (b) Relationship between driving voltage amplitude and out-
put displacement. (c) Different frequency hysteresis loops. 
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stroke. Therefore, scholars are currently focusing on hysteresis modelling and 
control, as well as further compensation techniques to minimize errors [85]. 
Hysteresis modelling of PEAs can be broadly classified into two categories: clas-
sical basic models and advanced models. Classical hysteresis modelling has been 
further divided by researchers into phenomenological and physical models based 
on the macroscopic and microscopic states of piezoelectric materials. Although 
numerous researchers have made enhancements to the classical model, the focus 
of this section is to provide readers with a fundamental understanding of the 
classical model. 

3.1. Phenomenological Models 

The phenomenon model employs the black-box principle to represent a pheno-
menon that is either entirely unknown or partially known within a system com-
posed of piezoelectric elements. A mathematical model is developed to capture 
the mapping relationship between external input and output, thereby accurately 
fitting the system. Parameters identification method is utilized to determine the 
unknown parameters and obtain the input or output model. Phenomenon mod-
els can be categorized into operator-based, differential equation-based, and rate- 
dependent models, as illustrated in Figure 4. The Preisach model [87], the Kras-
nosel’ Skii-Pokrovskii (KP) model [88], and the Prandtl-Ishlinskii (PI) model all 
belong to the class of operators and are rate-independent. The Duhem, Back-
lash-like, and Bouc-Wen models are differential equation-based models. In ad-
dition, the Dahl model and Polynomial Model are classified as phenomenologi-
cal models. 
 

 

Figure 4. Category of classical hysteresis models for PEAs [81]. 
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3.1.1. Preisach Model 
After F. Preisach [87] proposed the Preisach model, Krasnosel’skii [88] devel-
oped it into a pure mathematical model, and Mayergoyz [89] further generalized 
it based on its characteristics. The Preisach model is derived from the superposi-
tion of relay operators, and the resulting curve can be utilized to depict the hys-
teresis phenomenon exhibited by PEAs. The nonideal relay operator formula is 
as follows. 

( )
if

if

if

1

0

k

x

y x x

x

β

α

α β

≥


= ≤


< <

                     (1) 

This definition of the hysteron indicates that the current value of the complete 
hysteresis loop is contingent upon the historical record of variable input. The 
Relay operator of the convention Preisach model is shown in Figure 5. Because 
the history value of the hysteresis is nonlinear or the value of the previous posi-
tion impacts the next output value, the local memory property. Furthermore, 
when 0 1A x x x C< < < < , the displacement is output according to the path of 
the red line segment, and the nonideal relay operator also has the local memory 
property. 

The convention Preisach model is represented by N relay operators with 
weights in parallel [92] [93]. The formula is as follows. 

( ) ( ) ( ), d dy t R x tαβα β
µ α β α β

≥
= ∫∫                  (2) 

One of the most straightforward approaches to comprehending the Preisach 
model is through a geometric interpretation assignment to the coordinate plane 
( ),α β . On this plane, each point ( ),i iα β  is associated wit a specific relay hys-
teron ,i iR Rα β . 

Each relay can be represented on this so-called Preisach plane with its values 
[94]. As shown in Figure 6 various trajectories can be obtained by stacking dif-
ferent weights with different rely operators. Then the curve is fitted to simulate 
the nonlinear hysteresis behaviour of the PEAs. 
 

 

Figure 5. Fundamental switching (relay) operator-hysteron [90] [91]. (a) The left-direction 
trajectory of the relay operator. (b) The right-direction trajectory of the relay operator. 
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Figure 6. The different rely operator superimposes different trajectories [92] [95]. 

3.1.2. KP Model 
Due to the complexity of solving the double integral in the Preisach model, KP 
model was developed by Bank et al. [96] The KP operator was established based 
on reliability and a superposition method was employed instead of integration. 
The KP operator is depicted in Figure 7 [97]. 

The KP model is expressed as follows [100] [101] [102] [103]. 

( ) ( ) ( ) ( ), dp S
S

x t k v t sξ µ =  ∫                     (3) 

where ( ),p Sk v ξ  expresses the KP operator as follows. 

( ) ( )
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, max , 0
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r v s v t

k v t r v s v t
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ξ

ξ ξ

 − <
  = − > 
 =

�

�

�

            (4) 

where ( )v t  is the input voltage, ( )x t  is displacement output, S is the integral 
domain. 

3.1.3. PI Model 
PI model is an improvement of Prandtl and Krasnosel ‘skii et al. [104] [105] 
based on Preisach model. PI model is characterized by the inclusion of play op-
erator or stop operator. As shown in Figure 8, the PI model principle approx-
imates the mass-spring system. Play operator is defined by. 

( ) ( ) ( ) ( ) ( ){ }{ }0, max ,min ,r r ry t H v t y v t r v t r y t− = = − +        (5) 

where rH  is the play operator and the threshold is r, ( )ry t−  is the output at  
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Figure 7. KP model. (a) Fundamental KP operator [98]. (b) Preisach plane and L = 4 
[99]. 
 

 

Figure 8. Spring-mass model is used to demonstrate Play operator. (a) Initial State. (b) B 
is moving to the right. (c) B is moving to the left [106] [107]. 
 
the last moment; ( )v t  is the input; ( )ry t−  is the output; initial value is 0y . 
PI model is expressed as a weighted sum of finite play operators. 

So it is as follows. 

( ) ( ) ( ) ( ) ( ){ }{ }T
0

0
, max ,min ,

n

r i i i i
i

y t H v t y v t r v t r y tω ω −

=

 = = − +  ∑   (6) 

where Tω  is the weight and value are nonnegative, the threshold must be  

0 1 max0 nr r r v= < < < <� . Observe Figure 9, and the same can be done by using 
the stop operator, this paper will not repeat it here. 

3.1.4. Polynomial Model 
Researchers have developed polynomial models based on the control accuracy of 
PEAs in various application scenarios. Although there is no universal formula,  
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Figure 9. PI model basic operator. (a) The play operator [108]. (b) The stop operator 
[109]. 
 
hysteresis models using polynomials are all composed of linear functions to ob-
tain polynomials [110] [111] [112] [113]. Examples of such polynomial models 
include. 

2
0 1 2 ; 1,p

i i i p i iy x x x i nβ β β β ε= + + + + + =�              (7) 

3.1.5. Bouc-Wen Model 
Wen [114] proposed the Bouc-Wen model based on the differential equation 
proposed by Bouc [115] [116]. 

The Bouc-Wen model is expressed as follows. 

( ) ( ) ( ) ( ), 1F x t kx t kz tα α= + −                    (8) 

1n nz Ax x z z x zβ λ−= − −� � ��                     (9) 

where α  is the ratio of the anterior and posterior terms and ( )0,1α ∈ , A, β  
and λ  are dimensionless parameter; ( ),F x t  is restoring force; x is the dis-
placement; z is the output. 

3.1.6. Duhem Model 
Coleman and Hodgdon [117] refined Duhem’s [118] differential equation, re-
sulting in the Duhem model which is expressed mathematically as follows. 

( ) ( ) ( ) ( ) ( ) ( )d d d e e d
d d d

x

x

w v vf v w g v f x g x f g
t t t

α αεα α ε ε ε
∞

− = − + > > −  ∫� �  (10) 

where ( )f v  and ( )g v  are a given continuous function, The former is an odd 
function that increases monotonically and is piecewise smooth, and the latter is a 
piecewise smooth continuous even function. Both of them are bounded in their  

domain. ( ) ( ) ( ) ( )e e dx

x

f x g x f gα αεα ε ε ε
∞

−> > −∫� �  is true for any 0x > . α  

is a constant, v is the input and w is the output. 

3.1.7. Backlash-Like Model 
Su et al. [119] proposed a dynamic hysteresis backlash model based on first-order 
differential equation. The expression of the Backlash-like model is as follows. 
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( )( )
( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

( ) ( )

> 0,

0,

_ 0

c v t B v t w t c v t B

p v t c v t B v t w t c v t B

w t v t

 − = −
= + < = +
 =

�

�

�

         (11) 

where ( )v t  is the model input, ( )w t  is the model output, 0c > , 0B > . 

3.1.8. Dahl Model 
Dahl [120] proposed the Dahl model based on friction phenomenon as follows 
[121]. 

( ) ( )d 1 sgn sgn 1 sgn
d

iF F Fx x
t Fc Fc

δ  = − − 
 

� �              (12) 

where F is the static friction, Fc is the sliding friction, x is the output displace-
ment. The slope of the force curve under 0F =  is denoted by δ , and i de-
notes the different kinds of piezoelectric materials. Both δ  and i should be set 
to 1 when researchers study the hysteresis behaviour of piezoelectric materials. 

The Dahl model is as follows. 

d d d
d d d
F x F x
t t Fc t
= −                        (13) 

2

2
d d

dd n v l
x x k x k x k F

tt
γ+ + = −                    (14) 

where v stands for the input voltage, and x stands for the output displacement. 

lk  and Fc determine the shape of the hysteresis loop. The remaining unknowns 
are model parameters that need to be identified. Because of the existence of dif-
ferential equations in the Dahl model, the control method can be designed 
simply in the Dahl model [81] [122] [123]. 

3.2. Physics-Based Models 

The physical model is based on materials science, thermodynamics, and physics 
theories. The generation of hysteresis is studied using the theories of electric do-
main turning, molecular polarization, ferroelectric, and parametric phase transi-
tions. Physical-based models of hysteresis include Ikuta model, Maxwell model, 
and Jiles-Atherton model. 

Among them, the most representative physical model is the ferromagnetic 
hysteresis model proposed by Jiles and Atherton [124] in 1986, and the reversi-
ble transition mechanism of ferromagnetic materials were analysed in detail. Sub-
sequently, Smith proposed a domain wall model to describe the hysteresis of 
piezoelectric materials based on the Jiles and Atherton model [125] and pub-
lished a work on hysteresis genesis and physical modelling of ferromagnetic ma-
terials in 2005 [83]. By studying the relationship between stress and strain of 
SMA materials, Ikuta et al. [84] proposed a mechanical model to describe the 
hysteresis of SMA. 

3.2.1. Ikuta Model 
The Ikuta model is a sublayer model [126] proposed by Ikuta et al. [127] for SMA. 
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As shown in Figure 10, the researchers found that the temperature-martensite 
fraction exhibits hysteresis loops during the heating and cooling of SMA mate-
rials. The Ikuta model uses an exponential function to fit the phase transition in 
the temperature change process. Equation (17) provides the phase fraction dur-
ing heating. The phase fraction of SMA materials during heating is shown in 
Equation (20), and the cooling process is the same [128]. 

3.2.2. Maxwell Model 
The Maxwell model is originally proposed by James C. Maxwell [130]. The hys-
teresis behaviour of the unloaded PEA can be simulated by an equivalent circuit 
consisting of n serially connected charge-saturated capacitors (CSC), as illu-
strated in Figure 11. Thus, the governing equation of a PEA is as follow. 

( )
( ) ( )

( )0
i i

i i

q t q t Q
q t

q t Q

 <= 
≥

�
�                     (15) 

( ) ( )i iq t C u t=                          (16) 

( ) ( )
n

i
i

u t u t=∑                          (17) 

( ) ( )q t Tx t=                           (18) 

where iq  and iu  are the charge stored in the charge-saturated capacitor 

iCSC  and the voltage applied on it, iC  and iQ  are its capacitance and capa-
bility to store charge, x and q are the PEA’s output displacement and the charge 
stored in it, and T is the electro-mechanical transfer ratio from effective dis-
placement x to charge q. 

3.2.3. Jiles-Atherton Model 
Jiles and Atherton [124] present the ferromagnet hysteresis model in mathemat-
ical form based on the concept of domain wall motion. Chen et al. [131] found 
that the modified Jiles-Atherton model can simulate permanent magnets. The  
 

 

Figure 10. Hysteresis loop and transformation temperatures of an SMA material [129]. 
 

 

Figure 11. Equivalent circuit of unloaded PEA [130]. 
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modified Jiles-Atherton model can accurately and stably describe the dynamic 
magnetization behaviour of magnetic particles [132]. Classical Jiles-Atherton 
model equations as follow [133]. 

( )rev an irrM c M M= −                        (19) 

where M is magnetisation, revM  is reversible and irrM  is irreversible compo-
nents. anM  is an hysteretic magnetisation and based on the Langevin function 
they get the following. 

coth e
an s

e

H aM M
a H

  
= −  

   
                    (20) 

With, 

d
d

irr an irr

e

M M M
H kδ

−
=                        (21) 

where eH H Mα= +  is the effective field experienced by the magnetic domains. 
The model parameters are sM , a, α , c and k. δ  is a directional parameter as-
suming the value +1 if d d 0H t > , otherwise the value is −1. Jiles-Atherton model 
can be written as follow. 

( )( ) ( )
( )( ) ( )

1 d d d dd
d 1 1 d d d d

irr e an e

irr e an e

c M H c M HM
H c M H c M Hα α

− +
=

− − −
          (22) 

3.3. Other Models 

There are various models of PEAs, including the parabolic model, hyperbolic 
function model, exponential fitting model, and support vector machine model. 
This section presents the classical hysteresis model and associated concepts of 
PEAs. Accuracy requirements of precision control systems and hybrid models 
have become a new trend in the hysteresis modelling of PEAs [109] [134], and 
the specific content will be discussed in Section 4 of this paper. 

3.3.1. Artificial Neural Network Models 
Compared with other models, neural network models have the characteristics of 
self-learning, self-correction, and high-precision approximation and are widely 
used in nonlinear system identification and controller design [135]. Because the 
neural network model can only describe one-to-one mapping [136], and the 
piezoelectric transducer has multi-value properties and memory properties, the 
neural network model cannot be directly used to describe the hysteresis beha-
viour of the piezoelectric transducer. Generally, the composite algorithm com-
bining neural networks and other methods describes the hysteresis nonlinearity 
[137]. In addition, Quondam-Antonio et al. [138] used neural networks to mod-
el the hysteresis behaviour-related characteristics and were able to reproduce the 
evolution of the magnetization process under arbitrary excitation waveforms. 

3.3.2. Ellipse Fitting Model 
Some scholars used elliptic curves to describe the hysteresis characteristics of 

https://doi.org/10.4236/oalib.1110482


Y. Z. Yang 
 

 

DOI: 10.4236/oalib.1110482 18 Open Access Library Journal 
 

piezoelectric materials because the hysteresis loop is very similar to an ellipse. 
The hysteresis curve includes a rising and falling curve, similar to a part of an el-
liptic curve, so Zou et al. [139] use the polar elliptic curve method for modelling. 
The general equation of an ellipse is: 

2 2 0Ax Bxy Cy Dx Ey F+ + + + + =                (23) 

Define 0x x x′ = − , 0y y y′ = − , Then the elliptic equation can be rewritten as. 

( ) ( )( ) ( )2 2
0 0 0 0 0A x x B x x y y C y y f− + − − + − + =          (24) 

So the solution is: 
2 0Ax Bx y Cy f′ ′ ′ ′+ + + =                     (25) 

The standard equation is: 
2 2

2 2 1x y
a b

+ =
� �

                          (26) 

The relationship between x�  and x′  as follows. 

cos sin
sin cos

x x y
y x y

θ θ
θ θ

′ ′= −
 ′ ′= −

�
�

                     (27) 

It can be obtained by combining Equations (25) and (26). 

2 2
cos sin sin cosx y x y

a b
θ θ θ θ′ ′ ′ ′− −

+                (28) 

Each parameter in the equation is obtained by comparing Equation (12) with 
Equation (17). 

( )
2 2

2 2

2 2 2 2

2 2

sin cos

2 sin cos

cos sin

A a b

B a b

C a b
D a b

θ θ

θ θ

θ θ

 = +


= +


= +


= −

                   (29) 

In this section, typical hysteresis models are briefly introduced and classified. 
To further investigate the hysteresis model, the hysteresis modelling based on 
the typical model and other hysteresis models are introduced in the following 
subsections. 

4. Hysteresis Modelling for PEAs 

As can be observed from the aforementioned, a series of actuators based on 
high-performance piezoelectric materials have emerged. However, the inherent 
hysteresis of these materials severely constrains their development in the field of 
high-precision control. To enhance accuracy and design PEAs with greater effi-
cacy, this paper aims to further investigate hysteresis modelling. As illustrated in 
Figure 12, the hysteresis modelling of PEAs can be categorized into decoupling 
and coupling types based on overall and partial modelling approaches. The hys-
teresis model of a PEA as part of the PEA model is referred to as decoupling 
[140], while hysteresis modelling that does not consider external driver  
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Figure 12. Categorization of hysteresis modelling approaches for PEAs. 
 
environment is known as coupling [141] [142] [143]. During actual decoupling, 
the PEA is divided into several submodels based on practical situations. The 
Figure 12 serves only as a reference. Coupling hysteresis can be categorized into 
saturation and unsaturation [144], dynamic and static [145] [146], symmetric 
and asymmetric types [147] [148]. This section, we provide a brief review of 
contemporary hysteresis modelling techniques for PEAs, with a focus on the 
correlation model of the inverse hysteresis model. We also attempt to summarize 
the general steps involved in hysteresis modelling across various approaches. 

4.1. Inverse of Hysteresis Modelling (IOHM) 

Hysteresis compensation and control during the process of curve linearization 
modelling for PEAs’ hysteresis characteristics can be found in reference [149] 
[150]. Table 1 illustrates the focus of this section on the solution method for 
IOHM, with references to recent literature. Key components of hysteresis mod-
elling discussed in Table 1 include classical models, control methods, direct 
IOHM, direct IOHM and algorithms. The latest advancements in direct IOHM 
and indirect IOHM are also evaluated. Direct IOHM [151] [152] [153] [154], in 
contrast to indirect IOHM, can directly invert the voltage displacement curve to 
obtain the displacement voltage curve and solve the inverse hysteresis model 
without solving the hysteresis model first [155]. 

4.1.1. Direct IOHM 
There are many cases where the direct IOHM is employed. In 2012, Guo et al. 
[164] utilized an enhanced PI model and aimed at the asymmetric inverse hys-
teresis effect and subsequently employed the adaptive particle swarm optimiza-
tion (PSO) algorithm to solve the inverse hysteresis model of real-time control. 
In the same year, Qin et al. [151] found that rate-independent PI model inver-
sion parsing is desirable They employed the inverse PI model as a feedforward 
controller for a piezoelectric actuated compliant mechanism, obtaining the in-
verse PI model directly from experimental data. This method avoids solving the 
inverse of the PI model and is also effective for the rate-dependent PI model. In  
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Table 1. Modelling and compensation methods for piezoelectric hysteresis. 

References Base model 
Control 
method 

Direct 
IOHM 

Indirect 
IOHM 

Algorithm 

[156] Modified PI Feedforward Negative Existence 
Error back-propagation algo-

rithm. 

[157] Modified Bouc–Wen Feedforward Negative Existence 
Self-adaptive cooperative 

PSO algorithm. 

[158] Data separated by a PI Feedforward Negative Existence 
A novel differential 
evolution algorithm. 

[159] The hysteresis submodel Feedforward Existence Negative 
Radial basis function 

neural network. 

[160] 
Temperature-dependent 

asymmetric PI 
Feedback Negative Existence 

Parameter 
estimation algorithm. 

[85] 
Rate-dependent 

asymmetric hysteresis PI 
Robust adaptive 

controller 
Negative Negative Improved genetic algorithm. 

[161] 
Least-squares support-vector 

machines based on nonlinear auto-
regressive exogenous 

Incremental PID 
controller 

Negative Existence 
PSO algorithm. 

Least-squares support-vector 
machines regression algorithm. 

[162] Back propagation neural network PID Negative Existence 
Adaptive particle swarm algo-

rithm. 

[163] Hybrid static hysteresis Feedforward Negative Existence PSO algorithm. 

 
2017, Ko et al. [165] proposed a generalized PI model-based inverse feedforward 
compensation approach for addressing asymmetric hysteresis nonlinearity. In 
2020, Lallart et al. [166] proposed a system-level inverse method to simulate the 
quasi-static hysteresis of a PEA and demonstrated it on a piezoelectric transduc-
er. This approach for solving the direct inverse model of the direct hysteresis 
model is well-suited for implementation in embedded control systems. In 2021, 
Qin et al. [154] achieved high-precision hysteresis compensation over a more 
comprehensive frequency range. They used the direct inverse modelling method 
to build a multilayer feedforward neural network inverse model as a feedforward 
lag compensator. In the same period, Zhang et al. [167] aimed to enhance the 
precision of piezoelectric fast steering mirror’s swing. They proposed the Ham-
merstein dynamic inverse hysteresis model for PEAs. In addition to this, the au-
thors employed the generalized Bouc-Wen inverse model to characterize static 
nonlinearity and utilized the autoregressive exogenous model to capture rate 
dependence. The hybrid model parameters are then identified through employ-
ment of the adaptive PSO algorithm. This method avoids the complex inverse 
process of the Bouc-Wen model and is suitable for rate-dependent and asymme-
tric hysteresis behaviour. In 2022, Nguyen Ngoc Son et al. [168] proposed neu-
roevolutionary adaptive sliding mode control for solving piezoelectric ceramic 
actuators’ nonlinearity. They utilized the neuroevolution model to identify the 
inverse hysteresis model of piezoelectric ceramic actuators, and employed both 
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differential evolution algorithm and Jaya algorithm for global and local optimi-
zation respectively. In the same period, Nie et al. [85] proposed a rate-dependent 
asymmetric hysteresis model based on the PI model. They introduced the dy-
namic envelope function year into the Play operator, which has a simple struc-
ture and few parameters. 

4.1.2. Indirect IOHM 
In 2006, to solve the problem that there is no inverse of the PI operator when the 
PI model is not positive definite, Tan et al. [169] extended the PI operator and 
then calculated the inverse hysteresis PI model for feedforward controller. As 
early as 2009, Yang et al. [170] adopted Preisach and BP neural networks and 
used a linear interpolation algorithm. In 2016, the identification of at least ten 
parameters is required for the PI model, so Gan et al. [171] combined quadratic 
polynomials and linear equations to identify only four parameters and solve the 
PEA hysteresis model. Finally, the IOHM is obtained and applied to real-time 
hybrid control. In 2018, Janaideh et al. [172] proposed a solution to address the 
saturation and asymmetric energy phenomena observed in PEA under high- 
frequency excitation and numerous inputs. With the rate-dependent PI model 
and a dead-zone operator as feedforward compensator, an inverse model for 
real-time compensation is established to effectively suppress asymmetric nonli-
near hysteresis. In 2019, Tao et al. [173] order to solve the problem that the na-
no-positioning platform’s positioning accuracy is subject to hysteresis effects. 
The hysteresis is modeled using a Gaussian process, and the parameters are de-
termined through the integration of a differential evolution algorithm and Baye-
sian inference. The outputs based on the Gaussian process hysteresis model are 
then interleaved to obtain the inverse model as a feedforward compensator. This 
method is suitable for nonlinear, memory, and rate-dependent. hysteresis mod-
elling. In 2020, Janaideh et al. [174] to mitigate the impact of temperature on the 
precise positioning of piezoelectric tube actuators. The simultaneous modelling 
of hysteresis nonlinearity and temperature effects is undertaken. Two different 
temperature-dependent Prandtl-Ishlinskii models are proposed, which are 
solved by MATLAB-Simulink and Grey Wolf optimization algorithms, respec-
tively. The inverse model of the temperature-dependent Prandtl-Ishlinskii model 
is derived and utilized as a feedforward controller to compensate for the hystere-
sis nonlinearity exhibited by the piezoelectric tubular actuator. To improve the 
classical Preisach model, The dynamic hysteresis model has been presented by 
Chen et al. [145]. It is based on the classical Preisach model, and the dynamic 
term is introduced and solved numerically. The dynamic inverse model is ulti-
mately implemented as the feedforward controller. In 2020, to address the limi-
tation of the PI model in describing asymmetric hysteresis, Wang et al. [175] 
proposed the polynomial-modified Prandtl-Ishlinskii (PMPI) model that can 
describe both asymmetric and symmetric hysteresis. They used a modified-play 
operator and memoryless polynomial to form the PMPI model. They used a dif-
ferential evolution algorithm and a simplex algorithm to identify the parameters 
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of the PMPI model. Global and local optima are then obtained to search the 
hysteresis model in the design into an inverse model feedforward compensator. 
In 2021, The piezoelectric sensor-actuator was designed by Shan et al. [176] and 
applied to a micro-high precision integrated system. They proposed nonlinear 
and inverse models based on dynamic hysteresis using quasi-static models and 
linear transfer functions. Based on classical hysteresis modelling, it is typically 
necessary to optimize the algorithm within the model in order to enhance its 
modelling accuracy. Hysteresis modelling based on the hybrid model is usually 
divided into direct IOHM and indirect IOHM. The former solves the inverse 
model of the hybrid model as a feedforward controller, followed by the series 
hysteresis model. Its characteristic is that the choice of the hysteresis model must 
be able to solve the inverse analysis, the inverse hysteresis accuracy depends on 
the hysteresis model accuracy, and the structure is simple. The latter is to solve 
the direct inverse model using the known output input data as a feedforward 
compensator and then concatenate the hysteresis models. Its characteristics are 
that it can be modelled based on irreversible hysteresis, the direct inverse hyste-
resis model is not associated with the hysteresis model, and it has many parame-
ters. In the last decade, due to the diversity of ideas for PEA hysteresis model-
ling. 

4.2. Hysteresis Modelling Steps 

The hysteresis modelling of a PEA, as illustrated in Figure 13, comprises three 
steps: model determination, parameter estimation, and output hysteresis loop. 
The aforementioned component can serve as the precursor for hysteresis com-
pensation design, enabling the creation of a well-designed compensator that can 
be integrated with the control system to achieve linear PEA control. 

4.2.1. Specify a Category of Models 
The hysteresis models in the current literature include not only single and mul-
tiple models based on classical approaches [177] [178], but also those based on  
 

 

Figure 13. The step of modelling the hysteresis. 
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the other models [179] [180]. There are also hybrid models that combine the 
classical models with the other models [181]. 

4.2.2. Model Parameter Estimation 
The model parameters can be estimated using both nonparametric and parame-
tric identification methods. Nonparametric identification refers to designing the 
recognizer to mimic the behaviour of the real system in order to minimize error, 
while parameter identification involves estimation through optimization tools 
[109]. The original input and output data of the PEA serve as known variables in 
solving for the parameters using the aforementioned method. 

4.2.3. Hysteresis Loop 
The original input data is fed into the hysteresis model to obtain the output, which 
is then compared with the original data output to determine modelling accuracy. 
At this point, hysteresis modelling is completed. In addition to the improvement 
of hardware equipment accuracy, the following methods are commonly em-
ployed in hysteresis modelling to enhance its accuracy. 

1) Design an enhanced classical model by refining the fundamental computa-
tional units within the classical models. 

2) Develop improved algorithms for identifying unknown parameters in the 
classical models. 

3) Explore hybridization of the classical models with the other model using 
varying weights. 

5. Conclusion 

Piezoelectric materials have found extensive applications in various industries. 
However, the issues of hysteresis and nonlinear control in achieving high preci-
sion for piezoelectric materials require resolution. This paper introduces the 
characteristics of PEAs and summarizes the typical applications and hysteresis 
modelling models of PEAs. Then the hysteresis modelling steps of the PEAs are 
proposed. The critical points of PEAs hysteresis modelling are summarized, in-
cluding the selection of a classical model, parameter identification algorithm and 
hysteresis compensation method. It is suggested that algorithm optimization and 
hybrid hysteresis model will be the preferred options for high-precision hystere-
sis modelling of PEAs in the future.  
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