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Abstract

In this paper, we study the existence of normalized solutions to the Klein-
Gordon-Maxwell systems. In the mass-subcritical case, we prove that the sys-
tems satisfying normalization conditions have a normalized ground state so-
lution.
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1. Introduction

In this paper, we consider the following Klein-Gordon-Maxwell systems
—Au+V (X)u—(2w+¢)gu+Au=f (u) inR",

(1.1)
Ag=(w+¢)u’ inR",

where @ is a positive real constant, the parameter 1 R appears as a Lagrange
multiplier, ¢: RY >R and N>3, VeC (RN ,R). The field u and the electric
potential ¢ are the unknowns of the systems. Moreover, the field u satisfies the

normalization condition

IRN |u(x)|2 dx =a. (1.2)
We shall dedicate to search for a solution u e of the problem
—Au+V (X)u—(20+¢)gu+Au=f (u) inR",
Ap=(w+¢)u’ inR", (1.3)

[ (x)|2 dx=a,u>0,
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where we define the Hilbert space
H= {u € Hl(RN ) ; _[RN |Vu|2 +V (x)u?dx < oo}.
Then, H is continuously embedded in H* (RN ) and endowed with the norm
Jul}, =1, (|vU|2 +V(x)u2)dx.
Let D' =D (R")= {u el” (R"):Vue L*(R")} with the norm
Julss = Jo VUl dx
Forany 2<p< 2", LP (]RN ) is endowed with the norm
Jul? = [ Ju]” dx.

Obviously, the embedding H < L° (RN ) is continuous.
We define a functional J:HxD"> - R by

J(u,g) :%IRN (|Vu|2 —|Vg[ +[V (x)—(2w+¢)¢]uz)dx—IRN F(u)dx, (1.4)

where F(t)= L: f(s)ds is a rather general nonlinearity. Then, we can know
that the weak solutions of (1.1) (u,¢) e Hx D" are critical points of the func-
tional /. By standard arguments, the function /is C' on HxD"?.

We can search for a lot of known results about solutions of Klein-Gordon- Max-
well systems without the normalization condition. For instance, Paulo C. Carrido
and Patricia L. Cunha [1] combining the minimization of the corresponding Eu-
ler-Lagrange functional and Nirenberg technique proved the existence of positive

ground state solutions for the following Klein-Gordon-Maxwell systems:

—Au+V (X)u—(2w+¢)gu :/,z|u|p72u +|u|2*72 u inR®,

Ap=(w+¢)u® inR%

Xian Zhang and Chen Huang [2] combining a local linking argument and Morse
theory investigated a nontrivial solution of the nonlinear Klein-Gordon-Maxwell
systems. Danijele Cassani [3] overcame the lack of compactness using the Bre-
zis-Nirenberg method to obtain the existence of solutions for the nonlinear Klein-
Gordon-Maxwell systems. Viert Benct and Donato Fortunato [4] proved the exis-
tence of infinitely many pairs solutions for the nonlinear Klein-Gordon-Maxwell

equation:
—Au J{m2 —(a)+¢)2Ju —uFu=0inR?,
~Ag+e’u’p=—eawu’ inR®

Similar to the above problems of Klein-Gordon-Maxwell systems without the
normalization condition have been studied in many papers such as [5] [6] [7].
However, few works have been done on the problems satisfying the normalization
condition. Thus, the main purpose of this paper is to study the existence of solu-
tions satisfying the normalization condition for the Klein-Gordon-Maxwell sys-

tems.

DOI: 10.4236/0alib.1110464

2 Open Access Library Journal


https://doi.org/10.4236/oalib.1110464

Z.Y. Wang

In recent years, normalized solutions of Schrédinger equations have been widely
studied. See, e.g. [8]-[13]. When searching for the existence of normalized solu-
tions of Schrodinger equationsin R" , appears a new mass-critical exponent

=2+ i
N

Now, let us review the involved works. In the mass-subcritical case, Zuo Yang
and Shijie Qi [14] using weak lower semmicontinuity of norm obtained the ex-
istence of a normalized ground state solution for the following Schrodinger equ-

ations with potentials and non-autonomous nonlinearities
—Au+V (x)u+Au=f(xu) inR",
[on u(x)[ dx=a,ueH*(R" ),

where V(X) > as |X| — 0. Nicola Soave [15] in the mass-subcritical, mass-
critical and mass-supercritical cases studied several existence/non-existence and
stability/instability results of normalized ground state solutions of the nonlinear
Schrodinger equation with combined power nonlinearities:

|p_2 |2_2u inRY, N>3,

—AU= AU+ uu
jRN |u(x)|2 dx=a,ue Hl(]RN )

u-+[u

Masataka Shibata [16] studied the mass-subcritical case for the minimizing

problem of nonlinear Schrédinger equations with a general nonlinear term:
E(a)= inf{l (u)lue Hl(RN )’-[]RN |u(x)|2 dx = a},

where

I (u) :%IRN IVu[* dx _IRN F (|uf)dx.

They showed that there exists a, E[O,OO) such that E(a) is attained for
a > a, . Moreover, Norihisa Ikoma and Yasuhito Miyamoto [17] also studied the

existence of the minimizer of the L?-constraint minimization problem E (a) ,
1 t .
but |(u):§jRN Vul +V (x)|uf dx~[_, F(ju])dx, and F(t)=] f(s)ds is a

general nonlinear term, and 0#V (X) <0,V (X) - 0(|X| - 00) . For the exis-
tence of normalized solutions, they obtained the same conclusions to [16]. Zhen
Chen and Wenming Zou [18] proved the existence of normalized solutions to

the following system
—Au+(Vy (X)+ 4 )u =g |u] P u+ gy inRY,
—AV+(Vy (X) + 2, )V = V" P v+ pu inRY,

4
with the mass-subcritical condition 2< p,q<2 +W . They studied the existence

of a solution with prescribed L*-norm under various conditions. The results

were based on the refined energy estimates. In the mass-supercritical and Sobo-
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lev subcritical case, Thomas Bartsch and Riccardo Molle [19] by a new min-max
argument studied the existence of normalized solutions of the nonlinear Schrodin-

ger equation:
—AU+V (x)u+Au=|u/""u inR".

Thomas Bartsch [20] showed the existence of infinitely many normalized so-

lutions for the problem
—Au-g(u)=Au,ue Hl(RN),

where g(u) is a superlinear, subcritical, possibly nonhomogeneous, odd non-
linearity.

Inspired by the above works, we are dedicated to studying the solutions of
Klein-Gordon-Maxwell systems satisfying normalization condition. In particu-
lar, the situation we consider will involve the presence of electric potential ¢.In
addition, V (X) is a positive function satisfying the following appropriate as-
sumptions, and the nonlinear term f (u) is mass-subcritical. In this case, the
functional 7is bounded from below and coercive on S (a) , which will be proved
in Lemma 2.3.

We assume the following conditions throughout the paper:

(f1) f:R" 5> R is continuous.

f
(f2) |imﬁ=o and lim (?):0 with |=2+%.

s>0 § [s]>+e0 |S|

(V1) VeC(R",R),and inf V(x)2c>0.

xeRN

(v2) fim V (x) =+,

Moreover, cand ¢, are positive constants which may change from line to line.

Our main result is the following theorem:

Theorem 1.1. Suppose (A1) and () hold and V(x) satisties (V1) and (V2).
Then, for any a >0, problem (1.3) has a normalized ground state solution.

2. Proof of Main Results

Since the functional /exhibits a strong indefiniteness. To avoid the difficulty we use
the reduction method. Thus, we introduce following the technical lemma that is
described in [1] [3] [4] for details.

Lemma 2.1. The Lax-Milgram theorem implies that for any u e H , there ex-
ists a unique solution ¢=¢, € D'? of Ad= (a)+¢)u2 . Moreover, in the set
{X:u(X)iO},for w >0, we have

-0 <¢,<0. (2.1)

By Lemma 2.1, let any v e D"? be an admissible test function of the second

equation of (1.1). Then, we have

[ou Ve yvdx=—[  (0+4,)u’vdx

Using integration by parts, we have
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[ Vo, Vvdx=—[ , Agjvelx.

Therefore,
Ag, =(o+4,)u’. (2.2)
According to Lemma 2.1, we define
®:H —> D",

and we know that the map ® is C'.
Combining (1.4) and (2.2), we obtain

3, (u,¢,)=0 vYueH. (2.3)

Multiplying both members of (2.2) by ¢, and integrating by parts, we obtain

j}RN Vg, |* dx = —IRN wg,u’dx —_[RN $Zu’dx. (2.4)
Now let us consider the functional |:H — R",

H(u):=J(u,4,).
Then 7is C',and by (2.3) we have 1'(u)=J;(u,4,).
By the definition of /; we have
| (u) :%jRN (VU V[ [V ()~ (20+4,); 07 o~ ], F ()

By (2.4), the functional 7can be written as

I(U)=%IRN (|Vu|2 +V (x)u _a)¢uu2)dx—jRN F (u)dx. (2.5)

Then u is a solution to (1.1) if and only if u is the critical point of the func-
tional (2.5). The critical point will be obtained as the minimizer under the con-

strain of L’ -sphere
S(a):{u eH:fRnuzdx:a}.

We are going to study the minimization problem with L?-constraint

E(a)= inf)l(u). (2.6)

ueS(a

The solution of (2.6) u=0 is called a normalized ground state solution sa-

tisfying problem (1.3) if it has minimal energy among all solutions:
dl], () =0 and 1 (a@)=inf {1 (u):di,, (1)=0,a =S (a)}.

In this paper, we will be especially interested in the existence of normalized
ground state solutions.
Lemma 2.2. (Gagliardo-Nirenberg inequality). For all ueH* (]RN ), we have

Jul < c(N)Ivul o™ 2< p <2,

N(p—2)'

where C(N) isa positive constant depending on Nand p’= ,
p
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Lemma 2.3. Suppose (A1) and () hold. Then, for any 2> 0, the functional1
is bounded from below and coercive on $(a).

Proof. Assumptions (f1) and (f2) imply that for any & >0, there exist ¢(&)>0
such that

F(s)< c(§)|s|2 + §|s|I ,VseR.
Hence, combining Lemma 2.2and p=1=2 +% we obtain

o F (0] <c(&)|uf, + &l

<c(£)uf + e (N)Vuful}

2
Since we can choose & such that £C(N)aN :% , and according to (2.1) we

have

Vu|2 +V (x)u? —a)(/ﬁuuzdx—.[]Rn F(u)dx

1
I(U)ZEJ-R"
2%||Vu||§ +%V ()] uPdx— ] F(u)dx

1 inf v (x) [ ufdx— [, F(u)dx

2 xeR

1
>Zvul;+
> LU - cas .

4 2

Therefore, 7is bounded from below and coercive on S (a) .O

The following lemma is Lemma 2.2 in [16].

Lemma 2.4. Suppose (f1) and (f2) hold and {Un}neN is a bounded sequence
in H.If !TJJ“”E =0 holds, then it is true that

lim [ F(u,)dx=0.

Next, we collect a variant of Lemma 2.2 in [21]. The proof is similar, so we
omit it.

Lemma 2.5. Suppose (f1) and (£2) hold and { u, }EN is a bounded sequence in
H, then we have U, — U in H, thus

!L‘EIRN [F(u,)-F(u)-F(u,—u)]dx=0.

When V (X) satisfies (V1) and (V2), the functional 7 is weakly lower semi-
continuous. Thus, the following compact embedding theorem holds, which fol-
lows from Lemma 3.4 in [22].

Lemma 2.6. Suppose (V1) and (V2) hold. Then the embedding H <
LP (RN ) is compact for any P € [2, 2*) .

Proof of Theorem 1.1. Let {u } = S(a) be a minimizing sequence of 7 with
concerning E(a). Then, by (2.5) we obtain

I (un):%jRN (|Vun|2 +V (x)u? —w¢unu§)dx—jRN F(u, )dx.
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let

According to Lemma 2.3, we know that {u,} is bounded in . Moreover,

ting U, bein 7, and by Lemma 2.6 we conclude
u, —Uu, inH, (2.7)
U, > U, inL%(R"),2<q<2, (2.8)

u, >Uu, ae.inR".

We also have
1
I (uy) :EIRN (|Vuo|2 +V (X)ug —a)¢uOu§)dx —LRN F (u, ) dx.
Since (2.8) holds, we have r|1im |un - u0|§ =0. Then, by Lemma 2.4 we obtain

IimJ']RN F(u, —u,)dx=0.

n—oo

Moreover, by Lemma 2.5 we have

!i_TJRN [F(uy)=F(u,)Jdx=0.

which implies

[on F(uy)dx— [ F(ug)dx asn— e, (2.9)

Hence, combining (2.1), (2.9) and weak lower semicontinuity of the norm

|H , we have

E(a)<I(uy)<liminfl(u,)=E(a),

n—oo

which implies | (u,)=E(a). Then, u, satisfies

an

—AUy +V (X)Uy — (20 + @) gu, = f (uy) inRY,
Ap=(w+¢)u; inR",

U, (X)|2 dx = a. Therefore, problem (1.3) has a normalized ground state

d .[]RN

solution.[]
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