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Abstract 
Due to the escalating wave of malware in communication networks, conti-
nuous/discrete differential equations have been used in traditional analytical 
models to better understand the patterns of malware spread. Networks for 
local area networks, networks for metropolitan areas, and broad area net-
works were all utilized in this study. In particular, we developed the vulnera-
ble-latent-contagious-recovery-inoculation (VLCR-I) model as well as built 
its computational equivalents in MathLab simulator. From the mathematical 
results, the VLCR-I model predicted increases in the latent (L), contagious 
(C), and inoculated (I) compartments and a decrease in the vulnerable (V) 
compartment. With the initial set of data, where V nodes are 100 and L is 2, 
this is accurate. A decrease in the aforementioned compartments was ob-
served when the V and L nodes were increased to 1050 and 2500, respectively. 
At V = 100 and L = 2, there were increases in the L, C, I, and R compartments 
for the second set of data. There was a decrease in these nodes due to the ad-
dition of 1050 V, 2500 L, and 25 L nodes. 
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1. Introduction 

The repercussions of malware proliferation, have been disastrous to organiza-
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tions and enterprises, with even more lethal evidence being revealed as a result; 
cybercrime's sinister shift toward preying on schools, municipal agencies, and 
other persistently underfunded and overcrowded public organizations [1]. Un-
known virus detection has become a new difficulty [2]. In addition to anti- 
malware software, epidemic models have been employed to examine the me-
thods by which malware spreads and to lessen ongoing cyberattacks on ICT in-
frastructure [3]. Epidemic techniques have their roots in public health and epi-
demiology, where infectious outcomes of populations are analyzed to better un-
derstand transmission patterns. Researchers in cyber security have discovered 
significant parallels between disease-causing pathogens in biological networks 
and malware in communication networks. 

Classical analytical models in the form of continuous/discrete differential eq-
uations have been utilized in recent times to define malicious code propagation 
in networks [4] [5]. The analytical models are developed to represent compart-
ments (or groups) such as S, E, I, R, and V stand for susceptible, exposed, infec-
tious, recovered, and immunized (V). Examples of these models include SEIR, 
SEI, SEIR-V, and others. Of course, these analytical models originated from the 
SIR epidemic model of [6]. Both infectious disease epidemics and malware epi-
demics can be predicted using spatial and temporal factors, and this field of 
study has remained active in recent years. Forecasting approaches applying these 
models are dubbed causal methods (or mechanistic methods) since they are 
based on the causation mechanisms of infectious illnesses [7]. The underlying 
epidemiological models are analytical compartmental models (CM) or agent- 
based models (ABM). Here, compartmentalization allows the population to be 
divided into a number of classifications, primarily Susceptible (S), Exposed (E), 
Infectious (I) and Recovered (R). Additionally, a system of differential equations 
represents the changes/dynamics of each class as a result of disease spread and 
progression mathematical modeling of epidemic spread since the Bernolli era 
has experienced evolvements that transverse beyond diverse spheres of mathe-
matical biology and other disciplines such as Applied Mathematics, Non-linear 
Sciences, Statistical Physics, Computer Science and Network Security. From lite-
rature, it appears that classical models (the basic SIR compartments) are referred 
to as models that are treated by the acclaimed work of [8]. Mishra and Singh [9] 
were of the opinion that the proliferation of harmful agents is similar to the 
propagation of epidemics in the microbial system. This discovery led to the de-
velopment of computer simulations for worm/virus spread utilizing epidemio-
logical modeling, which compartmentalizes diseases according to their severity. 
Relating the epidemic triad concept to cyberspace, nodes/computer terminals; 
worms/virus/trojan horse and networked environment (computer network, 
wireless sensor networks, etc.) can be likened to the host, agent, and environ-
ment respectively. 

The results of modeling mathematical models may be perceptive and clear. 
For network managers in real organizations with security issues that must be 
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fixed to guarantee a malware-free online environment, there are significant ben-
efits. However, the mathematical models examined in this paper did not take 
into account how to slow down the rate of infection propagation from latent 
nodes or the infectivity contact rate. This is crucial because worm attacks can 
infect any machine and lead to nodes becoming established in the infectious 
compartment. These issues are properly addressed with the VLCRI method. 

2. Review of Related Literature 

For the vertical transmission of worms through communications systems, Mi-
shra and Pandey [10] developed the e-epidemic SEIRS model. The stability of 
the result was characterized by the altered reproduction number. They showed 
that for the asymptotical stabilization of the worm-free condition, Rv must be 
both smaller than and bigger than one., whose component of infective is zero, 
and they also created an analytical expression for the altered regenerative num-
ber Rv. Figure 1 displays the schematic diagram of how they constructed their 
model. 

There are four subclasses of the population size N(t), which reflects the total 
number of nodes in the computer network: susceptible, exposed (contaminated 
but not yet contagious), infectious, and recovered. These subclasses are identi-
fied by the sizes S(t), E(t), I(t), and R(t), respectively. Those differential equa-
tions that follow are shown in Equation (2.1); 

S b IS bE qbI dS R
IS bE qbl E dE

E I dI I
R

E

dRR I
I

λ ρ ζ

λ ρ ε

ε γ η

γ ζ

= − − − − +


= − − − − 


= − − − 
= − − 









              (2.1) 

where, b, d, λ are positive constants and ε, η, γ, ζ are non-negative constants. 
The constants b represents the rate at which vulnerable nodes are added to the 
computer network, d represents the rate at which nodes crash for reasons other 
than worm attacks, and is the rate Consistent for nodes leaving exposed nodes. 
In class I, class E is the disease-related mortality rate (i.e., the rate constant for 
nodes collapsing owing to worm attack), and class R is the rate constant for 
nodes becoming susceptible again after recovering. The proportionality constant  

 

 
Figure 1. Diagram of a computer network worm [10]. 
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for nodes leaving the contagious class I for the recovered class R equals class E 
for the infectious class I. 

Mishra and Keshri [11] considered an SEIQRS model for the dissemination of 
harmful objects in a network. With regard to cyber mass action incidence, thre-
sholds, equilibria, and their stability are also discovered. A viable zone is an 
asymptotic stability region for the endemic equilibrium state if Rcq > 1 and the 
infected fraction remains. If Rcq < 1, the infected fraction of the nodes disap-
pears and the disease dies out. Analysis was also done on the impact of quaran-
tine on recovered nodes. Figure 2 shows the schematic diagram of their model 
formulation. 

In this model a given population of size N(t) is separated into subcategories of 
nodes that are susceptible, exposed (infected but not yet infectious), infectious, 
quarantined, and recovered using the sizes S(t), E(t), I(t), Q(t), and R(t), respec-
tively. A cyber mass action occurrence, as defined by the SEIQRS model is pre-
sented in Equation (2.2): 

( )
( )
( )
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I d Q
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β η

β δ µ
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                  (2.2) 

where A, d, β are positive constants, and μ, γ, δ, ε, η, α, are nonnegative con-
stants, respectively. According to the parameters A and d, nodes leave the ex-
posed class E for contaminated compartment, crash for reasons other than being 
attacked by malicious objects, and join the computer network at various rates. 
Are indeed the disease-related mortality rates (crashing of nodes due to the at-
tack of malicious objects) constant in the compartments I and Q; are the dis-
ease-related recovery rates (temporary recovery after using anti-malware soft-
ware and return to recovered class R from compartments I and Q, respectively); 
and are the immunity loss rate constants g [9]. 

To safeguard the Internet from many types of dangerous goods, the SIjRS 
Multi-Group Model, also known as the SI1I2I3RS (Susceptible, Infectious Due to 
Worm, Infectious Due to Virus, Infectious Due to Trojan Horse, Recovered and  

 

 
Figure 2. Schematic diagram for the flow of malicious objects in SEIQRS model [11]. 

https://doi.org/10.4236/oalib.1110174


O. Onyesolu, C. O. Ugwunna 
 

 

DOI: 10.4236/oalib.1110174 5 Open Access Library Journal 
 

Susceptible) model, was created. Simple mass action incidence's threshold, equi-
librium, and stability are all explained. Numerical approaches have been used to 
solve and simulate the differential equation system, which has improved our 
understanding of the behavior of malicious entities that invade computer net-
works as well as the efficiency of antivirus software. Figure 3 illustrates sche-
matically how they built their model. 

Let S(t) become the quantity of vulnerable nodes, I(t), I(t), and I(t) be the 
numbers of nodes infected by worm, virus, and trojan horse, accordingly, R(t) be 
the recover nodes after the run of anti-malicious software, and N(t) be the size of 
the general population, according to the SI1I2I3RS. The differential equations 
for the model are shown Equation (2.3): 
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          (2.3) 

where qj is the likelihood that an infected node will join group Ij from the sus-
ceptible class. A represents the recruitment of susceptible nodes into the com-
puter network, while B and C represent the rates at which nodes leave the infec-
tious classes I1, I2, and I3 and enter the recover class, respectively. 

This study developed the Vulnerable-Latent-Contagious-Recovery-Inoculation 
(VLCR-I) for computer networks, which is analogous to the model proposed by 
[11] with the quarantine compartment removed and the vaccination compart-
ment added. To put it another way, it is the model's addition of the immuniza-
tion compartment [10]. The presumptions include adding new nodes to the 
network and removing (or killing) nodes due to worm attacks or hardware or  

 

 
Figure 3. Schematic diagram for the flow of malicious objects in computer network [9]. 
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software malfunctions. All computers are susceptible to worm attacks and even-
tually become infected. Some computers are in the Exposed (latent) phase before 
they transmit the infection; during this time, the worm is inactive and the nodes 
are unable to do so. Yet, because there are several worm varieties in cyberspace, 
computers never develop a permanent immunity against worm infection and in-
stead become more vulnerable over time. Additional factors include the percen-
tage of computers included in the population of computer networks, is the speed 
at which infected nodes spread from exposed nodes to recovered nodes, the 
speed at which infected nodes immunize susceptible computers, and the speed at 
which infection travels from the immunization compartment to the susceptible 
computer. The rate of contact for infectiousness, the mortality rate (or fatality 
rate) of nodes due to software or hardware malfunctions, the speed of crashing 
as a result of an attack by malicious objects (in this example, worms), and the 
rate at which exposed nodes become infectious are some of these variables. 

3. Methodology 

The modeling and assessment of dynamical systems is a technique that will be 
used to accomplish the objectives of this study. Networks are seen as dynamical 
systems in the modeling and analysis of cyber defense systems, which paves the 
way for the creation of standard analytical (equation-based) models [12]. By dy-
namic systems we mean systems that are not homogeneous and whose state 
changes over time as a result of input signals or external disturbances (sensitivity 
analysis). This methodology aids in analyzing and projecting how models will 
behave if particular model parameters are altered. The models created using this 
methodology take the forms of block diagrams, transfer functions, input-output 
differential equations, and state-variable equations. When using this methodol-
ogy, it is possible to use the Laplace transform, Jacobian matrix method, Lyapu-
nov's theorem, Kutta-Fehlberg orders 4 and 5, among other tools, to achieve 
various analytical goals and solutions. On MATLAB, computer solutions are 
built. The networked system is represented as a distributed system with exact 
solution by analysts using this approach. More research is done on the endur-
ance of the exact solution [5]. This section presents decisions that will affect the 
suggested model considerations and the desired results. It should be noted that 
to show how quickly computer network parameters fluctuate over a period of 
time, mathematical expressions were used. Figure 4 shows the architecture of 
the VLCR-I model, which illustrates the strategy for attaining the main objective 
of the study. This technique begins with the specification of model parame-
ters/the formation of a set of differential equations. The Basic Replication Num-
ber and the solution is obtained will be found by using Mathematica to solve the 
differential equations. This is followed by sensitivity analysis in MathLab, which 
is done by altering some of the model parameters. Following that, the created 
result will be verified and validated. Figure 5 depicts the process flow for the 
VLCR-I model. The detailed steps/stages of this methodology are discussed. 
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Figure 4. Architecture of the VLCR-I model. 

 

 
Figure 5. Flowchart for the analytical model modifications and adaptations. 

 
1) Model Formulation 
The first step in developing mathematical (deterministic) or simulation (sto-

chastic) models, according to [13], is to thoroughly research and get to know the 
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operational reality of the system to be represented, if one is available, or the sys-
tem whose behavior is most similar to it, if not. We looked at relevant data on 
threats (worms, viruses, and trojans), in addition to the body of literature on the 
transmission of threats and infections in networks, in light of this assertion. 
With the relevant information, using the VLCR-I input parameters specification 
as shown in Table 1, the system would then be simplified to a system of diffe-
rential equations, first as a graphical representation (continuing equation). The 
system of differential equations would indeed be resolved using the Runge-Kutta- 
Fehlberg order 4 and 5 techniques, an effective numerical technique for dealing 
with initial value (IVP) problems. 

In fact, the Runge-Kutta-Fehlberg order 4 and 5 approach is an efficient nu-
merical method for solving initial value (IVP) problems. As stated earlier, this 
method is used in this study to solve the system of differential equations. The 
only way to ensure correctness in an I.V.P. solution using this approach is to 
solve the issue twice using different step sizes and then comparing the results at 
the grid positions correlating to the higher step size. The lower step size, how-
ever, necessitates a large amount of calculation, and this process must be redone 
if the agreement is found to be insufficient. The step size is increased if the solu-
tions agree to more significant digits than necessary. For the model formulation, 
the overall population is indicated by the letters V(t), L(t), C(t), R(t), and I, is 
made up of all the nodes in the computer system. Vulnerable, Latent, Conta-
gious, Recovered, and Inoculated nodes make up the remainder of the popula-
tion (t). This suggests that 

V(t), L(t), C(t), R(t), I(t), = N.(t).                (2.4) 

The VLCR-I Model for the Propagation of Worms in Computer Networks is 
schematically depicted in Figure 6. 

 
Table 1. VLCR-I input parameters specification. 

Specification Name Explanation 

λ Lambda Node inclusion rate in the population of the computer network 

β Beta Contact rate for infection 

τ Tau 
number of nodes that have died due to hardware or software 
failures 

ω Omega 
Speed decline brought by malicious object attacks (in this case 
worm) 

θ Theta How quickly infected nodes exposed to infection spread 

ν Nu Recovery rate 

φ Phi Rate of infection susceptibility of recovered nodes 

ρ Rho Vaccination rate for vulnerable computer networks 

ξ Xi 
Transmission speed between the vaccinated and susceptible 
compartments 
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Figure 6. Schematic diagram of the VLCR-I model for the flow of worms in computer 
networks. 

 
Furthermore, VLCR-I model is represented thus, Equation (2.5): 
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= − − 











               (2.5) 

where d dV V t= , d dL L t= , d dC C t= , d dR R t=  and d dI I t= . Using 
this analytical model, a corresponding agent model can also be developed. 

2) Identification of the Equilibrium States 
It has long been standard practice to demonstrate the existence of two steady 

state, namely Disease Free Equilibrium and Endemic Stability, while examining 
the spread of illness [14] [15]. Disease Free stability, also known as infection-free 
equilibrium, uses the same formulated mathematical model to explain the exclu-
sion of infection, disease, or threat in the network, whereas endemic stabilization 
uses the same mathematical model to explain the existence of infection, disease, 
or threat in the network. Remember that only susceptible individuals/nodes will 
make up the whole population in the disease-free equilibrium, with all infected 
classes being zero. 

3) Deriving the Basic Reproduction Number 
The next step following model formulation is to determine the fundamental 

replication number. This phase is essential because the basic replication number, 
which is unquestionably "the most significant greatest and most important in-
sights that mathematical thought has brought to epidemiological theory [16], is a 
measurement of the propensity for diseases transmitted in a population. It re-
flects the typical amount of additional cases that an infected person would cause 
if they were transferred to a susceptible community lacking disease resistance 
and there were no treatments to manage the illness. If Ro < 1, an infected person 
often infects fewer beyond one new person during the length of his infection pe-
riod. In this situation, the infection can eventually go. On the other side, if Ro > 
1, the virus can spread throughout a community since each sick individual often 
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causes more than one new infection. 
4) Sensitivity Analysis and Numerical Results/Responses 
This requires gradually altering the model parameters and assessing how it af-

fects the simulation result. It is impossible to overstate the value of sensitivity 
analysis in terms of models. The sensitivity analysis of a model can be used to 
assess the comparative impact of model parameters on model conclusions. In 
other words, the goal of sensitivity testing is to determine whether a little change 
in the parameter values will have a large impact on the model's output or inter-
nal dynamics. Consequently, it would be necessary to change a few parameters 
one at a time during the model’s sensitivity analysis to examine the outcomes. In 
this case, perturbations (simulation experiments) on the proposed model using 
various values for the various rates will produce responses that are understood. 
Table 2 shows initial values of the compartments while Table 3 and Table 4 
show first and second set of data for sensitivity analysis In this case, perturba-
tions (simulation experiments) on the conceptual scheme using various values 
for the various rates will produce results that are understood. 

 
Table 2. Initial values of the compartments. 

Compartments Initial Values Initial Values Initial Values 

Vulnerable 100 1050 2500 

Exposed 2 25 25 

Infectious 0 0 0 

Recovered 0 0 0 

Vaccinated 0 0 0 

 
Table 3. First set of data for testing the model. 

Notations Name Values Indicating 

σ sigma 0.3 Availability density 

2
0r  r 1 range of transmission 

λ lambda 0.33 
Nodes’ rate of incorporation into the population of the 
network 

β beta 0.1 Contact rate for infection 

τ tau 0.003 Number of nodes dying due to hardware or software issues 

ω omega 0.07 Rate decline brought on by malware attack 

θ theta 0.25 Rate of transmission of latent nodes 

ν nu 0.4 Recovery speed 

φ phi 0.3 How quickly healed nodes are exposed to infection 

ρ rho 0.3 Vaccination frequency for sensitive sensor nodes 

ξ zeta 0.06 
Transmission speed from the immune segment to the 
vulnerable segment 
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4. Test Data and Actual Experiments 

During the experiment the values of the V (Vulnerable) nodes and that of the L 
(Latent) nodes were perturbed, while the actual values for testing the experiment 
(analytic model) in this study were culled from [17] [10] and [5] as can be seen 
in Table 2 and Table 3. 

5. Simulation Experiments for the VLCRI Model 

Simulation experiments were carried out utilizing the time history of [5] and the 
initial values of Table 2 and Table 3 as follows. Figures 7-12 display the chro-
nology of the analysis-related compartments over time. In order to solve the ini-
tial value problems IVP, the Runge-Kutta-Fehlberg order 4 and 5 approach 
would be utilized with a set of differential equations for the simulation trials. 
The system of differential equations is solved using an integrated function of 
MatLab called ode45. The following section has the pseudocode for utilizing this 
integrated function for simulation purposes. 

Pseudocode for the Analytic Model VLCR-1 (Adapted from [12]) 
1) Open Mfile and give it the name VLCRL 1. 
2) The entry point is dy = VLCRI 1(t,y). 
3) Set the Column Vector. 
4) State the data values for the VLCR-I input parameters as follows: Lambda = 

0.33, Beta = 0.1, Tau = 0.03, Omega = 0.07, Theta = 0.25, Nu = 0.4, Phi = 0.3, 
Rho = 0.3, and Xi = 0.06. 

5) The vulnerable input differential equation (dy(1)) 
6) Latent Node Input Differential Equation (dy(2)) 

 

 
Figure 7. Time history at V = 100 and L = 2 with first set of data. 
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Figure 8. Time history at V = 1050 and L = 25 with first set of data. 

 

 
Figure 9.Time history at V = 2500 and L = 25 with first set of data. 

 
7) Contagious nodes input differential equation (dy(3)) 
8) The Recovered Nodes’ Input Differential Equation (dy(4)) 
9) Input differential equation for vaccinated nodes (dy(5)) 
10) Launch a command prompt 

https://doi.org/10.4236/oalib.1110174


O. Onyesolu, C. O. Ugwunna 
 

 

DOI: 10.4236/oalib.1110174 13 Open Access Library Journal 
 

11) Enter the solution syntax for the equation [x,] = (@VLCR-I, tspan, yo) 
12) Display the outcome in the form of graphs 
Please take note of the dynamic response of the simulations’ figures with dif-

ferent propagation and distribution densities from [5’s time history] values. It is 
clear from the simulation that the latent, infectious, and immunized compartments  

 
Table 4. Second set of data for testing the model. 

Notations Name Values Indicating 

σ sigma 0.3 Availability density 

2
0r  r 1 range of transmission 

λ lambda 0.33 
Nodes’ rate of incorporation into the population of the 
network 

β beta 0.48 Contact rate for infection 

τ tau 0.003 
Number of nodes dying as a result of hardware or software 
issues 

ω omega 0.07 Rate decline brought on by malware attack 

θ theta 0.57 Rate of transmission of latent nodes 

ν nu 0.50 Recovery speed 

φ phi 0.3 How quickly healed nodes are exposed to infection 

ρ rho 0.49 Vaccination frequency for sensitive sensor nodes 

ξ zeta 0.06 
Transmission speed from the immune segment to the 
vulnerable segment 

 

 
Figure 10. Time history at V = 100 and L = 2 with second set of data. 
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Figure 11. Time history at V = 1050 and L = 25 with second set of data. 

 

 
Figure 12. Time history at V = 2500 and L = 25 with first set of data. 

 
all increased, while the vulnerable compartment decreased. 

6. Research Findings and Implications 

The VLCRI model depicted increases for latent (L), contagious (C) and inocu-
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lated (I) compartments and a reduction in the vulnerable (V) compartment 
(Figure 7). This is true for the first set of data, where V nodes is 100 and L is 2. 
Increasing the V nodes to 1050 and 2500; and L nodes to 25 showed a reduction 
in the aforementioned compartments (Figure 8 and Figure 9). These results 
were generated using Table 3. 

Using Table 4, which contains the second set of data, there was increases in 
the L, C, I, R compartments at V = 1 = 00 and L = 2, depicted in Figure 10. By 
increasing the number of V nodes to 1050 and 2500 and L to 25, there was a re-
duction in these nodes. The results of the simulation show the impact of the V 
and L nodes are shown in Figures 7-9. It is clear that from Figures 9-12, the 
model demonstrated an increase in the latent, contagious, and immunized com-
partments as well as a decrease in the vulnerable compartment 

Table 3 and Table 4 infectivity contact rate, latent node contagiousness rate, 
recovery rate, and rate of inoculation for V sensor nodes are examples of tables 
where the model parameters may vary. The consequences of the model parame-
ter changes were shown by the accompanying simulations. 

7. Conclusion 

The study was able to demonstrate the development of an analytical model for 
malware spread/containment in communication networks, which was one of its 
key goals. Deriving the Basic Reproduction Number Sensitivity Analysis and 
Numerical Results/Responses Producing exact reproduction ratios, as well as 
implementing simulation tests utilizing the VLCRI model (in MatLab) were all 
completed for specific goals. It is important to highlight that this study ad-
dressed rates and time frames of susceptibility, exposure to malware infection, 
infectiousness, isolation, recovery, and vaccination as extremely relevant factors 
in characterizing malware spread/containment in communication networks us-
ing mathematical models. The modified models employed in this study are de-
rived from the literature on malware epidemiology for computer networks, spe-
cifically computer virus and worm epidemic models. 
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