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Abstract 
The Southwell model stands as a prominent algorithm within the realm of the 
least squares surface reconstruction, finding wide application. This algorithm 
boasts notable merits, including rapid computation and an approximation of 
the reconstructed surface that closely mirrors reality. Nevertheless, it is not 
without its drawbacks, as it exhibits substantial reconstruction errors and 
proves to be susceptible to the presence of noisy data. To enhance the preci-
sion of the reconstructed object’s three-dimensional surface, this paper puts 
forth an enhanced least squares surface reconstruction algorithm based on 
the fourth-order Adams method and iterative compensation. Initially, the 
fourth-order Adams method is employed to establish the connection between 
the measured gradient and the unknown surface height in the Southwell 
model. Subsequently, Tikhonov regularization is introduced to mitigate the 
impact of noise on the model. Ultimately, the accuracy is augmented through 
the utilization of an iterative compensation technique. Simulation experi-
ments substantiate that, in comparison to alternative Southwell model algo-
rithms, the proposed algorithm exhibits reduced time consumption and su-
perior surface fitting accuracy. 
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1. Introduction 
The utilization of gradient integration algorithms enables the reconstruction of 
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object surface morphology through the application of discrete gradient data. 
This approach has garnered considerable prominence in various domains, in-
cluding medical imaging, 3D reconstruction, and facial recognition in recent 
years [1] [2] [3]. Currently, gradient integration algorithms can be categorized 
into three main approaches: the cross-path method, the Fourier transform inte-
gration method, and the regional wavefront reconstruction method. The 
cross-path method involves integrating the measured gradient data increments 
along both the X and Y axes. In contrast, the Fourier transform integration me-
thod adopts a global-based integration strategy, establishing the relationship 
between height data and gradient data in the frequency domain and obtaining 
height data through the Fourier inverse transform. On the other hand, the re-
gional wavefront reconstruction method associates the measured gradient values 
with the unknown wavefront height values, ultimately estimating the surface 
height using the least squares method. 

Based on the correspondence between gradient data and height values for 
each point on the reconstructed surface, the regional wavefront reconstruction 
method encompasses the Hudgin model [4], the Fried model [5], and the 
Southwell model [6]. Specifically, the Southwell model exhibits a gradient matrix 
that aligns in size with the height matrix, mirroring real measurement condi-
tions. Notably, this model surpasses the other two counterparts in terms of 
measurement and reconstruction accuracy while maintaining computational 
simplicity. Consequently, its widespread adoption is justified. 

To enhance the precision of the Southwell model, Li et al. [7] employed the 
one-dimensional Taylor theory to diminish truncation errors by augmenting the 
gradient point count within the operator. Ren et al. [8] proposed a method to re-
construct the surface by combining least squares integration and radial basis func-
tion integration under the assumption that the normal vector is perpendicular to 
the vector determined by the two endpoints. Huang et al. [9] introduced a more 
generalized difference operator by considering the relationship between the com-
bination of gradients in the X and Y directions and the adjacent height difference. 

Based on the preceding literature analysis, it becomes evident that various ap-
proaches have been employed to reconfigure the association between gradient 
data and height data within the Southwell model, alongside augmenting its con-
straints. However, these endeavors have fallen short in adequately addressing the 
impact of noise on the model, as well as rectifying the presence of errors. Con-
sequently, the established model exhibits inherent limitations. To address these 
issues, we propose utilizing the fourth-order Adams method to establish a more 
robust connection between the measured gradient data and the unknown height 
values. Additionally, we introduce Tikhonov regularization as a means to miti-
gate the impact of noise. Furthermore, to enhance the overall reconstruction ac-
curacy, we incorporate an iterative compensation technique. 

2. Southwell Model 
The Southwell model postulates an equivalence between the measured gradient 
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position and the corresponding height position. Figure 1 illustrates the model’s 
schematic diagram, depicting the vertical distribution of measured gradients 
represented by arrows, while the dots signify the positions of the height values to 
be reconstructed. 

The Southwell model achieves the third-order precision reconstruction 
through finite difference equations, which can be expressed as: 

( )( )
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In Equation (1): z indicates the height of the reconstruction point; ,x yg g  is 
the gradient value calculated in the corresponding direction; ,x y  is the coor-
dinate in the corresponding direction; ,M N  indicates the length and width of 
the surface to be built. For the convenience of calculation, Equation (1) is writ-
ten in matrix form as: 

,DZ G=                               (2) 

where D is the coefficient matrix, which is a sparse matrix of size  
( ) ( )1 1M N M N MN − + − ×  , which can be expressed as: 
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Figure 1. Wavefront reconstructionr model for Southwell region. 
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Z is an unknown height matrix of size 1MN × , which can be expressed as: 
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                           (4) 

G is a gradient matrix composed of measured gradient data in the x and y di-
rections, with a size of ( ) ( )1 1 1M N M N − + − ×  , which can be expressed as: 

( )( )
( )( )

( )( )
( )( )
( )( )

( )( )

1,2 1,1 1,2 1,1

2,2 2,1 2,2 2,1

, , 1 , , 1

2,1 1,1 2,1 1,1

3,1 2,1 3,1 2,1

, 1, , 1,

1 ,
2

x x

x x

x x
M N M N M N M N

y y

y y

y y
M N M N M N M N

g g x x

g g x x

g g x x
G

g g y y

g g y y

g g y y

− −

− −

 + −
 
 + −
 
 
 

+ − 
 =
 + −
 
 + −
 
 
 

+ −  





               (5) 

Since the number of equations is ( ) ( )1 1M N M N− + − , and the number of 
height points to be solved is MN, the number of equations is greater than the 
number of unknowns, which belongs to over-determined equations, and the fi-
nal least squares solution of the equation is:  

( )T T .D D Z D G=                         (6) 

The gradient data within the Southwell model displays a localized correlation 
with the height data, subsequently undergoing global optimization through least 
squares. Nevertheless, the Southwell model is subject to inherent limitations, 
notably in its assumption of a quadratic linear relationship between height and 
gradient. Consequently, a single integration yields solely a quadratic surface 
shape, lacking the capacity to accurately fit detailed surface information. Fur-
thermore, the Southwell model disperses the impact of noise across the entire 
reconstruction, yet fails to entirely eradicate its influence. In the subsequent sec-
tion, we shall address and enhance the deficiencies inherent in the Southwell 
model.  

3. Improved Model 
3.1. Fourth Order Adams 

The reconstruction accuracy of the renowned Southwell model is constrained by 
the quadratic term governing the height variation between two sampling points. 
In this study, we employ the fourth-order Adams method to reconstruct the as-
sociation between the measured gradient data and the unknown height. Com-
pared to the conventional Southwell model, the fourth-order Adams method ex-
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hibits a reduced truncation error, yielding superior performance. 
Furthermore, the reconstruction outcomes are influenced by the constraints 

imposed on adjacent point heights. The classic Southwell model only considers 
the relationship between the current height and the height of the preceding point, 
overlooking constraints on neighboring points’ heights. Consequently, the rela-
tive positions of adjacent points become imprecise after reconstruction. To en-
hance the restoration of high-frequency surface details, we extend the adjacent 
point constraint to encompass three points. The fourth-order Adams method is 
outlined as follows: 

( )1 1 1 29 19 5 ,
24n n n n n n
hy y f f f f+ + − −= + + − +                (7) 

Combined with the fourth-order Adams, the unknown height data can be ex-
pressed as: 
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At the same time, the above formula will lead to the problem of missing values 
at the boundary of the gradient matrix, and we use the traditional Southwell 
model to fill in the missing values. Finally, it is converted into a matrix form, 
which is the same as Equation (2), but the gradient matrix G should be expressed 
as: 
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3.2. Tikhonov Regularization 

During the process of actual measurement, discrepancies between surface height 
and true height arise due to the influence of instrument error or noise affecting 
the measurement gradient. To express this phenomenon, we introduce the vari-
able G, which represents the disturbed gradient data affected by errors and can 
be formulated as follows: 

tree ,G G η= +                         (10) 
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Here, trueG  denotes the error-free gradient data, while η  represents the 
measured gradient error. In order to address the ill-conditioning issue associated 
with matrix D and the presence of measurement error η  in G, we introduce 
the generalized inverse matrix of D, denoted as †D . Consequently, the model 
solution can be expressed as † † † †

true trueD G D G D Z Dη η= + = + , taking into ac-
count the propagation error †D η . However, this model solution fails to accu-
rately approximate trueZ . To address this problem, one commonly employed 
approach is Tikhonov regularization, which allows us to obtain a minimization 
problem given by: 

{ }2 2
2 2min .DZ G Zµ− +                      (11) 

Here, 0µ >  serves as a regularization parameter, and the corresponding 
matrix equation is given by: 

( )T T .D D I Z D Gµ+ =                       (12) 

It can be observed that Equation (11) possesses a unique solution: 

( ) 1T T .Z D D I D Gµ µ
−

= +                     (13) 

The Tikhonov minimization problem (11) consists of two terms: the first term, 
known as the fidelity term, ensures that the height approximates the observed 
surface height, while the second term, referred to as the penalty term, controls 
the smoothness of the reconstructed surface. The balance between these two 
terms is determined by the regularization parameter µ . If the choice of µ  is 
inaccurate, Zµ  fails to adequately approximate trueZ : if µ  is too small, the 
measurement error will be magnified, whereas an excessively large µ  will lead 
to an overly smoothed Zµ , resulting in the loss of local surface details. 

3.3. Iterative Compensation 

Huang [10] devised a methodology for optimizing the surface reconstruction 
process by iteratively determining the compensation height value through the 
gradient residual. The rationale behind this approach lies in the fact that con-
ventional models face difficulties in adequately fitting the high-order items 
present in the gradient residual data. By incorporating the residual gradient data, 
compensation for the error induced by these high-order items becomes feasible. 
Through multiple iterations of compensation, the accuracy of the surface recon-
struction can be achieved independently of any underlying model assumptions. 
The following steps outline the procedure employed in this method: 

Step 1: Initialize the improved Southwell model with the initial gradient val-
ues 0

xg  and 0
yg  as presented in this study. Consequently, obtain the initial 

surface height ( )0 ,z x y  and set the current height as ( ) ( )0, ,z x y z x y= . 
Step 2: Calculate the gradients xg  and yg  of the current height ( ),z x y . 

Subsequently, derive the residual errors of the x-directional gradient as 

0
x x x
rg g g= −  and the y-directional gradient as 0

y y y
rg g g= − . 

Step 3: Integrate the obtained gradient residuals to determine the compensa-
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tion surface height ( ),cz x y . 
Step 4: Update the current height by incrementing it with ( ),c kz x y n , where 

kn  is an empirical parameter, and k represents the iteration number. 
Step 5: Repeat Steps 2 to 4 until the height compensation term ( ),c kz x y n  

falls below the designated threshold value thrz  or the specified number of itera-
tions is reached. 

Step 6: Record the resulting height ( ),z x y  as the final surface height. 
Huang [10] determined a set of empirical parameters,  
[ ]3.0000,4.0909,4.9476,5.6768kn = , through simulations involving surfaces 

with varying high-order components. 

4. Simulation 

In the experimental phase, we conducted a comparative analysis between the al-
gorithm proposed in this study and existing algorithms. We denote the Fourier 
integral method as FC (Frankot Chellappa) [11], the traditional Southwell model 
as TFLI (Traditional Finite-difference-based Least-squares Integration) [6], the 
method proposed by Li et al. as HFLI (Higher-order Finite-difference-based 
Least-squares Integration) [7], and the method proposed by Huang et al. as SLI 
(Spline-based Least-squares Integration) [9]. Moreover, we introduce the algo-
rithm presented in this paper as ALI (Adams-based Least-square Integration), 
which does not employ iterative compensation, and label it as Non-iter ALI. 

The simulation experiments will be conducted using Matlab R2021b within an 
experimental environment consisting of an Intel Core i5-7300HQ processor with 
a main frequency of 2.5 GHz, 20 GB of memory, and a Windows 10 operating 
system. The simulation experiment follows the subsequent procedure: 

1) The surface to be constructed will be defined by Equation (14), encom-
passing both high-frequency and low frequency information. 

2) By calculating the first-order partial derivative of the height data derived 
from Equation (14), the gradient distribution of the ideal surface in the 
x-direction and y-direction will be obtained. 

3) The gradient data of the ideal surface will serve as input for the FC, TFLI, 
HFLI, SLI, Non-iter ALI, and ALI algorithms. The resulting height values will be 
compared against the height data of the ideal surface. 

4) The accuracy of the reconstructed surface will be assessed by comparing the 
RMSE, SSIM, and PV values obtained from each algorithm. 

5) The resistance to noise will be evaluated by introducing Gaussian noise of 
varying magnitudes to the gradient data, and the RMSE value of the height data 
of the ideal surface will be compared. 

6) The computational efficiency will be compared by examining the time re-
quired to calculate and execute surface reconstructions of varying sizes. 

( ) ( )0.3 sin sin .z x x y=                        (14) 

Among them, the ideal surface to be built selects the surface represented by 
(14), and its standard figure is shown in Figure 2. 
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Figure 2. Ideal surface to be built. 
 
By computing the first-order partial derivative of formula (14), we can analyze 

the distribution of the gradient in both the x and y directions, as illustrated in  

Figure 3. Here, we denote the partial derivative with respect to x as d
d

zp
x

=  and 

the partial derivative with respect to y as 
d
d

zq
y

= . Notably, it becomes apparent 

that significant variations occur in the gradient when there are sharp changes in 
the morphology. 

4.1. Algorithm Precision 

Set the size of the reconstruction surface to 128*128, and use the root mean 
square error RMSE, structural similarity SSIM and peak-to-valley PV to evaluate 
the reconstruction quality of different algorithms. 

RMSE measures the deviation between the predicted value and the true value, 
expressed as follows: 

( )2
true

1

1RMSE
n

i
Z Z

N =

= −∑                    (15) 

Here: trueZ  represents the height value of the ideal surface. 
SSIM is an index to measure the similarity between two images, which is ex-

pressed as follows: 

( ) ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
SSIM , x y xy

x y x y

c c
x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
            (16) 

Here: µ  represents the mean value, σ  represents the standard deviation, 

1 2,c c  represent the covariance. 
PV measures the difference between the maximum value and the minimum 

value in the surface shape error, expressed as follows: 

max minPV W W= −                        (17) 

Here: W represents the error matrix. 
The reconstruction surface evaluation results are shown in Table 1. 
The comparative analysis depicted in Table 1 unmistakably reveals the algo-

rithm ALI’s superior reconstructive precision, surpassing other algorithms by 
orders of magnitude. Non-iterative ALI exhibits an approximately 12.2%  

https://doi.org/10.4236/oalib.1110454


G. An et al. 
 

 

DOI: 10.4236/oalib.1110454 9 Open Access Library Journal 
 

 
Figure 3. Gradient distribution map in x and y direction.  

 
Table 1. Comparison of RMSE, SSIM and PV of each algorithm. 

 RMSE SSIM PV 

FC 2.350507 −0.0211 0.6354 

TFLI 0.028609 0.9525 0.1607 

HFLI 0.028532 0.9528 0.1594 

SLI 0.028469 0.9529 0.1589 

Non-iter ALI 0.026800 0.9689 0.1878 

ALI 0.009420 0.9937 0.0734 

 
diminution in root mean square error (RMSE) compared to TFLI, whereas ALI 
showcases a substantial 88.6% reduction in RMSE relative to TFLI. Furthermore, 
ALI demonstrates notable advancements in terms of structural similarity index 
(SSIM) and point-to-vertex (PV) evaluation metrics. 

Figure 4 illustrates the residual analysis outcomes, underscoring that pro-
nounced surface undulations significantly undermine reconstruction accuracy, 
especially pertaining to edge shape. In the general Southwell model, the distribu-
tion of errors in the surrounding edge region manifests more prominently than 
in the central area. However, the utilization of the ALI algorithm, incorporating 
an iterative compensation approach, greatly mitigates this issue. Notably, ALI 
outperforms other algorithms in 3D reconstruction tasks, particularly for objects 
with steep topography. 

4.2. Noise Immunity 

To assess the resilience of each algorithm against noise, Gaussian noise is intro-
duced to the pristine gradient data of size 128*128. Specifically, the mean is es-
tablished as 0, while the standard deviation is set at 5%, 10%, 15%, and 20%. 
Figure 5 exhibits a comparative analysis of the anti-noise capabilities of each al-
gorithm. 

The observations from Figure 5 reveal a noteworthy trend: as the standard 
deviation of Gaussian noise escalates, the root mean square error (RMSE) values 
exhibit an upward trajectory for all examined techniques. However, the RMSE of 
the proposed ALI algorithm in this study remains notably lower than alternative 
methods. Even in the absence of iterative compensation using Non-iter ALI, the  
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Figure 4. Comparison chart of residual errors on the surface to be built. 

 

 
Figure 5. Comparison of noise resistance of various 
algorithms. 

 
incorporation of Tikhonov Regularization ensures a diminished error when 
compared to other Southwell model approaches. Furthermore, with increasing 
noise, the reconstructed surface generated by the ALI method gradually adopts a 
rougher texture. Nevertheless, it still manages to capture a highly accurate re-
presentation of the surface shape. This exemplifies the robust noise resilience of 
the algorithm outlined in this research endeavor. 

4.3. Time Consuming 

Apart from precision and resistance to noise, computational time is also a cru-
cial factor to be considered. Notably, the time-consuming nature of calculations 
varies as the reconstructed surface size fluctuates across different algorithms. To 
provide a comprehensive assessment of the computational time requirements for 
the algorithm proposed in this study, we conducted evaluations with surface siz-
es set at 128128, 256256, and 512*512, respectively. The outcomes of these eval-
uations are illustrated in Figure 6. 
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Figure 6. Calculation time chart of each algorithm. 

 
The provided figure elucidates pertinent insights regarding the reconstruction 

speed of different methods. Remarkably, the FC method exhibits the swiftest re-
construction pace, and its increment in time consumption remains minimal as 
the reconstructed surface expands. Among the three methods-TFLI, HFLI, and 
SLI-they demonstrate comparable time consumption for reconstruction across 
various surface sizes. Notably, the proposed Non-iter ALI method showcases 
lower time consumption than these three methods. While the AIL method excels 
in accuracy and noise resilience, its reliance on the iterative compensation ap-
proach leads to the lengthiest reconstruction time, approximately five times that 
of Non-iter ALI. Consequently, the selection of an appropriate algorithm should 
be guided by the characteristics of the reconstructed surface and the desired re-
construction requirements. 

5. Conclusion and Suggestion 

This paper employs the fourth-order Adams method to enhance the connection 
between the measured gradient and unknown height in the conventional 
Southwell model. Simultaneously, the algorithm incorporates Tikhonov regula-
rization and iterative compensation techniques to bolster anti-noise capabilities 
and reconstruction accuracy. By contrasting the performance of the Non-iter 
ALI, ALI, and FC methods proposed herein with other Southwell model ap-
proaches, the experimental results unveil the following findings: 1) Under ideal 
conditions, ALI surpasses other methods by order of magnitude in reconstruc-
tion accuracy. 2) Both Non-iter ALI and ALI exhibit superior anti-noise capabil-
ities compared to alternative algorithms in varying noise environments. 3) 
Non-iter ALI boasts the shortest reconstruction time when compared to TFLI, 
HFLI, and SLI methods, while ALI experiences the lengthiest reconstruction 
time, approximately five times that of Non-iter ALI. 
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