
Open Access Library Journal
2023, Volume 10, e10228

ISSN Online: 2333-9721
ISSN Print: 2333-9705

DOI: 10.4236/oalib.1110228 Jul. 20, 2023 1 Open Access Library Journal

Enhanced Document Retrieval System Using
Suffix Tree Clustering Algorithm

Linda Uchenna Oghenekaro, Ifeanyi Emmanuel Olughu, Joshua Oluwasegun Jatto

Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria

Abstract
Most search engines in use today present the user with a single-ordered list of
documents matching the search query leading to lexical ambiguity. An alter-
native to a single-ordered list is to cluster the search results and present a list
of clusters to the user. This study implements the suffix tree clustering algo-
rithm to optimize search. The user selects which cluster appears most rele-
vant and the search results in that cluster are then displayed in a list under
the assumption that similar documents are likely to be relevant to the same
query. The proposed system clusters search results from the file system. The
proposed system allows the user to issue a search query and we return the
results as a set of coherent clusters. The suffix tree clustering algorithm effi-
ciently determined documents that share common phrases. The nodes in the
suffix tree define the initial cluster and to increase the number of documents
in each cluster, clusters that are sufficiently similar are merged. The pro-
posed system adopted web technologies such as hypertext markup language
(HTML), and cascade styling sheet (CSS), to design the interface, while Java-
script programming language was used to implement the entire system. The
proposed system was implemented using PHP5 and MySQL database. The
experimental results show that the suffix tree clustering algorithm can be
used to cluster documents efficiently. The resulting system demonstrated an
optimized search of 4.1 trillion search results of the word “Electricity” whe-
reas a total result of 4.3 trillion was retrieved by the conventional Google
Search Engine.

Subject Areas
Computer Science

Keywords
Retrieval System, Document, Clustering Algorithm, Suffix Tree, Document
Clustering

How to cite this paper: Oghenekaro, L.U.,
Olughu, I.E. and Jatto, J.O. (2023) Enhanced
Document Retrieval System Using Suffix Tree
Clustering Algorithm. Open Access Library
Journal, 10: e10228.
https://doi.org/10.4236/oalib.1110228

Received: May 9, 2023
Accepted: July 17, 2023
Published: July 20, 2023

Copyright © 2023 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1110228
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1110228
http://creativecommons.org/licenses/by/4.0/

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 2 Open Access Library Journal

1. Introduction

The need to understand large, complex, information-rich data sets is common in
virtually all fields of business, science, and engineering. The ability to extract
useful knowledge hidden in these data and to act on that knowledge is becoming
increasingly important in everyday people’s life and work. Data clustering is an
unsupervised data mining approach that groups a large collection of objects
(data points, records, documents etc.) into more meaningful smaller subgroups
[1] [2].

Clustering is a division of data into groups of similar objects where each
group, called cluster, consists of objects that are similar between themselves and
dissimilar to objects of other groups. In other words, the goal of a good docu-
ment clustering scheme is to minimize intra cluster distances between docu-
ments, while maximizing inter-cluster distances using an appropriate distance
measure between documents. Clustering itself is not one specific algorithm, but
the general task to be solved [1]. A distance measure or, dually, similarity meas-
ure thus lies at the heart of document clustering. Clustering is the most common
form of unsupervised learning and this is the major difference between clustering
and classification. No super vision means that there is no human expert who has
assigned documents to classes. In clustering, it is the distribution and makeup of
the data that will determine cluster membership [3].

Clustering can be considered the most important unsupervised learning prob-
lem, understanding large and complex information data sets is commonly seen
almost in all fields of human endeavour. The ability to remove useful hidden
knowledge in a data and to act on it is becoming an important issue virtually in
all works of life. Using a computer-based algorithm for discovering knowledge
from hidden data set in data mining is also an iterative method within which
progress is defined through automatic or manual process. It will often be neces-
sary to modify data preprocessing and model parameters until the result achieves
the desired properties [4]. There are many natural ways of obtaining user infor-
mation and preference using algorithms like suffix tree that can use both online
learning through user interactions with the search engine during document
search. With the relevance feedback of the interaction between search engine
and the user at large based on the user’s analysis, decisions and preferences ac-
cording to [5] [6].

A suffix tree is a data structure that admits efficient string matching and que-
rying suffix trees have been studied and used extensively and have been applied
to fundamental sting problems such as finding the longest repeated substring,
strings comparing and text compression. The suffix trees became useful as the
search time is independent of the length of the string [7] [8].

Document clustering has been investigated for use in a number of different
areas of text-mining and information retrieval. Initially, document clustering
was investigated for improving the precision or recall in information retrieval
systems and as an efficient way of finding the nearest neighbours of a document

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 3 Open Access Library Journal

More recently, clustering has been proposed for use in browsing a collection of
documents or in organizing the results returned by a search engine in response
to a user’s query [4] [9] [10]. Clustering is a common form of unsupervised
learning and is widely used in many areas of research and science. According to
[4] the following are the basic directions in which clustering is used, finding
similar documents, organizing large document collections, Duplicate content de-
tection, recommendation system, search optimization.

Clustering is the task of grouping a set of objects in such a way that objects in
the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of explora-
tory data mining, and a common technique for statistical data analysis, used in
many fields, including machine learning, pattern recognition image analysis, in-
formation retrieval, and bio-informatics. Clustering itself is not one specific al-
gorithm, but the general task to be solved [11]. Clustering can therefore be for-
mulated as a multi-objective optimization problem. The appropriate clustering
algorithm and parameter settings (including values such as the distance function
to use, a density threshold or the number of expected clusters) depend on the
individual data set and intended use of the results. Clustering as such is not an
automatic task, but an iterative process of knowledge discovery or interactive
multi objective optimization that involves trial and failure. It will often be ne-
cessary to modify data preprocessing and model parameters until the result
achieves the desired properties [4].

More recently, a new model for document representation has been introduced,
based on suffix tree, which is called Suffix Tree Document Model. This model is
utilized to cluster web-documents in [12]. A phrase is an ordered sequence of
words, which captures more semantic of text as compared to a single word.
Hence, the clustering results produced by phrase-based similarity measure are of
high quality when compared to the semantic interpretation of the corpus. The
more recent work on the phrase-based approach is in [11]. A similar work that
also utilizes suffix tree model is from [6].

This algorithm starts by computing frequent two-word sets based on user-
specified minimum support. Next, all words not in any of the frequent two-word
sets are removed from the documents, resulting in compact representation of
documents. The compact documents are added one-by-one into a generalized
suffix tree data structure. The algorithm then traverses the generalized suffix tree
in a depth-first fashion. It offers the possibilities like: grouping similar results [7]
comprehend the link between the results [8] and creating the succinct represen-
tation and display of search results.

2. Methodology

The proposed suffix tree clustering algorithm designed to meet the requirements
of post-retrieval clustering of web search results. Suffix tree clustering is unique
in treating a document as a string, not simply a set of words, thus making use of

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 4 Open Access Library Journal

proximity information between words. Suffix tree clustering relies on a suffix tree
to efficiently identify sets of documents that share common phrases and uses this
information to create clustering and to succinctly summarize their contents for
users.

The design of this system adopts the structured system analysis and design
methodology (SSADM). The Structured System Analysis and Design Methodol-
ogy is a system approach to the analysis and design of a property which has three
design modelling known as:

1) Logical Data Modelling: this is the process of identifying, modelling and
documenting the data requirements of the system being designed. The data are
separated into entities (things about which a business needs to record informa-
tion) and relationships (the associations between the entities).

2) Data Flow Modelling: This is a process of identifying, modelling and docu-
menting how data moves around an information system. Data Flow Model ex-
amines processes (activities that transform data from one form to another), data
stores (the holding areas for data), external entities (what sends data into a sys-
tem or receives data from a system), and data flows (routes by which data can
flow).

3) Entity Behaviour Modelling: this is the process of identifying, modelling
arid documenting the events that affect each entity and the sequence in which
these events occur.

In the design of this system, we used the suffix tree clustering algorithm to
cluster a corpus of documents. The system of the project comprises of system
flowchart, system architecture and system block.

2.1. System Flowchart

The system flowchart shows the flow of the activities from the start point of
when the search word is put into the system, to the end point of when closely
related document clusters are produced as output. The system flowchart as seen
in Figure 1, illustrates how string are searched; the user inputs the search text
which they have in mind. And the process of inputting cleans the hypertext
markup language (html) to plain text. This process then identifies the base clus-
ter by grouping the suffix of the inputted search which now deploys the output
of the search words after proper clustering.

2.2. Proposed System Architecture

This is the exceptional model that defines the structure, model, behavior and
more views on the proposed system (Figure 2). The enter search strings column
allows the user to input their desired text or word. The search system which ap-
plies suffix tree in order to get the clustered search, which is being stored in the
database and sent to the web administration and returns back to the database af-
ter the searched words had been clustered and then deploys to the output as
searched results.

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 5 Open Access Library Journal

Figure 1. Proposed system flowchart.

Figure 2. Proposed system architecture.

2.3. System Block Diagram

The system block diagram (Figure 3) refers to the high-level diagram of the sys-
tem, it shows the detailed description aimed at understanding the overall con-
cept and also for understanding the details of the implementation of the new
system. The web browser helps to enter the search query, which results would be
displayed, click and view the results of the searched query.

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 6 Open Access Library Journal

Figure 3. System block diagram of the proposed system.

2.4. Suffix Tree Algorithm

Phase 1 Scan the String and partition Suffixes based on the first prefixlen symbols of
each suffix

Phase 2 Do for each partition:

1 START BuildSuffixTree

2 Populate Suffixes from current partition

3 Sort Suffixes on first symbol using Temp

4 Output branching and leaf nodes to the Tree

5 Push the nodes pointing to an unevaluated range onto the Stack
While Stack is not empty

6 Pop a node

7 Find the Longest Common Prefix (LCP) of all the suffixes in this range by
checking the String

8
9
10

Sort the range in Suffixes on the first symbol using Temp
Write out branching nodes or leaf nodes to Tree
Push the nodes pointing to an unevaluated range onto the Stack

11 END

So when the results are being displayed in the search Engine, the results re-

lated to “data”, “mining”, or some “data … (any strings between two) … min-
ing” are also displayed. This can also enable an easy way to even cluster the re-
sults into related phrases [11] [12].

2.5. Suffix Tree Clustering (STC)

Apart from the introduction of Suffix tree, it is very necessary to relate Suffix
tree to the clustering technique which the paper intended to address. The STC
algorithm involves five steps [11] [12]:

1) Preparation of the documents: this involves retrieving document snippets
from Google and results stemming.

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 7 Open Access Library Journal

2) Construction of Suffix tree: this is the process of inserting the string asso-
ciated with the document in the Suffix tree.

3) Clustering Merging: this include the combination of two or more similar
nodes of Suffix tree.

4) Clustering labeling: each cluster should have a label.
5) Clusters scoring: this has to do with clusters ranking.

2.6. Input Design

Input to the suffix tree clustering for document retrieval is a search string to be
retrieval from a set of documents. A prototype of the user interface is shown in
Figure 4, and it shows the input design in block diagram, where users input
their queries and a search box where the users click to process the queries.

2.7. Output Design

The output of this system is a cluster of documents that contains possible docu-
ments that contains the search string. The side bars which display various forms
of information to the right and left side of the system (Figure 5).

3. Result and Discussion

The result of a suffix tree clustering algorithm can be discussed in terms of its

Figure 4. Input design of the proposed system.

Figure 5. Output design of the proposed system.

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 8 Open Access Library Journal

accuracy, efficiency, and scalability. Using the searched word Hospital.
1) Accuracy: the accuracy of the algorithm can be evaluated based on how well

it groups similar data points and separates dissimilar data points. When the
word Hospital was searched, the STC search engine made sure to filter the rele-
vant or the exact results of the searched word.

2) Efficiency: the time and memory complexity of the algorithm can be ana-
lysed to determine its efficiency, especially in handling large data sets. The STC
search engine ensured that relevant or exact result was presenting thereby re-
ducing time and memory.

3) Scalability: the ability of the algorithm to handle an increase in the size of
the data set can also be evaluated. This includes its ability to process data in par-
allel or distributed manner.

Suffix tree clustering search engines differ from conventional search engines
in several ways.

1) Indexing: conventional search engines use indexes for indexing, while suf-
fix tree clustering search engines use suffix tree for indexing.

2) Search Efficiency: conventional search engines use algorithm such as
Boolean search and vector space model to search, while suffix tree clustering
search engines use clustering algorithms to search, which are often more effi-
cient.

3) Query Handling: conventional search engines use simple keyword-based que-
ries, while suffix tree clustering search engines can handle more complex queries
such as regular expressions.

4) Result Relevance: conventional search engines rely on ranking algorithm
and external signals such as page authority to determine result relevance, while
suffix tree clustering search engines rely on the similarity of the query and docu-
ments in the clusters.

5) Scalability: conventional search engines may struggle with scaling as the
number of documents increases, while suffix tree clustering search engines can
handle very large datasets more efficiently.

Figure 6 and Figure 7 shows the comparison between STC search engines
and Conventional search engine using the search word “electricity”. In Figure 6
there were about 4,320,000,000 searched results, while in Figure 7 shows how
the STC search engine clustered the query and reduced the result of the searched
word to 4,010,000,000. In this observation the STC search engine had fewer,
relevant, and exact results whereas the conventional search engine had many
results with less relevance.

4. Conclusion

The proposed suffix tree clustering (STC) algorithm is for clustering documents.
STC is a linear time clustering algorithm that is based on a suffix tree which effi-
ciently identifies sets of documents that share common phrases. It treats a doc-
ument as a string, making use of proximity information between words. It is

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 9 Open Access Library Journal

Figure 6. STC search engine.

Figure 7. Conventional Search Engine

novel, incremental and 0(n)-time algorithm. STC succinctly summarizes clus-
ters’ contents for users. Therefore, suffix tree clustering is an effective and effi-
cient technique for summarizing large volume of text data. Its implementation

https://doi.org/10.4236/oalib.1110228

L. U. Oghenekaro et al.

DOI: 10.4236/oalib.1110228 10 Open Access Library Journal

involves several steps and can benefit from advances in algorithms and tech-
niques for string processing and document clustering.

Conflicts of Interest

The authors declare no conflicts of interest.

References
[1] Chim, H. and Deng, X. (2018) Efficient Phrase-Based Document Similarity for Clus-

tering. IEEE Transaction on Knowledge and Data Engineering, 20, 1217-1229.
https://doi.org/10.1109/TKDE.2008.50

[2] Chung, S.M., Holt, J.D. and Li, Y. (2014) Text Document Clustering Based on Fre-
quent Word Meaning Sequences. Data &Knowledge Engineering, 64, 381-404.
https://doi.org/10.1016/j.datak.2007.08.001

[3] Hill, D.R. (2016) A Vector Clustering Technique. In: Samuelson, K., Ed., Mecha-
nized Information Storage, Retrieval and Dissemination, North Holland, Ams-
terdam.

[4] Campi, A. and Ronchi, S. (2019) The Role of Clustering in Search Computing. 2009
20th International Workshop on Database and Expert Systems Application, Linz, 31
August-4 September 2009, 432-436.

[5] Baeza-Yates, R.A. and Gonnet, G.H. (2021) Fast Text Searching for Regular Expres-
sions or Automaton Searching on Tries. Journal of the ACM, 43, 915-936.
https://doi.org/10.1145/235809.235810

[6] Farach-Colton, M., Ferragina, P. and Muthukrishnan, S. (2010) On the Sort-
ing-Complexity of Suffix Tree Construction. Journal of the ACM, 47, 987-1011.
https://doi.org/10.1145/355541.355547

[7] Giegerich, R. and Kurtz, S. (2016) From Ukkonen to MeCreight and Weiner: A Un-
ifying View of Linear-Time Suffix Tree Construction. Algorithmica, 19, 331-353.

[8] Porter, M.F. (2022) An Algorithm for Suffix Stripping. Program: Electronic Library
and Information Systems, 14, 130-137. https://doi.org/10.1108/eb046814

[9] Hammouda, K.M. and Kamel, M.S. (2015) Efficient Phrase-Based Document In-
dexing for Web Document Clustering. IEEE Transaction on Knowledge and Data
Engineering, 16, 1279-1296. https://doi.org/10.1109/TKDE.2004.58

[10] Roccbio, J.J. (2019) Document Retrieval Systems—Optimization and Evaluation.
Ph.D. Thesis, Harvard University, Boston.

[11] Cutting, D.R., Karger, D.R, Pedersen, J.O. and Tukey, J.W. (2015) Scatter/Gather: A
Cluster-Based Approach to Browsing Large Document Collections. Proceedings of
the 15th International ACM SIGIR Conference on Research and Development in
information Retrieval, Copenhagen, 21-24 June 1992, 318-329.

[12] Oren, Z. and Oren, E. (1999) Grouper: A Dynamic Clustering Interface to Web
Search Results. Computer Networks, 31, 1361-1374.

https://doi.org/10.4236/oalib.1110228
https://doi.org/10.1109/TKDE.2008.50
https://doi.org/10.1016/j.datak.2007.08.001
https://doi.org/10.1145/235809.235810
https://doi.org/10.1145/355541.355547
https://doi.org/10.1108/eb046814
https://doi.org/10.1109/TKDE.2004.58

	Enhanced Document Retrieval System Using Suffix Tree Clustering Algorithm
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Methodology
	2.1. System Flowchart
	2.2. Proposed System Architecture
	2.3. System Block Diagram
	2.4. Suffix Tree Algorithm
	2.5. Suffix Tree Clustering (STC)
	2.6. Input Design
	2.7. Output Design

	3. Result and Discussion
	4. Conclusion
	Conflicts of Interest
	References

