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Abstract 
In this paper we provide a computational approach to a minimization prob-
lem for the value function associated with an affine optimal control problem 
subject to terminal-constraint with quadratic cost plus a potential, for a fixed 
final time and initial point. We study the global minimization problem of the 
value function over the attainable set and the regularity properties of the val-
ue function at a global minimizer point. On the other hand, in the global mi-
nimization of the value function, by an example in this computational ap-
proach, we also focus on a numerical method by Riccati matrix differential 
equations. 
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1. Introduction and Preliminary 

The regularity properties of a value function associated with an optimal control 
problem have been deeply studied in the last decades, extensively using tools 
from geometric control theory and nonsmooth analysis. It is well known that the 
value function associated with an optimal control problem fails to be everywhere 
differentiable. Actually, it is not even continuous. 

In [1] the authors define a value function on the target state set associated 
with an affine optimal control problem and study its regularity properties. Un-
der certain assumptions, in the attainable set the authors find out some subsets 
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on which the value function is continuous and differentiable. In this paper, by a 
point of view in optimization methods, we first solve a global minimization 
problem for the value function defined by authors of the paper in [1], and then 
we show that the value function is continuous and differentiable at a global mi-
nimizer point. 

In deed, the value function defined in [1] takes its value by an optimal control 
with a terminal constraint. In this paper we solve a global minimization problem 
by the optimal control without terminal constraints. 

The optimal control problem we deal with in this paper is the following: 

( ) ( ) ( ) ( ) ( )( )0
: min : d ,

T
y yC u u t u t Q x t tΤ = − ∫          (1.1) 

such that 

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) [ ]

, 0 ,

, , , 0, .

n

n m n

x t f x t g x t u t x a R

x T y R u t R x t R t T

= + = ∈

= ∈ ∈ ∈ ∈



 
Here the function ( ) 1: nQ x R R→  is smooth and bounded from above, the 

vector function ( ) : n nf x R R→  and matrix function ( ) : n n mg x R R ×→  are 
smooth on nR . 

na R∈  is a given initial condition and ny R∈  is a given termin-
al condition. An admissible control ( )u ⋅  is a vector function in [ ]( )2 0, , mL T R , 
such that the solution ( )ux ⋅  for the equation ( ) ( )( ) ( )( ) ( )x t f x t g x t u t= +  
satisfying ( ) ( )0 ,nx a R x T y= ∈ =  is well defined on the interval [ ]0,T . The 
set of admissible controls is denoted by aΩ . For the initial state na R∈ , we de-
fine value function ( ) 1: n

aS R R⋅ →  associated with ( )y  to be a function of 
terminal states as follows: for ny R∈ , 

( ) ( ) [ ]( ) ( ) ( ){ }2inf | 0, , , 0 , ,m
a y u uS y C u u L T R x a x T y= ∈ = =    (1.2) 

with the understanding that ( )aS y = +∞  if y cannot be attained by admissible 
trajectories in time T. It is also clear that ( )aS y  is bounded below noting that 

( )yC u  is bounded below due to the assumption that ( )Q x  is bounded from 
above. Define the attainable set aA  as the set of points on nR  that can be 
reached from a by admissible trajectories in time interval [ ]0,T . We always as-
sume aA ≠ ∅ . In [1] the authors have studied the problem concerning the re-
gularity properties of the value function ( )aS y  on a dense subset of the at-
tainable set. 

In this paper we provide a computational approach to the following minimi-
zation problem: 

( )min .
a

ay A
S y

∈
                        (1.3) 

Meanwhile, we study the regularity properties of the value function ( )aS y  at 
a global minimizer. 

Remark 1.1. In practice, when ( ) 0Q x ≡ , because the cost functional is a 
square of the 2L  norm of control, by the minimization of the value function 
one can find an optimal target for the system to work at minimal cost. 

To deal with minimizing ( )aS y  over aA , we need to solve the following 
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optimal control problem without terminal state restriction. 

( ) ( ) ( ) ( ) ( )( )0
: min : d ,

T
aJ u u t u t Q x t tΤ = − ∫           (1.4) 

such that 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) [ ], 0 , , , 0, .n m nx t f x t g x t u t x a R u t R x t R t T= + = ∈ ∈ ∈ ∈

 
Remark 1.2. We see that, for ay A∈  and u which is an admissible control 

steering the affine system from a to y, 

( ) ( ) .y aC u J u=                       (1.5) 

Remark 1.3. Suppose that ( )  is solvable (i.e. there exists an optimal con-
trol of the problem ( ) ). Let û  be an optimal control of the problem ( ) . It 
implies that ( )ˆaJ u < ∞ . Let the optimal control û  steer the primal affine sys-
tem from a to a point ŷ . By (1.2), (1.5), we have 

( ) ( ) [ ]( ) ( ) ( ){ }
( ) [ ]( ) ( ) ( ){ } ( )

2
ˆ

2

ˆ ˆinf : 0, , , 0 ,

ˆ ˆinf : 0, , , 0 , .

m
a y u u

m
a u u a

S y C u u L T R x a x T y

J u u L T R x a x T y J u

= ∈ = =

= ∈ = = = < ∞
(1.6) 

Since ( )aS y  is bounded below, we conclude that ( ) ,a aS y y A∈  is not con-
stantly infinity. Thus if ( )  is solvable, then by (1.6) we see that ( )inf

ay A aS y∈  
is finite. Thus the minimization (1.3) is meaningful. Moreover, we will show that 
( )  is solvable only if the minimization problem ( )min

ay A aS y∈  is solvable. 
In this paper we focus on the Hamilton-Jacobi-Bellman equation [2] [3] with 

respect to the problem ( ) . We present parameterized convection-diffusion eq-
uations for a viscosity approximation [4] [5] [6] to the Hamilton-Jacobi-Bellman 
equation. Then a parameterized convection-diffusion equation yields a piecewise 
differentiable flow for an approximation of the optimal objective value of the 
problem ( ) . 

The rest of the paper is organized as follows. In section 2, we study the global 
minimization problem of the value function ( )aS y  over the attainable set. In 
section 3, two results are given on continuity and differentiability of the value 
function ( )aS y  at a global minimizer. The section 4 is devoted to present a 
computational approach to the minimization problem of the value function 

( )aS y . Two examples are presented to illustrate the computational approach 
for a linear quadratic optimal control problem under terminal constraint in sec-
tion 5. In section 6, we derive an iteration of difference equations for imple-
menting the computational approach to ( )min

ay A aS y∈  given in section 4. A 
conclusion is in the last section. 

2. Minimizing the Value Function ( )aS y  over the  
Attainable Set 

For the problem ( ) , to minimize the value function ( )aS y  over the attaina-
ble set aA , we consider the optimal control problem ( )  in (1.4). For the 
problem ( ) , we define its value function as follows: 
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( ) ( ) [ ]( ) ( ){ }2inf | 0, , , 0 .m
xV x J u u L T R x x= ∈ =          (2.1) 

Theorem 2.1. If ( )  is solvable (i.e. there exists an optimal control of the 
problem ( ) ), then 

( ) ( )min .
a

ay A
V a S y

∈
=                      (2.2) 

Proof. Let û  be an optimal control of the problem ( ) , which steers the 
control affine system (in (1.4)) from a to ŷ . By the definition of ( )ˆaS y  ((1.2)), 
noting that by (1.5) for all controls u steering the affine control system from a to 
ŷ  satisfying ( ) ( ) ( ) ( )ˆ ˆˆ ˆy a a yC u J u J u C u= ≥ = , we have 

( ) ( ) ( )
( ) [ ]( ) ( ) ( ){ } ( )

ˆ

2
ˆ

ˆ ˆ

ˆ ˆinf | 0, , , 0 , .

a y

m
y u u a

V a J u C u

C u u L T R x a x T y S y

= =

= ∈ = = =
  (2.3) 

Thus we have 

( ) ( )ˆ ,aV a S y=                        (2.4) 

On the other hand, if there is a ay A∈  such that ( ) ( )ˆa aS y S y< , then, not-
ing (1.5) and (1.2), there is a control u which steers the affine system from a to y 
such that ( ) ( ) ( ) ( ) ( )( ) ( ) ( )ˆ ˆa y a a a aJ u C u S y S y S y S y V a= < + − = = , which 
leads to a contradiction to the fact that û  is an optimal control of the problem 
( ) . Thus we have ( ) ( )ˆ min

aa y A aS y S y∈= . It follows from (2.4) that we have 
( ) ( )min

ay A aV a S y∈= . The proof of Theorem 2.1 is completed. 
Theorem 2.2. If a vector ˆ ny R∈  satisfies ( ) ( )ˆ min

aa y A aS y S y∈=  and an 
admissible control û  satisfies ( ) ( )ˆ ˆ ˆy aC u S y= , then ( )  is solvable. 

Proof. Since the minimization problem ( )min
ay A aS y∈  is solvable, we have a 

point ˆ ay A∈  such that 

( ) ( )ˆ min .
a

a ay A
S y S y

∈
=                      (2.5) 

We need to show that an admissible control û  steering the system from a to 
ŷ  such that ( ) ( )ˆ ˆ ˆy aC u S y=  is an optimal control of ( ) . Let u  be an arbi-

trary admissible control steering the system from a to y . We will show that 
( ) ( )ˆa aJ u J u≤ . By (1.5), (2.5) and the definition of ( )aS y , also noting the 

assumption ( ) ( )ˆ ˆ ˆy aC u S y= , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ min .
a

a y a a a y ay A
J u C u S y S y S y C u J u

∈
= = = ≤ ≤ =    (2.6) 

Since u  is an arbitrary admissible control, by (2.6) we see that û  is an op-
timal control of ( ) . The proof of Theorem 2.2 is completed. 

Remark 2.1. In the proof of Theorem 2.1 and Theorem 2.2, a basic fact is the 
both of them have the same control system and the same cost for the same ad-
missible control. By these two theorems, we know that the optimal control of the 
problem ( )  steers the control system from the initial state point to the mini-
mizer of the value function ( )aS y  of the problem ( )  over the attainable set. 
On the other hand, if ŷ  is a minimizer of ( )aS y  over aA  and a control û , 
steering the system from the initial point a to ŷ , is an optimal control of ( )ŷ , 
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then û  is an optimal control of ( ) . 

3. The Regularity Properties of Value Function ( )aS y  at  
a Minimizer Point 

In this section we assume that ( )  is solvable. Let û  be an optimal control of 
the problem ( ) , which steers the primal affine system from the initial point a 
to ŷ . By (2.4) we see that ŷ  is a minimizer point of ( )aS y  over aA . 

We know that the end-point map T
aE  is smooth [1] [7] [8] [9] [10]. Further 

we assume that the end-point map T
aE  is an open map at the optimal control 

û  in the following theorems. 
Theorem 3.1. If the minimizer point ˆ int ay A∈  and the end-point map is an 

open map at û , then the value function ( )aS y  of ( )  is continuous at the 
minimizer ŷ  of ( )aS y . 

Proof. Since û  is an optimal control of the problem ( ) , which steers the 
primal affine system from a to ŷ , we have ( ) ( )ˆaV a S y=  by (2.4). Since the 
end-point map is open at û , there are positive numbers η  and δ  such that the 
image of { }

2
ˆ: Lu u u η− <  under the end-point map covers { }ˆ: nRy y y δ− < . 

Given 0ε > . We can also choose positive number η  so small that, when 

2
ˆ

Lu u η− < , the inequality ( ) ( )ˆa aJ u J u ε− <  holds(see Proposition 32 in 
[3]). Since ˆ int ay A∈ , we can choose positive number δ  above so small that, 
for all { }: n

m
Ry Rξ ξ δ∆ ∈ ∈ ≤ , ˆ ay y A+ ∆ ∈  and ( ) ( ) ( )ˆ ˆa aV a S y S y y= ≤ + ∆  

noting that ŷ  is the minimizer of ( )aS y . In other words, now, for given 
0ε > , we have two positive numbers η  and δ  such that: 

1) the image of { }
2

ˆ: Lu u u η− <  under the end-point map covers  

{ }ˆ: nRy y y δ− < ; 
2) when 

2
ˆ

Lu u η− < , the inequality ( ) ( )ˆa aJ u J u ε− <  holds; 
2) when nRy δ∆ ≤ , we have ˆ ay y A+ ∆ ∈  and ( ) ( ) ( )ˆ ˆa aV a S y S y y= ≤ + ∆ . 
Now for nRy δ∆ ≤ , in { }

2
ˆ: Lu u u η− < , we have an admissible control v 

steering the primal affine system from a to ˆ ay y A+ ∆ ∈ . By the definition of 
( )aS y , also noting that the relationship ( ) ( )y aC u J u=  and  
( ) ( ) ( )ˆ ˆa aJ u V a S y= = , we have the following inequalities: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

ˆ ˆˆ ˆ inf

ˆ ˆ .

a a y y y y au

a a

V a S y S y y C u C v J v

J u S yε ε

+∆ +∆= ≤ + ∆ = ≤ =

≤ + = +
   (3.1) 

Consequently, 

( ) ( ) ( ) ( )ˆ ˆ ˆ0 .a a a aS y y S y J v J u ε≤ + ∆ − ≤ − <            (3.2) 

The proof of Theorem 3.1 is completed. 
Next we study the differentiability of the value function ( )aS y  at a mini-

mizer point. 
Theorem 3.2. If the minimizer point ˆ int ay A∈  and the end-point map is an 

one-to-one open map at û , then the value function ( )aS y  of ( )  is diffe-
rentiable at the minimizer ŷ  of ( )aS y . 
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Proof. Since all functions ( ) ( ) ( ), ,Q x f x g x  are smooth, we see that the 
functional ( )aJ u  is F-differentiable at [ ]( )2 0, , mu L T R∈ . Noting that the 
end-point map is an open map at û  and ( ) ( )ˆa aJ u J u≥  for all admissible 
control near û  in [ ]( )2 0, , mL T R , we have 

( ) ( )
2

2
0

ˆ ˆ
lim 0

L

a a

u
L

J u u J u
u∆ →

+ ∆ −
=

∆
                 (3.3) 

which also implies that, for a small positive r, there exists 0rC >  such that, as 

2
0 Lu r< ∆ < , 

( ) ( )
2

ˆ ˆ .a a r LJ u u J u C u+ ∆ − ≤ ∆                (3.4) 

Since the end-point map T
aE  is an open map at û , there are positive num-

bers η  and δ  such that 

{ } { }
2

ˆ ˆ: : : ,n
T
a L RE u u u y y yη δ− < → − <

 
is surjective. There exists a smooth right inverse  

{ } { }
2

ˆ ˆ: : :nR Ly y y u u uδ ηΦ − < → − <  such that ( )( )T
aE y yΦ =  for every 

y in { }ˆ: nRy y y δ− < . Fix local coordinates around the initial state a, and let 
( ) { }ˆ: na RB r y y y r⊂ − <  and ( ) { }

2ˆ ˆ:u LB r u u u r⊂ − <  denote some balls 
of radius 0r >  centered at a and û , respectively. Due to Φ  being smooth, there 
exists positive numbers R ηΦ <  and 0CΦ >  such that, for every 0 r RΦ≤ ≤ , 

( ) ( )( )ˆ ,T
a a uB C r E B rΦ ⊂                    (3.5) 

Pick any point int ay A∈  such that y C rΦ∆ = , with 0 r RΦ≤ ≤ . Then by 
(3.5) there exists ( )ûv B r∈  satisfying ˆv u u= + ∆  and 

2Lu r∆ ≤  such that 
( )T

aE v y= . Noting that 

2
,Ly C r C uΦ Φ∆ = ≥ ∆                    (3.6) 

When 
2Lu r∆ ≤  ( ˆu v u∆ = − ), by (3.1), (3.2), (3.4), (3.6), also noting that 

( ) ( ) ( )ˆ ˆa aJ u V a S y= = , we have, 

( ) ( ) ( ) ( )
2

ˆ ˆ ˆ ˆ0 r
a a a a r L

CS y y S y J u u J u C u y
CΦ

≤ + ∆ − ≤ + ∆ − ≤ ∆ ≤ ∆
 

and 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ
0 = .a a a a a a uS y y S y J u u J u J u u J u

y y u y
∆+ ∆ − + ∆ − + ∆ −

≤ ≤
∆ ∆ ∆ ∆

 (3.7) 

By (3.5) we see that when 0y∆ → , i.e. 0C rΦ →  ( 0CΦ >  is picked 
above), we have 

2
0Lu r∆ ≤ → . Thus, by (3.7), (3.6), (3.3) we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1

ˆ ˆ ˆ ˆ
0

ˆ ˆ ˆ ˆ
0.

a a a a

a a a a

S y y S y J u u J u
y y

uJ u u J u J u u J u
C

u y u
−
Φ

+ ∆ − + ∆ −
≤ ≤

∆ ∆

∆+ ∆ − + ∆ −
= ≤ →

∆ ∆ ∆  
Consequently, the value function ( )aS y  of ( )  is differentiable at the mi-

nimizer ŷ  of ( )aS y  and the corresponding derivative is zero. The proof of 
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Theorem 3.1 is completed. 
Remark 3.1. For both theorems above we assume ˆ int ay A∈  noting that the 

candidate as a minimizer of the value function should be in the interior of the 
attainable set. Since aA  is the image of aΩ  under the end-point map, it is 
reasonable to assume that the end-point map is an open map at the optimal 
control û . In [1] the authors assume the end-point map to be open and a sub-
mersion at an optimal control and consider the regularity properties of the value 
function on a subset ( int aA⊂ ). In this paper we only need to assume that ŷ  is 
an image of the end-point map which is open at the optimal control û . But we 
do not assume the end-point map to be a submersion. 

4. An Extremal Flow for Minimizing the Value Function 
( )aS y  of Affine Optimal Control Problems under  

Terminal Constraint 

In this section, for the problem ( ) , to minimize the value function ( )aS y  
over the attainable set, we create a so called extremal flow for computing optimal 
value ( )V a  of the problem ( )  numerically. We focus on the following HJB 
equation for ( ), nt x R R∈ × , 

( ) ( ) ( ) ( ) ( ) ( ){ }, , inf , 0,
mt x x

u R
v t x v t x f x Q x v t x g x u u uΤ Τ Τ

∈
+ − + + =    (4.1) 

with boundary condition ( ), 0v T x = . 
By elementary optimization, for given ( ),t x , we see that  

( ) ( )1 ,
2 xu g x v t xΤ−

=  is the unique minimizer of ( ) ( ),xv t x g x u u uΤ Τ+  over 

mR . Then we have 

( ) ( ){ } ( ) ( ) ( ) ( )T T1inf , , , .
4m x x x

u R
v t x g x u u u v t x g x g x v t xΤ Τ

∈
+ = −     (4.2) 

Thus we can rewrite the equation in (4.1) as the following PDE: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , , 0, , 0.
4t x x xv t x v t x f x Q x v t x g x g x v t x v T xΤ Τ Τ+ − − = = (4.3) 

Remark 4.1. By classical PDE theory [4] [5] [6], we know that a viscosity so-
lution of the PDE in (4.3) can be obtained from smooth solutions vε  to the 
family of convection-diffusion equations 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , ,
1 , , , , 0.
4

x t x

x x

v t x v t x v t x f x Q x

v t x g x g x v t x v T x

ε Τ

Τ Τ

∆ = + −

− =
     (4.4) 

(parameterized by 0ε > ) in the limits as 0ε +→ , where  

( ) ( )2

1 2

,
, n

x k
k

v t x
v t x

x=

∂
∆ =

∂
∑ . The convergence of (4.4) to (4.3) as 0ε +→  has 

been established by the classical works of PDE on the viscosity approximation 
(see [2]). Thus in the equation (2.4) the diffusion term ( ),x v t xε ∆  converges to 

zero locally uniformly as 0ε +→ . 
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For computing ( )V a  numerically, we define extremal flows as follows. 
Definition 4.1. Given 0ε > , for a solution ( ),v t x  of the PDE problem 

(4.4), we call ( )xε ⋅  an extremal flow, if it is a solution of Cauchy initial value 
problem 

( ) ( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )

T1 , ,
2

0,1 , 0 ,

xx t f x t g x t g x t v t x t

t x a

ε ε ε ε ε

ε

 = −

 ∈ =



      (4.5) 

with a feedback control 

( ) ( )( ) ( )( )T1: , .
2 xu t g x t v t x tε ε ε
−

=                (4.6) 

The following theorem claims that optimal value ( )V a  of the problem ( )  
can be approximated by solving the equation (4.4) and (4.5). 

Theorem 4.1. Let ( ),v t x  be denoted as a solution of PDE in (4.4) corres-
ponding to a positive real number ε . Given ny R∈ , if ( )xε ⋅  is an extremal 
flow related to ( ),v t x  and ( )uε ⋅  is the corresponding feedback control (see 
(4.5), (4.6)), then we have 

( ) ( ) ( )
0

lim min .
a

a ay A
J u V a S yε

ε + ∈→
= =                (4.7) 

Proof. By (4.5), (4.6), (4.7), we have 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( )

( )( ) ( ) ( ) [ ]

, , ,
1 , ,
4

, ,
1 , ,
2
1 , ,
4

d ,
. . 0, .

d

x t x

x x

t x

x x

x x

v t x t v t x t v t x t f x t Q x t

v t x t g x t g x t v t x t

v t x t v t x t f x t Q x t

v t x t g x t g x t v t x t

v t x t g x t g x t v t x t

v t x t
Q x t u t u t a e t T

t

ε ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε
ε ε ε

ε Τ

Τ Τ

Τ

Τ Τ

Τ Τ

Τ

∆ = + −

−

= + −

−

+

= − + ∈

  (4.8) 

Integrating the equality in (4.8) with respect to t from 0 to T, noting that 
( )( ), 0v T x Tε = , we have 

( )( ) ( ) ( )
0

, d 0, .
T

x av t x t t J u v aε εε ∆ = −∫              (4.9) 

On the other hand, if ( )x ⋅  is another trajectory corresponding to an ad-
missible control ( )u ⋅  with respect to ( ) , we have 

( )( ) ( )( ){ } ( )( ) ( )( ) ( ) ( ) ( )inf , , ,
m x x

u R
v t x t g x t u u u v t x t g x t u t u t u tΤΤ Τ Τ

∈
+ ≤ +  (4.10) 

then for each [ ]0,t T∈ , we have 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ){ }

, , ,

1 , ,
4

, ,

inf ,
m

x t x

x x

t x

x
u R

v t x t v t x t v t x t f x t Q x t

v t x t g x t g x t v t x t

v t x t v t x t f x t Q x t

v t x t g x t u u u

ε Τ

Τ Τ

Τ

Τ Τ

∈

∆ = + −

−

= + −

+ +
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( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( ) ( )

, ,

,

d
, , .

d

t x

x

t x

v t x t v t x t f x t Q x t

v t x t g x t u t u t u t

x t
v t x t v t x t Q x t u t u t

t

Τ

Τ Τ

Τ Τ

≤ + −

+ +

= + − +

     (4.11) 

Integrating the above inequality over [ ]0,T , noting ( )( ), 0v T x T = , we ob-
tain 

( )( ) ( )( ) ( ) ( ) ( )
0 0

d, d , d 0, .
d

T T
x a av t x t t v t x t t J u v a J u

t
ε∆ ≤ + = − +∫ ∫  (4.12) 

By (4.9) and (4.12), we have 

( ) ( )( ) ( )

( ) ( )( ) ( )( )
0

0 0

, d 0,

, d , d .

T
a x

T T
a x x

J u v t x t t v a

J u v t x t t v t x t t

ε ε

ε

ε

ε ε

= ∆ +

≤ + ∆ − ∆

∫

∫ ∫
    (4.13) 

Let ( )û ⋅  be an optimal control and ( )x̂ ⋅  be the corresponding optimal tra-
jectory with respect to ( ) . Using (4.13) for the optimal pair ( ) ( )( )ˆ ˆ,x u⋅ ⋅ , 
noting the fact ( ) ( )ˆaV a J u= , we have 

( ) ( )( ) ( )

( ) ( )( ) ( )( )
0

0 0

, d 0,

ˆ, d , d .

T
a x

T T
x x

J u v t x t t v a

V a v t x t t v t x t t

ε ε

ε

ε

ε ε

= ∆ +

≤ + ∆ − ∆

∫

∫ ∫
    (4.14) 

By (4.14), noting that ( ).uε  is an admissible feedback control, we have 

( ) ( ) ( ) ( )( ) ( )( )0
ˆ, , d

T
a x xV a J u V a v t x t v t x t tε εε ε ≤ ≤ + ∆ − ∆ ∫  

which yields 

( ) ( ) ( )( ) ( )( )0
ˆ0 , , d .

T
a x xJ u V a v t x t v t x t tε εε ε ≤ − ≤ ∆ − ∆ ∫     (4.15) 

Noting that, in the Equation (4.4), the diffusion term ( ),x v t xε ∆  converges 
to zero locally uniformly as 0ε +→  (see Remark 4.1), we can show that, on a 
compact set ( )( )R aΩ ⊂  which contains the optimal trajectory ( ){ }x̂ ⋅  and 
the flow ( ){ }xε ⋅ , 

( ) [ ]
( )

0 , 0,1
lim sup , 0.x

t x
v t x

ε
ε

+→ ∈ ×Ω
∆ =                 (4.16) 

Thus, by Lebesgue Convergence Theorem, we have 

( )( )00
lim , d 0,

T
x v t x t tε

ε
ε

+→
 ∆ = ∫                (4.17) 

and 

( )( )00
ˆlim , d 0.

T
x v t x t t

ε
ε

+→
 ∆ = ∫                 (4.18) 

Thus by (4.15), (4.16), (4.17), (4.18) we have, as 0ε +→ , 

( ) ( ) ( )( ) ( )( )0
ˆ0 , , d 0.

T
a x xJ u V a v t x t v t x t tε εε ε ≤ − ≤ ∆ − ∆ → ∫   (4.19) 

It follows from Theorem 2.1 that 

( ) ( ) ( )
0

lim min .
a

a ay A
J u V a S yε

ε + ∈→
= =
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The theorem has been proved. 
In the proof of Theorem 4.1, replacing ( )( ),x v t x tε∆  with zero, the extremal 

flow will not depend on ε . By the same way we can prove the following result. 
Theorem 4.2. If ( ),v t x  satisfies the PDE 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , , 0, , 0,
4t x x xv t x v t x f x Q x v t x g x g x v t x v T xΤ Τ Τ+ − − = = (4.20) 

and ( )x̂ ⋅  is the solution to Cauchy initial value problem 

( ) ( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )

T1 , ,
2

0,1 , 0 ,

xx t f x t g x t g x t v t x t

t x a

 = −

 ∈ =



       (4.21) 

with a feedback control 

( ) ( )( ) ( )( )T1ˆ ˆ ˆ, ,
2 xu t g x t v t x t−

=                (4.22) 

then we have 

( ) ( ) ( )ˆ min .
a

a ay A
J u V a S y

∈
= =                 (4.23) 

5. Examples on Linear-Quadratic Optimal Control Problem 
under Terminal State Constraint for Illustrating Theorem 
4.2 

Example 5.1. We consider the following linear-quadratic optimal control prob-
lem with terminal state constraint: 

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) [ ]

T T
0

inf : d

,
:

0 , ,

, , 0, ,

T
y

n n

m n

C u u t u t x t x t t

x t Ax t Bu t

x a R x T y R

u t R x t R t T

  = + 
 = +


= ∈ = ∈


∈ ∈ ∈

∫


         (5.1) 

and the corresponding linear-quadratic optimal control problem: 

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( ) [ ]

T T
0

inf : d

,
:

0 ,

, , 0, .

T
a

n

m n

J u u t u t x t x t t

x t Ax t Bu t

x a R

u t R x t R t T

  = + 
 = +


= ∈


∈ ∈ ∈

∫


         (5.2) 

where in (5.1) and (5.2), n nA R ×∈  and n mB R ×∈ . 
By classical LQ optimal control theory [3], there exists an absolutely conti-

nuous symmetric matrix function ( )S t , defined for [ ]0,t T∈ , which satisfies 
the matrix Riccati Differential Equation on [ ]0,T : 

( )0, 0.S SA A S I SBB S S TΤ Τ+ + + − = =             (5.3) 

Moreover the LQ optimal control problem ( )  is solvable. 
To use Theorem 4.2, we see that the function ( ) ( )T,v t x x S t x=  satisfies the 

following HJB equation 
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( ) ( ) ( ) ( ) ( )T 1, , , , , , 0.
4t x x xv t x v t x Ax x x v t x BB v t x v T xΤ Τ Τ+ + − =    (5.4) 

For ( ) ( )T,v t x x S t x= , we have 

( ) ( ), 2 .xv t x S t x=  
For 

( ) ( ) ( )1 , ,
2 xu B x v t x B S t xΤ Τ−

= = −
 

to find an extremal flow ( )x̂ ⋅ , we solve the Cauchy initial value problem 

( )( )
[ ] ( )

T ,

0, , 0 ,

x Ax Bu A BB S t x

t T x a

 = + = −

∈ =



                (5.5) 

Let ( ), 0tΦ  be the solution of the matrix differential equation 

( ) ( )( ) ( ) ( )T , 0 .X t A BB S t X t X I= − =

 
By classical ordinary differential equation theory, ( ), 0tΦ  is the fundamental 

solution associated to ( )TA BB S− ⋅  and the solution of (5.5) is given by 

( ) ( )ˆ ,0 .x t t a= Φ  
Then we have a feedback control 

( ) ( ) ( )Tˆ ˆ: .u t B S t x t= −                     (5.6) 

By Theorem 4.2 we have 

( ) ( ) ( ) ( ) ( ) ( )T T
0

ˆ ˆ ˆ ˆ ˆmin d .
a

T
a ay A

S y J u u t u t x t x t t
∈

 = = + ∫         (5.7) 

Remark 5.1. We will provide an approximation approach to compute  
( )min y A aa

S y∈  in the example as follows. 
Example 5.2. We consider following linear-quadratic optimal control prob-

lem with terminal state constraint: 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) [ ]

1 2 2
0

1 1

1 1

inf : d

,

0 , ,

, , 0,1 ,

yC u u t x t t

x t u t

x a R x T y R

u t R x t R t

  = + 
 =


= ∈ = ∈


∈ ∈ ∈

∫


               (5.8) 

and the corresponding linear-quadratic optimal control problem: 

( ) ( )
( ) ( )
( )
( ) ( ) [ ]

1 2 2
0

1

1 1

inf ( ) : d

,

0 ,

, , 0,1 .

aJ u u t x t t

x t u t

x a R

u t R x t R t

  = + 
 =


= ∈


∈ ∈ ∈

∫


               (5.9) 

Similar as the PDE in (5.4), the HJB equation for this example is 

( ) ( ) ( ) [ ]2 2 11, , 0, 1, 0, 0,1 , .
4t xv t x x v t x v x t x R+ − = = ∈ ∈      (5.10) 
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Similar as Example 5.1 we have 

( ) ( ) ( ) ( )2, , , 2 ,xv t x S t x v t x S t x= =              (5.11) 

where ( )S t  satisfies Riccati Differential Equation: 

( ) [ ] ( )2 11 0, 1 0, 0,1 , .S S S t S t R+ − = = ∈ ∈            (5.12) 

We solve the Cauchy initial value problem 

( )
[ ] ( )

,

0,1 , 0 .

x S t x

t x a

 = −

∈ =



                    (5.13) 

to find an extremal flow ( )x̂ ⋅  and the feedback control 

( ) ( )1ˆ ˆ ˆ, ,
2 xu v t x S t x−

= = −
 

By Theorem 4.2, for this example we have 

( ) ( ) ( )( ) ( )1 2 2
0

ˆ ˆmin 1 d .
a

a ay A
S y J u S t x t t

∈
= = +∫           (5.14) 

For a numerical approach to compute ( )min y A aa
S y∈ , in the following we 

present a sequence of flows to converge the extremal flow and the corresponding 
feedback control for an approximation of ( )min y A aa

S y∈ . 
By the iteration method given in [11], we have a sequence of differentiable 

functions ( ){ }, 1, 2,iS i⋅ =  , satisfying 

( ) ( ) [ ]2
11 0, 1 0, 0,1 ,i i iS S S t−+ − = = ∈              (5.15) 

( ) [ ]0 1 , 0,1 ,S t t t= − ∈                    (5.16) 

such that ( ){ }iS ⋅  converges uniformly to the solution ( )S t  of the equation in 
(5.12). Then we have a sequence of ( ){ }, 1, 2,ix i⋅ =  . Such that for 1, 2,i =  , 

( ) ( ) ( ) [ ] ( ): , 0,1 , 0 .i i i i ix t u S t x t t x a= = − ∈ =           (5.17) 

Noting that ( )S t  is bounded and ( ){ }iS ⋅  converges uniformly to the solu-
tion ( )S t , we see that ( ){ }iS ⋅  is uniformly bounded. Therefore by Bell-
man-Gronwall inequality we can show that ( ){ }ix ⋅  is uniformly bounded. 
Further, we show that ( ){ }ix ⋅  converges uniformly to ( )x̂ ⋅  which is the solu-
tion of the equation in (5.13) as follows. We have, for [ ]0,1t∈  and 1, 2,i =  , 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
0

0

ˆ ˆ d

ˆ ˆ ˆ d .

t
i i i

t
i i i i

x t x t S s x s S s x s s

S s x s S s x s S s x s S s x s s

− = −  

 = − + − 

∫

∫  
Then for [ ]0,1t∈  and 1, 2,i =  ,, by general integral estimation we have, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

0 0
ˆ ˆ ˆd d .

t
i i i ix t x t S s S s x s s S s x s x s s− ≤ − + −∫ ∫  

By Bellman-Gronwall inequality, we have, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )0
1 ˆ d

0
ˆ ˆ d e

t
i iS s x s x s s

i ix t x t S s S s x s s −∫− ≤ −∫     (5.18) 

Noting that ( ){ } ( ), , 0,1, 2,i ix S i⋅ ⋅ = 
 are uniformly bounded [ ]0,1 , 

( )x̂ ⋅  is bounded on [ ]0,1  and ( ) ( )iS S⋅ − ⋅  converges uniformly to zero, by 
(5.18) we have shown that ( ) , 1, 2,ix t i =   converges uniformly to ( )x̂ t  on 
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[ ]{ }0,1t∈ . Meanwhile, if define ( ) ( ) ( )i i iu t S t x t= − , then ( )iu ⋅  converges 
uniformly to the feedback control ( ) ( ) ( )ˆ ˆu t S t x t= −  on [ ]0,1 . Noting that 

( ) ( )( ) ( )1 2 2
0

1 d ,a i i iJ u S t x t t= +∫  
we have 

( ) ( ) ( )ˆlim min .
a

a i a ai y A
J u J u S y

→∞ ∈
= =               (5.19) 

6. A Numerical Approach to Compute ( )y A aa
S ymin ∈  for the 

Sake of General Affine Optimal Control Problem ( )  

In this section, we present an iteration of difference equations to illustrate the 
approximation of ( )min y A aa

S y∈  given by Theorem 4.1 concerning the affine 
optimal control problem ( ) . 

Given 0ε > . Let ( ).xε  satisfy 

( ) ( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )

T1 , ,
2

0,1 , 0 .

xx t f x t g x t g x t v t x t

t x a

ε ε ε ε ε

ε

 = −

 ∈ =



      (6.1) 

with a feedback control 

( ) ( )( ) ( )( )T1: , .
2 xu t g x t v t x tε ε ε
−

=                (6.2) 

By the result in Theorem 4.1, we need to compute ( )aJ uε . Consider the 
function 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1: , , .
4 x xH t v t x t g x t g x t v t x t Q x tε ε ε ε ε ε

Τ Τ= −   (6.3) 

Noting the expression of the cost functional of ( )  in (1.4), we will estimate 

( ) ( )
0

d .
T

aJ u H t tε ε= ∫                     (6.4) 

Let 
2

1 1L
ε
 = +  

. Dividing the time interval [ ]0,T  evenly into L small in-

tervals [ ]1, , 0,1, , 1i it t i L+ = − , with 0 0t = , Lt T= . Let  

1: , 0,1, , 1i i
T t t i L
L

τ += = − = − . Define 

( ) ( ) ( ) ( )
1

1

1 10 .
2 2

L

L
i

F h H H i H Tε ε ε ετ τ
−

=

 = + +  
∑           (6.5) 

By classical numerical mathematics [12], we have 

( ) ( )lim .L aL
F h J uε ε→∞

=                     (6.6) 

By (6.3), for computing ( )LF hε , we need to estimate ( ) , 0,1, , 1ix t i Lε = −  
by following difference equation 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )

T
1

0

1 , ,
2

0,1 , .

i i i i i x i i

i

x t x t f x t g x t g x t v t x t

t x t a

ε ε ε ε ε ε

ε

τ+
  − = −   
 ∈ =

 (6.7) 
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with appearing ( )( ), , 0,1, , 1x i iv t x t i Lε = − . Therefore, next for a given 
( ) [ ] 2, 0,t x T R∈ ×  we need to estimate ( ),xv t x . We present an iteration of dif-
ference equations as follows to compute ( ),xv t x  numerically. 

On [ ] 20,T R×  we define 

( ) ( ) ( )T1, : , .
2 xh t x g x v t x−

=                  (6.8) 

The equation in (4.4) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

T T

T

, , , , ,

, , ,
x t x xv t x v t x v t x f x v t x g x h t x

Q x h t x h t x

ε∆ = + +

− +
     (6.9) 

with the boundary condition ( )1, 0v x = . 
For simplicity, we restrict our discussion to the state in 2R  as follows. For a 

given ( ) [ ] 2, 0,t x T R∈ × , along the direction ( ),h t x , we have a linear function 
( ) ( ) ( ) ( ) ( ), , 0, 0x s x f x g x h t x s s x x= + + ≥ =    such that 

( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )

TT

0

T

0

,

d
lim , , , ,

d

d ,
, , ,

d

x

t x
s

s

v t x

x s
v t s x s v t s x s Q x s h s x s h s x s

s

v t s x s
Q x h t x h t x

s

ε

+→

=

∆

 
= + + + − + 

 

+
= − +

(6.10) 

Noting that 
( ) ( ) ( ) ( )

d
,

d
x s

f x g x h t x
s

≡ + . Then when 0 1t< ∆  , at ( ),t x , 

we have the following difference equation: 

( )
( )( ) ( )

( ) ( ) ( )T, ,
, , , ,x

v t t x t v t x
v t t x Q x h t x h t x

t
ε

+ ∆ ∆ −
∆ + ∆ − ≈ − +

∆
  (6.11) 

( ) ( ) ( ) ( ), .x t x f x g x h t x t∆ = + + ∆                (6.12) 

Write the state ( )1 2,x x x=  in 2R . Denote [ ] [ ]1 1 2 21, 1 1, 1x x x x− + × − +  by 

Ω . We focus on difference equations on [ ],1t ×Ω . For positive integers: ,N L , 

let { }, , , 1, 0,1, ,i j N N∈ − −   and { }0,1, ,k L∈  . For 2 1,
N L

ζ τ= = , de-

note ( ), 1 2,i jx x i x jζ ζ= + +  and ( )1 1ks k tτ= − − . Let ,
k
i jw  denote the ap-

proximate grid value of the solution ( ),,k i jv s x  and 

( ) ( ) ( )1
, 1, 1, , 1 , 1 ,: 2 , , ,k k k k k

i j i j i j i j i j x k i jw w w w w v s xδ ζ −
+ − + −= − − ≈     (6.13) 

( ) ( )2 2
, 1, 1, , , 1 , 1 ,: 4 , .k k k k k k

i j i j i j i j i j i j x k i jw w w w w w v s xδ ζ −
+ − + −= + − + + ≈ ∆  (6.14) 

We use ( ) { }, 0,1, ,kw x k L∈   to denote the piecewise bi-linear interpolant 
of ,

k
i jw , ( )1 21 ,P x x jα ζ± ± + , ( )1 2, 1P x i xζ α+ ± ± , ( )1 21 , 1P x xα α− − ± ±  

and ( )1 21 , 1P x xα α+ + ± ± , for all ,i j . 
By difference iteration method with (6.11)-(6.14) and ( )kw x  (a piecewise 

bi-linear interpolant of ,
k
i jw ), for a given ( ) [ ] 2, 0,t x T R∈ × , we write algorithm 
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for approximating ( ),xv t x  as follows. 
Algorithm 4.1. 
1) Set ( )0

, ,i j i jw P x= , { }, , , 1, 0,1, ,i j N N∈ − −  ; 
2) Compute 

( )( )0 T 0
, , , ,, ,i j i j i j i ju h x g x wδ=

 

( ) ( )0 0
, , , , , ,i j i j i j i j i jx x f x g x u τ = + +   

( )0 0 0
, , ;i j i jw w x=

 

3) For 1, 2, ,k L=  , 

( ) ( ) ( )
1

T, ,2 1
, , , ,, , .

k k
i j i jk

i j i j i j i j

w w
w Q x h t x h t xεδ

τ

−
−

−
− = − +       (6.15) 

( )( )T
, , , ,,k k

i j i j i j i ju h x g x wδ=                 (6.16) 

( ) ( ), , , , , .k k
i j i j i j i j i jx x f x g x u τ = + +               (6.17) 

( ), , ;k k k
i j i jw w x=                       (6.18) 

4) Compute 

( ) ( ) ( ) ( )1
0,0 1,0 1,0 0,1 0, 1 0,02 , , , .L L L L L

x L xw h w w w w v s x v t xδ −
− −= − − ≈ =   (6.19) 

Remark 6.1. The above discretization scheme is essentially an Euler’s method 
in the characteristic direction to be stable in t [12]. The system matrix associated 
with the third step of the algorithm above is symmetric and positive definite if  

ε  is sufficiently smaller than 
2h
τ

. We can benefit from these special properties  

to use an efficient iterative solver which takes advantage of the symmetry and 
positive-definiteness of the matrix. 

Remark 6.2. In Algorithm 4.1, for computing ( ), 1, 2, ,k
i jw k L=  , by (6.15) 

we only need to have linear computations: 

( ) ( ) ( )T1 2 1
, , , , , ,, , ,k k k

i j i j i j i j i j i jw w w Q x h t x h t xτ εδ− − = − + −  
     (6.20) 

noting that 1 1 1
, , ,, ,k k k

i j i j i jw x w− − −  have been got by previous steps. 

7. Conclusion 

It is well-known that in general a value function of optimal control problem is 
non-smooth. It is hard to study the regularity properties of a non-smooth func-
tion. In this paper, we study the regularity properties of the value function in an 
affine optimal control problem by solving the global minimization problem for 
the value function over the attainable set. We also provide a computational ap-
proach to this global minimization by a convection-diffusion equation. By more 
works in future we may consider some global optimization for non-smooth 
function with the help of optimal control methods. 
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