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Abstract 
This paper presents a detailed simulation model designed for autonomous 
electric vehicles (AEVs) powered by lithium-ion batteries. It provides insights 
into the input parameters used in the model and the recuperation of braking 
energy in AEVs. In addition, the paper offers a thorough analysis of the dy-
namic characteristics of lithium-ion batteries through simulations of standar-
dized driving cycles, including urban and highway drive cycles. These results 
are expected to facilitate the progress of AEV battery technology development 
and promote the creation of more sustainable and efficient self-driving ve-
hicles. 
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1. Introduction 

Despite the recognized issues [1] and the emergence of alternative solutions [2], 
there is a strong upward trend in the production of batteries for Autonomous 
Electric Vehicles (AEVs) [3]. Market growth has reduced production costs and 
increased investment in the development of AEVs [4] [5]. The main solutions to 
the issues of autonomy and extended travel range include designing batteries 
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with higher energy density [6], reducing battery weight, and optimizing dynamic 
charging and discharging modes [7]. 

Lithium-Ion batteries have several advantages compared to other battery types 
[8], including higher efficiency and energy density, increased nominal voltages, 
lower specific weight, longer lifetime, faster and more efficient charging, smaller 
size, no maintenance requirements, and greater resistance to external conditions 
[9] [10] [11]. 

However, Lithium-Ion batteries also have some drawbacks, such as the need 
to avoid complete discharge, which may shorten their lifespan. Discharging 
them with high currents is also not recommended due to the risk of damage. 
These limitations can be addressed by using electronic circuits to manage the 
battery’s charging and discharging processes [8]. 

AEVs have the potential to reduce transportation costs and petroleum usage 
since they have no tailpipe emissions, making them environmentally friendly. 
The battery technology improvements have also gained increased development, 
especially in their range, making them a viable option for long-distance travel. 
Although they are generally more expensive than gasoline-powered vehicles, the 
cost of ownership is lower due to battery durability, lower maintenance, and fuel 
costs as shown in Figure 1. They are in an optimal position to significantly re-
duce petroleum consumption, leading to lower greenhouse gas emissions and 
better air quality. As their battery technology improves and production volumes 
increase, AEVs will become more affordable and accessible [4]. 

This paper observes the transient behavior of Lithium-Ion batteries in various 
modes of operation and analyzes the impact of charging and discharging on 
AEV operational parameters. The outcomes of this study are anticipated to 
promote the advancement of AEV technology, particularly in optimizing battery 
efficiency and stimulating the fabrication of more environmentally friendly and  

 

 
Figure 1. Present cost and petroleum usage chart. 

https://doi.org/10.4236/oalib.1110272


Q. M. Ajao et al. 
 

 

DOI: 10.4236/oalib.1110272 3 Open Access Library Journal 
 

effective vehicles. 
Lithium-ion batteries are the primary power source for autonomous electric 

vehicles, and the state of charge and power output of these batteries are critical 
parameters for their effective operation. In a previous study, a simulation model 
was proposed for lithium-ion batteries in autonomous electric vehicles, which 
provides insights into these critical parameters [12]. Before this proposal, re-
search was conducted on the comparative analysis of various lithium-ion battery 
models for autonomous electric vehicles [13], analyzing their accuracy in pre-
dicting battery behavior under different driving conditions. Researchers found 
that models that consider the thermal behavior of batteries tend to be more ac-
curate. 

Further work was conducted in this field presenting a control-oriented model 
for a lithium-ion battery pack used in autonomous electric vehicles. The model 
focuses on developing a battery charging and discharging strategy to optimize its 
performance [14]. 

One significant acknowledgment in the development of AEVs has indicated 
that battery management systems play a crucial role in the effective operation of 
lithium-ion batteries used in AEVs [15]. Researchers have proposed a battery 
management system design that includes strategies for battery balancing and 
thermal management to ensure the battery’s longevity [16]. Thermal manage-
ment is also essential for the effective operation of lithium-ion batteries in elec-
tric vehicles, including autonomous electric vehicles. The use of phase change 
materials for battery thermal management has been reviewed and extensively 
investigated, which can improve the battery’s performance and safety [17]. 

Hybrid modeling approaches combining physical and empirical models have 
been proposed to improve the accuracy of lithium-ion battery performance pre-
diction [18]. Researchers have presented a hybrid modeling approach for li-
thium-ion batteries used in autonomous electric vehicles, which can help to op-
timize battery performance. Several studies also focused on optimizing battery 
capacity and energy efficiency for lithium-ion batteries used in electric vehicles, 
including autonomous electric vehicles [19]. Simulation models were developed 
to effectively optimize the battery design for these applications. An overview of 
the thermal management strategies for lithium-ion batteries used in electric ve-
hicles, including autonomous electric vehicles, has been discussed in earlier stu-
dies, where the impact of thermal management on battery performance and 
safety is theoretically emphasized. 

Due to various challenges, the AEV may face in the future, researchers have 
presented a multi-objective optimal design for a lithium-ion battery, which can 
be applied to autonomous electric vehicles. The design aims to maximize the 
battery’s energy density while minimizing its cost [20]. 

2. Lithium-Ion Battery—Model Development 

This paper employs the MATLAB software to design and verify a general model 
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of a Lithium-Ion battery based on Shepherd’s model for simulating various 
driving modes of Autonomous Electric Vehicle (AEV) drives and battery packs 
(as shown in Figure 2). The model is structured as a voltage source controller, 
with its output determined by the current state of charge (SoC) of the battery. 
The purpose of this approach is to obtain input parameters for the battery model 
(as depicted in Figure 3) from the manufacturer’s catalog data using a simple 
process. The model includes several functions that depend on the battery voltage 
and modes of operation. The aim of this research is to advance the development 
of more efficient and sustainable AEVs [21]. 

The discharge profile of Lithium-Ion batteries is presented in Figure 4 and 
can be segregated into three distinctive regions. The initial region, also referred 
to as the exponential regime, is distinguished by the battery voltage surpassing 
its nominal value. The battery operates within this regime during the phase of 
establishing a stable discharge current following a no-load battery mode. During 
the discharge mode in the nominal battery operating area, there is a slight vol-
tage change. As the battery’s nominal capacity is discharged, it enters the third 
operation area where the voltage rapidly decreases. 

The battery discharge curve, depicted in Figure 4 as a red line, is nonlinear 
and follows the Shepherd model’s Equation (1) during the charging current’s  

 

 
Figure 2. The Lithium-Ion battery model-based State of Charge (SoC). 

 

 
Figure 3. The battery model—block diagram (MATLAB-Simulink). 
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positive state (i* > 0). 
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1 0, , expt t t
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− −

       (1) 

( ) ( )* *
2 0, , expt t t

t t

Q Qf i i i E K i K i A B i
Q i Q i

= − ⋅ − ⋅ + ⋅ − ⋅
− −

       (2) 

where: E0—Constant voltage (V), K—Polarization resistance (Ω), i*—Low fre-
quency current dynamics (A), i—Battery current (A), it—Extracted capacity (Ah), 
Q—Maximum battery capacity (Ah), A—Exponential voltage (V), B—Exponen- 
tial capacity (Ah−1). The second component of Equation (1) is the polarization 
voltage, which is the result of multiplying the polarization resistance and the 
battery current. This term explains the behavior of the battery when it is not 
under load. 

The discharge characteristics at various currents are shown in Figure 5, de-
monstrating variations in behavior [21]. 

The battery’s charging characteristic, graphically represented in Figure 5 and 
mathematically formulated in Equation (2), exhibits an inverted profile with re-
spect to the discharge feature. The charging process commences from an empty  

 

 
Figure 4. Discharge of the Lithium-Ion battery at nominal discharge current. 

 

 
Figure 5. Battery discharged at various currents (Nominal Discharge Current = 0.65 A). 
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battery condition and rapidly builds up the nominal voltage before continuing at 
a constant voltage level. Finally, it enters an exponential stage, where the voltage 
is restored to the no-load value. Since the charging current has an opposing po-
larity (i* < 0), the polarization resistance varies, resulting in a slightly different 
voltage function. This paper disregards the impact of temperature on the Li-
thium-Ion battery’s performance [21]. Considering the dynamic behavior of the 
Lithium-Ion battery, especially during the exponential region and rapid capacity 
loss phase, it is crucial to utilize advanced power electronic systems to prevent 
overheating and damage. To ensure an accurate analysis of an autonomous elec-
tric vehicle’s drive, it is essential to take into account the various assumptions 
presented in the model [22]. These assumptions include the constant internal re-
sistance of the battery regardless of the mode of operation (charging or dis-
charging) and the magnitude of the current. The model assumes the hysteresis ef-
fect of the battery voltage curve to be negligible, and the battery capacity to remain 
unchanged with respect to the charging current. The model neglects the tempera-
ture dependencies of battery parameters and the possibility of self-discharge, 
while assuming the battery to have no memory effect. As the simulations provide 
only discrete states of the battery, the model with concentrated parameters im-
poses certain restrictions: the battery voltage and capacity cannot be negative, 
and the voltage reaches zero at complete discharge. Moreover, when overcharged, 
the battery’s maximum state of charge (SOC) may exceed 100% [22]. 

In order to verify the generic battery model, input parameters from the Mit-
subishi xAuto Electric Vehicle were selected [23]. The base of the battery pack 
within the model was a single battery cell with a nominal voltage of 3.75 V. The 
MATLAB program was then utilized to generate discharge curves for various 
currents, as depicted in Figure 6. Additionally, the parameters obtained from 
the manufacturer’s catalog using the method previously described can also be 
observed in Figure 5. 

Mitsubishi Electric has created xAuto EV technology, prioritizing safety, and 
convenience (as depicted in Figure 7). This self-sensing driving technology 
combines peripheral-sensing technologies with network-based driving technol-
ogy to enable autonomous driving in various road conditions, including those 
with low visibility. Field tests have confirmed the effectiveness of this autonom-
ous driving technology. Mitsubishi Electric’s future plans include developing high- 
accuracy 3D mapping and establishing a global wireless network for centime-
ter-level positioning compatible with CLAS broadcasting from the Quasi-Zenith 
Satellite System (QZSS) [23]. Ongoing testing aims to improve the self-sensing 
driving technology further, focusing on collision avoidance at crosswalks and 
forward-monitoring camera technology based on vision. 

3. Parameters Setting for AEV Drive 

This paper compares the performance of autonomous electric vehicles (AEVs) 
based on their ability to cover a predetermined distance from a fully charged 
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Figure 6. Lithium-ion battery standard discharge curve (different characteristic areas). 

 

 
Figure 7. Mitsubishi xAuto autonomous-driving vehicle. 
 

battery under specific driving conditions. Two standardized driving cycles are 
used (refer to Figure 8 and Figure 9): 

1) the Urban Dynamometer Driving Schedule (UDDS), which covers a dis-
tance of 12 km in 1380 seconds (23 minutes) with an average speed of 36.6 km/h. 

2) The simulation is then verified using the combined UDDS (10 km) and 
EPA Highway Fuel Economy Test (HWFET) (30 km) driving cycles. 

The initial parameters are set based on the UDDS driving cycle, and the com-
bined UDDS (10 km) and HWFET (30 km) driving cycles are used for simula-
tion verification of the model [24]. 

Defining all parameters that affect the AEV’s performance is necessary to cal-
culate the battery dynamics through simulation. The energy required to power 
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Figure 8. Urban dynamometer driving cycles UDDS. 

 

 
Figure 9. EPA highway fuel economy test HWFET. 

 
the AEV’s drive is determined by the driving mode and basic vehicle parameters 
[25] [26] [27]. This energy is transmitted as an electrical load to the battery 
through the electric drive and is discharged during acceleration and driving 
while being charged during braking energy recovery. However, this paper simpl-
ifies the analysis by ignoring energy losses within the AEV, which can be as high 
as 20% under real-world conditions. The calculations also assume a standard 
route and do not consider changes in vehicle inclination, such as driving uphill 
or downhill [24]. 

According to [28], the total mechanical power can be obtained by adding the 
product of the total resistance force acting on the vehicle while in motion and its 
corresponding velocity at a specific moment in time. 

mechinalP F v= ⋅∑                         (3) 

Three components contribute to the total resistance force experienced by a 
moving vehicle as per [28]: rolling resistance, air resistance, and gradient resis-
tance. These individual components are modeled in Simulink and then inte-
grated into a common subsystem referred to as “UDDS load”. Figure 10 depicts 
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the structure of this subsystem [24]. The drag coefficient (C: 0.0425) and frontal 
area (A) values used in this paper are sourced from the base vehicle model, the 
Mitsubishi xAuto EV. The MATLAB model of the AEV utilizes the same values 
for air density (1.2 kg/m3), rolling friction coefficient (0.013), and transmission 
coefficient (1.03) as reported in [23]. The selected driving cycle determines the 
vehicle speed used as input into the MATLAB model, and acceleration is ob-
tained from the vehicle speed. 

The Simulink model is designed to simulate the performance of Autonomous 
Electric Vehicles (AEVs) under the Urban Dynamometer Driving Schedule 
(UDDS) and the Highway Fuel Economy Test (HWFET) driving cycles. 

 

 
Figure 10. UDDS simulation load block. 

 

 
Figure 11. The UDDS and HWFET MATLAB-Simulink Mode. 
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The mechanical load on the DC motor driving the AEV is calculated by mul-
tiplying the opposing force to vehicle movement, as described in [3], with the 
corresponding speed. This generates a function that characterizes the mechani-
cal load on the motor. The DC motor block’s output, which represents the elec-
tric energy demand supplied by the battery pack, is depicted in Figure 11. The 
model is based on the xAuto vehicle, which employs a battery pack with a no-
minal voltage of 330 V. The battery pack comprises 11 modules connected in se-
ries, with 8 battery cells in parallel, each with a nominal voltage of 3.75 V. The 
battery pack model is shown in Figure 12. 

The power variations required for the AEV drive during the UDDC drive 
cycle are illustrated in Figure 13. The DC motor’s power rating is determined by 
selecting the nearest standard power value that is greater than the highest calcu-
lated power value. 

At 196 s, the maximum power of 29.2 kW is observed, leading to the selection 
of a 30 kW DC motor power rating for the AEV drive [24]. The diagram in Fig-
ure 11 also displays intervals of negative power during deceleration, indicating 

 

 
Figure 12. The battery pack model. 
 

 
Figure 13. Display of the necessary power during UDDS driving cycle. 

https://doi.org/10.4236/oalib.1110272


Q. M. Ajao et al. 
 

 

DOI: 10.4236/oalib.1110272 11 Open Access Library Journal 
 

the process of regenerative braking, where energy flows from the DC motor 
block to the battery pack. To calculate the energy required for the AEV drive 
during the drive cycle, the power function is integrated over time. To determine 
the battery pack capacity required to supply the energy demand at a specific vol-
tage, the following equation is utilized: 

3600
WC

U
=

⋅
                         (4) 

The battery pack capacity (C) in Ah is determined using the equation: C = 
(W/U) × 1000. To calculate the total electrical energy (W) required for the driv-
ing cycles, the power function is integrated over time. The total energy required 
for the simulated driving cycle is found to be 40.1 MJ. However, since Li-
thium-Ion batteries operate in the capacity range of 25% to 95% for safe use, 
only 70% of the theoretical capacity is available. Therefore, the calculated total 
energy value needs to be divided by 0.7 to obtain the correct values [24]. Based 
on this, the theoretical battery capacity required is approximately 47 Ah. 

4. Discussion of Results 

To validate the AEV model, the relevant components can be parameterized 
based on the xAuto EV model [23], and the remaining components of the drive 
system can be adjusted to meet the requirements of the UDDC drive cycle. 

The first step in verifying the AEV model is to confirm that it can cover the 
driving distance required by the UDDC drive cycle, as shown in Figure 14 
which displays the dynamic characteristics of the battery pack under loads in-
duced by UDDS driving cycles. The DC motor block is responsible for providing  

 

 
Figure 14. The dynamics of UDDC battery pack drive cycle. 
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the AEV’s speed and power output, and its performance during the UDDC drive 
cycle is depicted in Figure 15. The green line intervals in the figure indicate pe-
riods when the battery is discharging, while purple marks the periods when 
braking energy is being recuperated. The motor power during acceleration 
ranges from 70% to 95%, accounting for about 20% of the entire drive cycle [29] 
[30]. 

These intervals result in the largest discharge current, putting maximum load 
on the battery (Figure 13). When cruising, the motor power ranges from 30% to 
40%, representing approximately 55% of the drive cycle [25]. The battery dis-
charge current during these periods is almost half as much, and battery stress is 
reduced. However, since the discharge duration is longer, the SOC changes more 
intensely, as shown in the diagram in Figure 15. 

The simulation’s second phase involves testing the model’s performance on a 
combined driving cycle comprising 10 km of UDDC followed by 30 km of 
HWFET, which takes a total of 3760 seconds. The UDDC drive cycle lasts for 
1370 seconds (covering 10 km), and the HWFET cycle lasts for 1350 seconds 
(covering 30 km), with the vehicle reaching its destination at 2720 seconds. The 
battery is charged for 1040 seconds with a constant current of 50 A once the ve-
hicle arrives. Figure 17 shows the battery’s dynamic characteristics, including 
SOC, voltage, and current, during the UDDS + HWFET drive cycle, while Fig-
ure 16 shows the power and engine speed. The analysis reveals that the vehicle’s  

 

 
Figure 15. The dynamics of UDDC + HWFET battery pack drive cycle. 
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Figure 16. DC motor speed and power for UDDC drive cycle. 

 

 
Figure 17. DC motor speed and power for UDDC + HWFET. 

 
frequent stops during the UDDC drive cycle result in energy recovery, leading to 
a slower decrease in SOC. However, the HWFET cycle causes a significant in-
crease in battery discharge current with minimal energy recovery, leading to 
SOC decreasing twice as fast. The battery pack is not discharged below 25% at 
the end of the cycle, as intended. 
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5. Conclusion 

This paper utilized MATLAB-Simulink to parameterize the drive of an Auto-
nomous Electric Vehicle (AEV) and studied the dynamic characteristics of its 
Lithium-Ion battery during different charge and discharge scenarios. The process 
of modeling an AEV, selecting battery parameters, and calculating the required 
power for the drive cycle was presented, along with model simplification and li-
mitations. Future research opportunities were also suggested, including incor-
porating all parameters that describe a realistic AEV to enhance its distance 
range. Based on simulations and analysis of results, the paper recommends de-
fining the Lithium-Ion battery’s boundary areas for operation in an AEV and 
selecting measuring signals for control electronics. 
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