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Abstract 
This paper presents the analysis of a two-stage negative binomial group test-
ing estimator of the prevalence of a rare trait when imperfect diagnostic tests 
with known sensitivity and specificity were used. The study utilized the me-
thod of Maximum Likelihood Estimation (MLE) to obtain the estimator and 
the Cramer-Rao lower bound method to compute the Fischer information of 
the estimator. The properties of the constructed estimator are discussed and 
the efficiency of the constructed estimator relative to other estimators in pool 
testing scheme was determined by computing the Asymptotic Relative Effi-
ciency (ARE) and the Relative Mean Squared Error (RMSE). The procedure 
was illustrated, and the model was verified by performing Monte Carlo simu-
lations using R programming language. 
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1. Introduction 

The standard method of screening individuals for the presence or absence of a 
rare trait of interest (e.g. disease) is uneconomical, especially when the target 
population is large, and the prevalence is low. A feasible strategy is to pool indi-
viduals into groups which are then tested as units. Group testing suggests a con-
siderable amount of savings in efficiency, and the number of tests performed 
compared to individual testing if rightly applied. The idea dates back to World 
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War II and was applied to screen for syphilis antigen among army inductees [1].  
In statistical literature, group testing literature splits into two distinct areas. 

The first one is classification whose objective is to identify the positive units 
having a trait of interest. The first documented work in classification was applied 
to identify syphilitic men that were called for army induction during World War 
II [1]. The pooling strategy achieved a significant amount of savings by reducing 
the number of tests needed by testing groups of blood samples as opposed to 
testing individual blood samples of the army recruits. Since its inception, differ-
ent authors have extended and generalized the procedure. Hierarchical testing 
schemes were shown to achieve greater savings [2] [3]. The procedure has been 
applied in a variety of fields such as in drug discovery [4], quality control 
processes [5], and concealing the identity of individuals when screening for HIV 
antibodies [6].  

This paper will focus on the second objective which is on estimation of the 
prevalence of a rare trait. Research in public health shows that when examining 
diseases transmitted by insect vectors even if disease identification is the main 
focus, it is equally important to estimate the prevalence (p) of a pathogen to curb 
and prevent an outbreak [7]. The first work in estimation was developed by [8] 
to estimate the proportion of insect vectors that are capable of transmitting the 
aster-yellow virus. In recent studies, different authors have extended [8] work by 
considering multi-stage pool testing schemes [9] [10] [11]. Retesting of pools 
when imperfect diagnostic tests are used has been examined [9] [12] [13] and 
sample size procedures for estimating the adventitious presence (AP) of trans-
genic plants in a population have been examined [14] [15]. Their research has 
largely developed under the binomial model which presumes a fixed number of 
groups to be tested for a trait of interest. In situations where an unknown num-
ber of pools are to be tested until a predetermined number of positive pools are 
observed, calls for the negative binomial model to be considered. 

A procedure called inverse sampling is of great importance when sampling bi-
ological samples. It entails continuous sampling until a fixed number of samples 
having a trait of interest are observed. Inverse sampling was first used to esti-
mate the frequencies of an attribute in a population [16]. A combination of in-
verse sampling and group testing was suggested to be viable in determining the 
infection rate of diseases transmitted by insect vectors [17]. It was noted that the 
sources of errors in group testing designs were attributed to the sampling 
process and not the pooling process. Thus, if sampling and pooling are done 
correctly, more desirable results can be achieved. The procedure was established 
to be suitable in situations that prompt immediate responses like disease out-
breaks and natural disasters. Early detection of infectious diseases and quick 
countermeasures are important to mitigate the effect of an outbreak [18]. In-
verse (negative) binomial group testing was applied to assess the transmission of 
the parasitic worm Onchocerciasis volvulus by blackflies which is responsible for 
causing blindness and skin diseases [19]. Several point estimators that mini-
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mized the bias of the estimator were considered. The results showed the poten-
tial applicability of the model in the screening of West Nile Virus (WNV) and 
Foot and Mouth Disease (FMD) [20].  

The foundation in estimation under the inverse binomial group testing model 
was established under the assumption that perfect diagnostic tests and pools of 
equal sizes are used [20]. The MLE of the proportion p was established to be po-
sitively biased, and an almost unbiased estimator within a region of interest was 
developed by applying a suitable correction method [7]. A comparison of group 
sizes was considered [21] and applied in the detection of the AP of transgenic 
plants in a population. In their subsequent work [22] examined the sample size 
procedures for estimating AP by considering the dilution effect. The MLE was 
applied and sample sizes that guaranteed a narrow confidence width were ob-
tained. The optimal group sizes that minimized the asymptotic variance of the 
estimator when imperfect tests are used have also been examined [23]. Sequen-
tial estimation under the negative binomial group testing model has been consi-
dered and the results established that an unbiased estimator does not exist [24]. 

The negative binomial group testing model has largely developed under the 
postulation that perfect tests are used (i.e., pools are not misclassified). However, 
misclassification errors can occur in an experimental design when the diagnostic 
tests used are imperfect (i.e. the sensitivity and the specificity of the diagnostic 
test are less than 1). The focus has been to examine efficient estimators and to 
determine optimal group sizes. Different authors have examined the retesting of 
pools under the binomial model in group testing, and have established that re-
testing improves the efficiency of an estimator, and it recovers the sensitivity of 
the diagnostic tests during estimation [9] [12] [13]. It is on this background that 
this paper is developed.  

In this paper, we construct and analyze a testing scheme developed under the 
negative binomial model that incorporates retesting of pools when imperfect 
tests are used. A pool that tests positive in the initial test is sequentially given a 
retest. The properties of the estimator are discussed and the efficiency of the 
constructed estimator relative to the one-stage negative binomial group testing 
model with misclassification was analyzed. 

2. Simulation 

A generalized Monte-Carlo simulation algorithm used in this study involved the 
following: 

Step 1: Set fixed values of n, k, and p at known sensitivity and specificity val-
ues. 

Step 2: Generate N independent data sets from negative binomial ( )( )*,n pπ  
that is ( )( )*~ nbinom ,iT n pπ  for 1, ,= �i N . 

Step 3: Compute the numerical value of the test statistics T for each data set 

1 2 ,, , NT T T� . 
Step 4: If N is large enough, summary statistics 1 2 ,, , NT T T�  should be a good 

approximation to the true sampling properties of the test condition under the 
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conditions of interest. 
The study simulated different data sets of pool sizes, 5,10,30,50k = . The num-

ber of positive groups that tested positive on retest was fixed at 1,3,5,10,15n = . 
The sensitivity and specificity values of the tests are assumed to remain constant 
throughout the entire study and are set at 99%, 98%, 95%, and 90%. 

3. Point Estimation 

The study assumes that the outcome of individual disease statuses are indepen-
dently and identically distributed (i.i.d) Bernoulli random variable. We also as-
sume that imperfect diagnostic tests with known sensitivity and specificity defined 
as ( )0 0 | 0j jPr X Dπ = = =  and ( )1 1| 1j jPr X Dπ = = =  respectively were used. 
The testing process is performed sequentially until the nth positive pool that 
tests positive on retesting is observed.  

Suppose that several pools of size k are sequentially tested for the presence of a 
rare trait in a population until the predetermined nth pool that tests positive on 
a retest is observed. The total number of pools tested is denoted by 1 jj

nT T
=

= ∑  
where 1 jj

l T
=∑  is the number of groups sequentially tested until the lth positive 

group that tests positive on retesting is observed on a retest. Let iX  be 1 if the 
lth group tests positive and 0 otherwise for 1,2,i T= … . Let iD  be 1 if the lth 
group is truly positive and 0 otherwise for 1,2,i T= … . If the proportion of the 
rare trait in a given population is denoted by p, using the theory of probability 
and indicator function, then the probability that a pool tests positive on retesting 
is 

 ( ) ( ) ( )( )2* 2 2
1 0 11 1 .kp pπ π π π= + − − −                 (1) 

based on the sampling scheme, T follows the negative binomial distribution with 
parameters n and ( )* pπ . Then the Likelihood function is  

 ( ) ( )* *1
1

1
t nnt

L p
n

π π
−− 

= − − 
                    (2) 

and the Maximum likelihood Estimator (MLE) of proportion p is 

 
( )

1

2
1

22
1 0

ˆ 1 .
1

kn
tp

π

π π

 − 
= −  

− − 
 

                     (3) 

The table below shows the MLE of p for different values of p, n, and k when 
the sensitivity and specificity of the tests are known to be 99%. 

From Table 1, it can be observed that for any fixed values of n and k, the MLE of 
p increases with an increase in the prevalence. Also, for any fixed values of k and p, 
the MLE of p decreases as the waiting parameter n increases. A close approximation 
of the prevalence is observed at low values of p when both k and n are large, but 
high values of p when both k and n are large are sufficient to overestimate the pre-
valence level. Thus, scrutiny of the table reveals that it is possible to get a combina-
tion of n and k values that gives a close approximation of the prevalence.  
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Table 1. The MLE of p for 1,3,5,10,15n = ; 5,10,30,50k = . 

n 

p 1 3 5 10 15 

k = 5 

0.005 0.037083 0.007335 0.006203 0.005540 0.005367 

0.01 0.072883 0.014681 0.012411 0.011042 0.010696 

0.05 0.277838 0.077258 0.062284 0.055110 0.053197 

0.10 0.454758 0.175649 0.128055 0.110799 0.106557 

0.20 0.697056 0.419199 0.306039 0.230217 0.215374 

0.30 0.837360 0.643550 0.526881 0.392980 0.347869 

k = 10 

0.005 0.060468 0.007355 0.006216 0.005534 0.005351 

0.01 0.108036 0.015609 0.012384 0.011074 0.010694 

0.05 0.421494 0.116445 0.069269 0.055804 0.053448 

0.10 0.658052 0.330505 0.199350 0.120100 0.108827 

0.20 0.885850 0.709192 0.587668 0.403237 0.309704 

0.30 0.957030 0.879560 0.815683 0.696210 0.613936 

k = 30 

0.005 0.143000 0.010042 0.006235 0.005524 0.005344 

0.01 0.267490 0.027645 0.013566 0.011109 0.010681 

0.05 0.774480 0.475560 0.302159 0.120312 0.070893 

0.10 0.943910 0.833082 0.740952 0.569289 0.442061 

0.20 0.978910 0.940975 0.903185 0.824583 0.754329 

0.30 0.980270 0.944985 0.908833 0.834533 0.766407 

k = 50 

0.005 0.228030 0.015558 0.006729 0.005549 0.005339 

0.01 0.394580 0.067095 0.019821 0.011208 0.010726 

0.05 0.911220 0.746833 0.620492 0.394786 0.257628 

0.10 0.975650 0.928954 0.883985 0.787707 0.704396 

0.20 0.980080 0.944023 0.906544 0.828924 0.756956 

0.30 0.980080 0.944120 0.906641 0.829114 0.756958 

 
Next, we plot the relationship between the MLE and the prevalence p for dif-

ferent values of k and n when the assays used are 99% accurate. 
We investigate the relationship between p̂  and p when the sensitivity and 

specificity of the test are 99%. A linear relationship exists between p̂  and p 
when the group size 1k = . However, when 1k > , it can be observed in Figure 
1 that the relationship is monotonic at any predetermined value of the waiting 
parameter n. A striking feature to note is that the relationship is sensitive to both 
k and n when the sensitivity and specificity of the diagnostic test are known. 
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Figure 1. The relationship between p̂  and p for k = 5, 15, 30 and n = 1, 5, 10 and 15. 

4. Properties of the Estimator 

In this section, the properties of the estimation such as the Biasedness, and the 
Mean Squared Error (MSE) are discussed. 

4.1. Biasedness of the Estimator 

The goal in estimation is to find an estimate of the proportion p in a population 
of interest. The bias of an estimator measures the average error incurred when 
using the estimate of a parameter. It was pointed out that bias is particularly 
useful in evaluating point estimates [8]. The exact bias of an estimator is given 
by: 

( ) ( )ˆ ˆBias .p E p p= −                          (4) 

Because ( )( )*~ Negative Binomial ,T n pπ  where  
( ) ( ) ( )( )2 2

1
2

1
*

01 1kp pπ π π π= + − − − . The exact bias and the MSE can be ex-
pressed as an infinite sum. It was noted that the sums do not reduce to anything 
tractable [20]. Thus, the bias of an estimator p̂  can be approximated as follows: 

 ( ) ( ) ( )
*

* *1
ˆ ˆBias 1

1

t t nn

t n

t
p p p

n
π π

−

=

− 
= − − − 
∑                (5) 

where ( )* 1pr T t v≤ ≥ −  for v small. The value of 0.00001v =  was taken 
throughout, making these approximations very close to the true values of bias 
and MSE. 

Table 2 shows that for any fixed values of the group size and the waiting pa-
rameter n, the absolute bias of the estimator increases to a maximum as the op-
timal value of the prevalence is attained, and afterward decreases as the preva-
lence increases. Conversely, for a given group size and prevalence level, the ab-
solute bias of the estimator decreases as the waiting parameter n increases. The 
results show that it is possible to estimate the bias of the estimator at a given lev-
el of p for a set of n and k values. For example, when 0.005p = , the minimum 
bias can be observed at 15n =  and 10k = . 

Scrutiny of Table 3 shows that when the diagnostic tests are 95% accurate, the 
absolute bias of the estimator increases to a maximum as the optimal value of the 
prevalence is attained and afterward decreases for fixed group sizes and waiting  

https://doi.org/10.4236/oalib.1110141


F. M. Kariuki et al. 
 

 

DOI: 10.4236/oalib.1110141 7 Open Access Library Journal 
 

Table 2. Bias of p̂  for various values of p with n = 1, 3, 5, 10, 15 and k = 5, 10, 30, 50 
when the sensitivity and specificity of the tests are set at 99%. 

Bias × 10−4 

n 

p 1 3 5 10 15 

k = 5 

0.005 362.80610 37.39135 23.41135 14.38200 11.23476 

0.01 653.08290 74.66184 46.54191 28.62074 22.36416 

0.05 2371.60600 418.93271 231.33740 140.27249 109.71514 

0.10 3840.02890 1037.38995 511.51869 279.00437 217.11517 

0.20 5573.34120 2682.07576 1513.74906 650.96485 456.72240 

0.30 6035.75530 4163.31983 2864.88066 1455.92420 925.87968 

0.40 5685.07450 4860.81024 4057.69919 2519.13300 1829.42647 

k = 10 

0.005 567.82770 38.23104 23.37473 14.36144 11.21754 

0.01 1048.95920 80.94800 46.73266 28.64085 22.37064 

0.05 3856.78190 821.10962 309.72758 145.44342 112.11377 

0.10 5901.92240 2564.13220 1247.39388 391.76074 247.93661 

0.20 7167.71460 5611.21106 4330.80178 2387.50558 1421.94666 

0.30 6777.53620 6278.09096 5776.61834 4625.86607 3656.79622 

0.40 5930.78080 5748.91242 5547.54441 5027.30965 4520.02533 

k = 30 

0.005 1407.68200 61.49968 24.03181 14.39814 11.23803 

0.01 2572.09800 228.50082 57.97831 29.02309 22.58504 

0.05 7379.39100 4393.14376 2659.68468 818.70792 315.13048 

0.10 8494.38800 7535.94242 6669.32861 4886.44017 3558.92440 

0.20 7868.38400 7599.10928 7331.94058 6691.10470 6096.45891 

0.30 6915.64500 6738.41412 6559.49977 6122.70470 5709.80285 

0.40 5955.53000 5855.73383 5751.20042 5487.76257 5231.61935 

k = 50 

0.005 2191.00100 135.81610 28.52969 14.49044 11.28822 

0.01 3858.27000 625.75440 131.99412 30.48499 23.01542 

0.05 8629.29400 7095.11760 5821.19533 3537.86433 2194.31129 

0.10 8796.89600 8395.50360 8007.35776 7103.89562 6294.55529 

0.20 7877.70300 7632.13780 7390.91512 6816.34526 6285.50365 

0.30 6917.58000 6749.42800 6582.56056 6181.28160 5807.13767 

0.40 5957.37300 5866.46570 5773.79640 5545.46300 5327.73594 
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Table 3. Bias of p̂  for various values of p with n = 1, 3, 5, 10, 15 and k = 5, 10, 30, 50 
when the sensitivity and specificity of the tests are set at 95%. 

Bias × 10−4 

n 

P 1 3 5 10 15 

k = 5 

0.005 380.76220 41.52092 25.95154 15.93273 12.44444 

0.01 653.68000 79.14075 49.22275 30.22827 23.61278 

0.05 2255.26870 419.97179 238.73971 144.13236 112.44601 

0.10 3602.94990 978.32673 521.57424 293.12960 225.82892 

0.20 5175.96070 2294.87368 1354.88762 808.08288 519.35439 

0.30 5677.46480 3303.48420 2321.27912 1906.67545 1137.52123 

0.40 5434.48780 4046.78395 2823.63207 2950.41699 1981.60932 

k = 10 

0.005 560.99250 40.47671 24.74973 15.17049 11.84578 

0.01 1008.15300 83.12783 48.40546 29.57685 23.08846 

0.05 3593.23780 735.62461 302.91655 153.64969 116.63904 

0.10 5458.47350 2124.49065 1032.87077 524.91204 284.51085 

0.20 6698.41200 4483.44720 3047.88096 2993.50067 1674.04049 

0.30 6418.43550 5219.55184 4137.03897 4614.50812 3137.79043 

0.40 5718.11860 5026.75652 4321.83066 4731.85814 3693.31595 

k = 30 

0.005 1325.23900 58.81119 24.68150 14.79048 11.52974 

0.01 2396.62500 201.03076 57.00882 29.91896 23.19216 

0.05 6817.86500 3479.66278 1848.61660 1315.15555 442.30362 

0.10 7881.07700 5984.48217 4502.89514 5074.04357 3235.39221 

0.20 7383.34200 6252.38117 5276.53975 6002.40539 4670.04657 

0.30 6585.20200 5799.59064 5103.11115 5617.62121 4654.29024 

0.40 5780.27900 5329.62519 4905.94283 5201.99972 4597.72182 

k = 50 

0.005 2042.00100 118.19540 28.08787 14.90331 11.57584 

0.01 3573.01200 513.19890 108.85200 33.54519 23.92129 

0.05 7974.66300 5579.64670 3875.45159 4143.91552 2256.64394 

0.10 8167.33000 6701.98660 5484.81003 6367.58059 473092535 

0.20 7400.01500 6325.07340 5414.47400 6117.29080 4889.21737 

0.30 6595.08500 5855.0844 5217.26849 5701.61852 4832.57489 

0.40 5790.07600 5384.89830 5019.79203 5285.59631 4775.47022 
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parameter n. Secondly, when the group size and the prevalence levels are fixed, 
the absolute bias decreases to a minimum value as the optimal value of the wait-
ing parameter n is attained, and afterward, it increases. Lastly, the results show 
that one can estimate the prevalence level at a predetermined optimal value of 
the waiting parameter n that would register the least bias when the group size is 
known. For example, when 15n =  and 30k =  the least bias is observed at 

0.005p = . 

4.2. Mean Squared Error of the Estimator 

The Mean squared error of an estimator is the average squared deviation derived 
from the true value of the parameter, which incorporates measures of both ac-
curacy (bias) and the precision (variance) of the estimator. It is used as a meas-
ure for the goodness of an estimator that is given by: 

( ) ( )( ) ( )2ˆ ˆ ˆMSE bias var .p p p= +                    (6) 

The variance of p̂  as annexed in Appendix section can easily be shown to be 

( )
( ) ( )( )( )

( ) ( )( )
( ) ( )( )( )

22 2
21 0 1 22 2

1 0 1222 22 2
0 1

1 1 1
ˆVar 1 1 .

1 1

k

k

k

p
p p

nk p

π π π
π π π

π π−

 − + − − − = + − − − 
− − −  

(7) 

The MSE can also be expressed as an infinite sum, which was shown that they do 
not reduce to anything tractable [20]. Thus, the MSE of an estimator p̂  can be 
approximated as 

( ) ( ) ( )
*

2 * *1
ˆ ˆMSE 1

1

t t nn

t n

t
p p p

n
π π

−

=

− 
≈ − − − 
∑               (8) 

where ( )* 1pr T t v≤ ≥ −  for v small. The value of 0.00001v =  was taken 
throughout, making these approximations close to the true values of bias and 
MSE. 

Since the sums do not reduce to anything tractable, we use Monte Carlo si-
mulations to generate the MSE tables as outlined in Section 2. 

Scrutiny of Table 4 shows that when the group size and the waiting parameter 
n are fixed, the MSE of p̂  increases to a maximum value as the optimal value 
of the prevalence is attained before subsequently decreasing. It can also be noted 
that for any fixed values of the prevalence and group size, the MSE of the esti-
mator decreases as the waiting parameter, n increases. Therefore, it is possible to 
get the minimum MSE of the prevalence from a combination of n and k when 
the sensitivity and specificity of the tests are 99%. For instance, when p = 0.005 
the minimum value of MSE was obtained at n = 15 and k = 10.  

When the assay used is 95% accurate, it can be seen from Table 5 that for any 
fixed values of the group size and the waiting parameter n, the MSE of the esti-
mator increases to a maximum as the optimal value of the prevalence is attained 
and afterward decreases. Secondly, when both the group size and the prevalence 
rate are fixed, the MSE of the estimator decreased to a minimum as the optimal  
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Table 4. MSE of p̂  for various values of p with n = 1, 3, 5, 10, 15 and k = 5, 10, 30, 50, 
and when the sensitivity and specificity of the tests are set at 99%. 

MSE × 10−4 

n 

p 1 3 5 10 15 

k = 5 

0.005 248.0600 0.704640 0.144780 0.041657 0.023382 

0.01 482.9300 3.130540 0.571370 0.164670 0.092545 

0.05 2016.7300 123.779720 17.538790 3.936600 2.215701 

0.10 3261.6100 564.307690 121.615100 16.517000 8.731067 

0.20 4247.3500 1857.421800 839.387760 150.740000 49.387109 

0.30 4054.6700 2695.858660 1797.260460 685.060000 289.682941 

0.40 3325.5500 2732.301220 2228.374240 1346.600000 832.097851 

k = 10 

0.005 478.310000 1.629700 0.147543 0.041564 0.023317 

0.01 923.560000 9.917900 0.647720 0.165220 0.092695 

0.05 3552.640000 561.137100 95.807460 5.135700 2.374300 

0.10 5178.770000 2115.678900 873.769169 107.580000 20.79600 

0.20 5622.070000 4306.743200 3295.318680 1694.70000 881.810000 

0.30 4692.580000 4272.603200 3879.890790 3040.100000 2381.000000 

0.40 3535.480000 3382.286300 3224.232340 2844.800000 2501.200000 

k = 30 

0.005 1356.100000 25.828000 0.625270 0.042023 0.023457 

0.01 2501.600000 163.923000 11.184170 0.184380 0.095335 

0.05 6949.000000 4117.492000 2440.360710 661.960000 181.220000 

0.10 7606.000000 6702.058000 5904.136630 4299.700000 3131.500000 

0.20 6271.500000 6017.749000 5772.132500 5197.400000 4677.500000 

0.30 4817.600000 4650.590000 4486.036800 4094.100000 3732.900000 

0.40 3556.600000 3462.454000 3366.198140 3129.500000 2905.000000 

k = 50 

0.005 2152.033000 101.968400 4.951560 0.045301 0.023790 

0.01 3795.008000 569.470800 85.782540 0.930301 0.107290 

0.05 8166.129000 6684.168800 5470.766540 3315.612502 2009.934470 

0.10 7899.744000 7512.479800 7143.493100 6297.265286 5550.580170 

0.20 6279.433000 6042.506400 5813.196300 5275.105616 4785.490050 

0.30 4818.755000 4656.493700 4497.833960 4121.942498 3776.736100 

0.40 3557.990000 3470.234900 3382.076640 3168.059613 2967.003440 
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Table 5. MSE of p̂  for various values of p with n = 1, 3, 5, 10, 15 and k = 5, 10, 30, 50, 
and when the sensitivity and specificity of the tests are set at 95%. 

MSE × 10−4 

n 

p 1 3 5 10 15 

k = 5 

0.005 253.980000 0.857360 0.178530 0.051170 0.028702 

0.01 470.500000 3.373740 0.643590 0.184030 0.103284 

0.05 1879.900000 110.271640 17.963370 4.213000 2.344348 

0.10 3018.780000 471.545300 107.371930 20.338320 9.666764 

0.20 3919.450000 1480.895760 620.064980 269.110180 73.930991 

0.30 3753.850000 2122.574940 1238.619640 1022.769360 407.850012 

0.40 3113.380000 2171.630380 1509.867600 1589.588120 885.358940 

k = 10 

0.005 464.030000 1.624700 0.165970 0.046476 0.026033 

0.01 873.100000 8.942400 0.686450 0.176990 0.098977 

0.05 3285.510000 451.303000 72.453480 7.534300 2.642158 

0.10 4776.330000 1667.629100 603.683580 224.190000 35.406000 

0.20 5190.500000 3373.496200 2196.958960 2189.500000 1018.600000 

0.30 4361.120000 3384.466500 2605.707320 2989.800000 1987.200000 

0.40 3339.040000 2774.564400 2265.512850 2591.900000 1910.800000 

k = 30 

0.005 1269.400000 21.336000 0.508233 0.044754 0.024797 

0.01 2321.200000 131.450000 7.997270 0.233470 0.101530 

0.05 6403.900000 3222.576000 1624.382680 1139.400000 284.890000 

0.10 7008.900000 5239.424000 3914.380480 4447.800000 2765.300000 

0.20 5799.000000 4745.247000 3875.095560 4549.100000 3396.300000 

0.30 4495.700000 3763.511000 3141.892010 3619.400000 2785.400000 

0.40 3385.900000 2965.426000 2586.401920 2860.900000 2337.000000 

k = 50 

0.005 2000.300000 82.018000 3.507400 0.056069 0.025197 

0.01 3508.900000 450.479000 58.327400 2.725400 0.132810 

0.05 7522.200000 5223.102000 3626.523400 3885.200000 2049.800000 

0.10 7280.000000 5875.751000 4739.874600 5584.600000 4084.200000 

0.20 5809.200000 4779.079000 3929.325800 4601.500000 3476.000000 

0.30 4501.300000 3792.030000 3196.577500 3659.800000 2863.100000 

0.40 3393.300000 3004.790000 2663.567700 2917.700000 2449.600000 
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value of the waiting parameter, n is attained and afterward increases. Finally, the 
results show that one can obtain a combination of n and k values that would 
yield a minimum approximation of the MSE at a given prevalence. For instance, 
the minimum value of the MSE is obtained at 0.005p =  when 15n =  and 

30k = . 
The behavior of the MSE is investigated by plotting p̂  against p for different 

k and n when the tests used are 99% accurate as shown in the figures below. 
Next, the relationship between ( )ˆMSE p  and the prevalence is examined for 

different k and n when the tests used are accurate as presented below. 
Figure 2 shows the MSE of the estimator plotted against the prevalence for 

different values of the waiting parameter n, and group sizes obtained by simula-
tion. A striking feature to note is that the MSE is sensitive to the group size and 
the waiting parameter n. Also, the maximum value of the MSE increases with an 
increase in the group size at any predetermined waiting parameter n. 

 

 
Figure 2. Plot of ( )ˆMSE p  as a function of p for different k = 5, 15, 30 and n = 1, 5, 10, 15 with sensitivity and specificity fixed at 

0.99 when the sensitivity and specificity of the tests are set at 99%. 

5. Model Comparison 

In this section, the efficiency of the constructed estimator relative to other esti-
mators in pool testing scheme was determined by computing the ARE and the 
RMSE and the results are discussed. 

5.1. Asymptotic Relative Efficiency (ARE) 

The sample size based on the one-stage negative binomial group testing scheme 
that has considered misclassification was examined by [23]. The variance of the 
estimator was computed as follows:  

( )
( ) ( ) ( ) ( )

( )

2

1 0 1 1 0 1

2 22 2
0 1

1 1 1 1 1
ˆvar

( 1) 1 −

   − + − − − + + − −   =
+ − −

k k

k

p p
p

n k p

π π π π π π

π π
  (9) 

If the estimator of the one-stage negative binomial group testing scheme with 
misclassification is denoted by ˆ xp , and the computed estimator is denoted ˆ ip  
then 
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( )
( )

ˆvar
ARE

ˆvar
x

i

p
p

=                           (10) 

Therefore, ARE 1>  implies that the proposed model is more efficient than 
the one-stage negative binomial group testing model with misclassification.  

 
Table 6. ARE of the proposed model relative to the one-stage negative binomial group 
testing model with misclassification for k = 5, 10, 15, 30, 50 with sensitivity and specificity 
of the tests set at 99%, 98%, and 95%. 

n = 1 

k 

p 5 10 15 30 50 

Sensitivity = Specificity = 0.99 

0.005 1.9581 1.4398 1.2841 1.1366 1.0793 

0.01 1.4386 1.2089 1.1363 1.0648 1.0348 

0.05 1.0774 1.0338 1.0163 0.9818 0.9158 

0.10 1.0326 1.0030 0.9798 0.8567 0.6155 

0.20 1.0004 0.9418 0.8352 0.5419 0.5131 

0.30 0.9695 0.8085 0.6090 0.5133 0.5127 

0.40 0.9167 0.6293 0.5242 0.5127 0.5127 

Sensitivity = Specificity = 0.98 

0.005 3.2146 1.9585 1.6045 1.2831 1.1626 

0.01 1.9557 1.4386 1.2824 1.1324 1.0710 

0.05 1.1585 1.0690 1.0339 0.9686 0.8642 

0.10 1.0665 1.0079 0.9651 0.7885 0.5832 

0.20 1.0029 0.9025 0.7642 0.5409 0.5261 

0.30 0.9473 0.7362 0.5792 0.5262 0.5259 

0.40 0.8655 0.5919 0.5317 0.5259 0.5259 

Sensitivity = Specificity = 0.95 

0.005 8.0954 3.8828 2.7484 1.7763 1.4347 

0.01 3.8737 2.2375 1.7741 1.3518 1.1880 

0.05 1.4235 1.1829 1.0940 0.9524 0.7990 

0.10 1.1763 1.0330 0.9459 0.7232 0.5930 

0.20 1.0218 0.8470 0.7031 0.5744 0.5683 

0.30 0.9146 0.6818 0.5912 0.5683 0.5682 

0.40 0.8005 0.5971 0.5706 0.5682 0.5682 

 
Scrutiny of Table 6 shows that the sequential retesting of a pool that tests pos-

itive in the initial test infers that the two-stage negative binomial model is more 
efficient, especially at low prevalence. This is indicated by ARE 1>  It can also 
be observed that at a given prevalence of a rare trait, the efficiency of the pro-
posed model decreases with an increase in group size. Similarly, for a fixed group 
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size, the efficiency of the model decreases with an increase in prevalence. Finally, it 
can be observed that even when the accuracy of the diagnostic test is relatively 
low, retesting improves the efficiency of the model in a low-prevalence popula-
tion. Thus, in cases where group testing is used to screen for a rare trait in a low 
prevalence population, retesting of pools is more desirable as it yields more ac-
curate results when the accuracy of the diagnostic tests is less than 100%. 

 

5.2. Relative Mean Squared Error (RMSE)  

To compare the efficiency of a model, a convenient way is to compare the MSE 
of estimates of the same p with other existing models obtained using different 
experimental procedures. The MSE of the proposed model is compared with the 
MSE of the one-stage negative binomial group testing model with misclassifica-
tion that is denoted by ˆdp . The RMSE is calculated as follows: 

( )
( )

ˆMSE
RMSE

MSE
d

i

p
p

=                          (11) 

 
Table 7. Relative mean squared error of the estimator (RMSE) with sensitivity and speci-
ficity value set at 99%. 

n 

p 1 3 5 

k = 5 

0.005 38.565142 12733.370308 58400.557061 

0.01 19.133470 2643.906573 13086.300135 

0.05 3.443933 34.238002 154.682671 

0.10 1.463359 3.042883 5.576623 

0.20 0.525123 0.194483 0.192145 

0.30 0.337283 0.241976 0.365225 

k = 15 

0.005 12.899748 1896.419895 39821.816914 

0.01 6.205910 226.377645 4210.861195 

0.05 0.882280 0.687266 0.538078 

0.10 0.279830 0.036577 0.030166 

0.20 0.105515 0.070938 0.079776 

0.30 0.196267 0.195440 0.205301 

k = 30 

0.005 6.228922 238.248501 7177.123081 

0.01 2.879419 23.761346 188.761043 

0.05 0.287960 0.027176 0.008577 

0.10 0.066378 0.014407 0.016307 

0.20 0.073766 0.066298 0.069187 

0.30 0.193811 0.193251 0.200459 
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Scrutiny of Table 7 shows that for small group sizes, the proposed model out-
performs the one-stage negative binomial group testing model with misclassifi-
cation when the prevalence is low. This is indicated by the value of RMSE 1> . 
For instance, when 1n = , and 5k = , the two-stage negative binomial group 
testing model is observed to be 38.6 times more efficient than the one-stage neg-
ative binomial group testing model at 0.05p = . In general, the proposed model 
is more efficient in a low-prevalence population when the size of the group is 
fairly small. Lastly, it can be observed that as the group size and the waiting pa-
rameter n increases, the efficiency of the model increases in a low-prevalence 
population. 

 
Table 8. Relative mean squared error of the estimator (RMSE) at 95% sensitivity and spe-
cificity value. 

n 

p 1 3 5 

k = 5 

0.005 36.204290 9359.937964 39805.251986 

0.01 18.897137 2201.840151 9836.147127 

0.05 3.589811 35.559549 135.836994 

0.10 1.561931 3.537761 6.190444 

0.20 0.592202 0.265764 0.272134 

0.30 0.395585 0.308493 0.524353 

k = 15 

0.005 13.034037 1879.883663 30942.258974 

0.01 6.403645 242.737094 3812.958260 

0.05 0.961991 0.887832 0.810215 

0.10 0.336188 0.055905 0.046155 

0.20 0.153077 0.089761 0.118998 

0.30 0.242057 0.241927 0.299192 

k = 30 

0.005 6.429417 260.242107 7446.285644 

0.01 3.022253 27.380735 231.694665 

0.05 0.344612 0.044954 0.014607 

0.10 0.113660 0.019012 0.024423 

0.20 0.119842 0.083489 0.102518 

0.30 0.240808 0.237495 0.285215 

 
Table 8 shows that the two-stage negative binomial group testing model out-

performs the one-stage negative binomial group testing model with misclassifi-
cation when the prevalence of a rare trait is low. It can be observed that the effi-
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ciency of our model increases with an increase in group size and the waiting pa-
rameter n, especially in low prevalence. This indicates that the asymptotic prop-
erties of the model are taking hold. Thus, it is possible to get a combination of k 
and n values where the model would be more efficient for a given prevalence. 
For instance, when 30k =  and 5n = , the model is approximately 7446 more 
efficient for 0.005p = . 

6. Application of the Model to Real Data 

The testing scheme was also applied to an investigation that involved the sur-
veillance of West Nile Virus (WNV) conducted in Jefferson County by [25] in 
Florida following the 2001 outbreak of WNV transmitted by the North Ameri-
can mosquito, Culex nigripalpus. The authors documented the first field study 
on the mosquito transmission rate of WNV which was used by [20] to illustrate 
their procedure. A total of 11948 mosquitos were captured in the surveillance 
program and tested in various pool sizes using reverse-transcription polymerase 
chain reaction assays. A total of 14 mosquito pools tested positive for WNV, and 
by the end of the outbreak, 12 human cases were reported to have West Nile 
Meningoencephalitis and 483 documented cases among the horses. 

The investigation by [25] did not consider inverse sampling when imperfect 
tests are used. However, this investigation was used as a basis to illustrate our 
testing procedures when imperfect tests with known sensitivity and specificity 
values are used. Based on the field study by [25] that focused on pools that tested 
positive, the estimated prevalence was reported to be approximately 0.005. 
Hence it was presumed that 0.005 was the true value of the prevalence. We have 
simulated data sets to illustrate our procedure for the waiting parameters n = 1, 5, 
10, and 15 at equal group sizes k = 5, 15, 30, and 50 similar to [25] when the di-
agnostic tests are 99%, 95%, and 90% accurate. 

Table 1 presents the results of the MLE of the population proportion p based 
on 10,000 Monte Carlo data sets. The performance of the constructed estimator 
overestimated the population proportion p as the prevalence increased. The 
MLE of the constructed estimator reaffirms the discovery that group testing is 
useful in a low-prevalence population. When both the group size k and the 
waiting parameter n are large, close estimates of the MLE were observed at 

0.05p =  which is consistent with the estimated prevalence level reported by 
[25]. When the waiting parameter is small say 1n = , the MLE was observed to 
be exorbitantly positively biased as the prevalence level increased as observed in 
Table 2 and Table 3. Alternative estimators have been developed by different 
scholars to reduce the bias when the waiting parameter n is small [7] [20]. Gart’s 
bias correction to the MLE was recommended by [26] as an effective estimator 
in reducing the bias when perfect tests are used. A striking feature to note is that 
the MSE is sensitive to the group size and the waiting parameter n as shown in 
Figure 2. 

To access the efficiency of the testing scheme, the performance of the con-
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structed estimator was compared to other estimators by computing the ARE and 
RMSE. The results showed that in lower values of p, the two-stage negative bi-
nomial group testing model was superior to the one-stage negative binomial 
group testing model with misclassification suggested by [23]. This can be ob-
served in Table 6 where ARE 1>  and in Table 7 and Table 8 where RMSE 1> . 
Moreover, the proposed model was established to be efficient even in situations 
where the accuracy of the diagnostic tests are slightly low. Thus, retesting of pos-
itive pools improved the efficiency of the constructed estimator, which agrees 
with what other authors have already established [9] [12] [27]. 

7. Conclusion 

A two-stage negative binomial group testing procedure for estimating the preva-
lence of a rare trait has been constructed and analyzed. From the discussions, the 
two-stage negative binomial group testing model is superior to the one-stage 
negative binomial group testing model with misclassification. The constructed 
estimator performed better at a low prevalence level. Also, it performed better in 
slightly low values of sensitivity and specificity (95%) than at higher values of the 
diagnostic tests used that are 99% accurate. Thus, we recommend the retesting 
of pools in negative binomial group testing designs when imperfect diagnostics 
tests with known sensitivity and sensitivity are used during estimation.  
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Appendix 

The log-likelihood function to base 10 is 
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The first-order derivative of the log maximum Likelihood is 

( ) ( )( )

( )
( ) ( )( )( )

2
1

22 2
1 0 1

2
1

22 2
1 0 1

1
1 1 1

11
1 1 1

k

k

k n
p p p

t n
p

π

π π π

π

π π π

  
∂   = −  ∂ − + − − −   

 
−  − − −  

− + − − −  

�

 

The second-order derivative is  

( ) ( ) ( )( )

( )
( ) ( )( )( )

( ) ( )( )
( ) ( )( )

( )
( ) ( ) ( )( )

( )

22
1

2 2 22 2
1 0 1

2
1

22 2
1 0 1

212 2
1 0 1

222 2
1 0 1

212 2
1 0 1

2
1

1
1 1 1

11
1 1 1

1 1

1 1 1

1 1 1

1 1 1

k

k

k

k

k

k

k n
p p p

t n
p

n k pk n
p p

k p
t n

p

π

π π π

π

π π π

π π π

π π π

π π π

π

−

−

  
∂   = −  ∂ − + − − −   

 
−  − − −  

− + − − −  
  

− − −  
+   

−    + − − −     

− − − −
− −

− + − −

�

( )( )( ) 2
2 2

0 1π π

 
 
 
  −    

 

Based on the testing process, T follows a negative binomial distribution with pa-
rameters n and ( ) ( ) ( )( )2* 2 2

1 0 11 1kp pπ π π π= + − − − . Therefore, the expecta-
tion of T is ( ) ( )( )( )22 2

1 0 11 1kn pπ π π+ − − − , then 
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