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Abstract 
In this paper, I use the research fixed point method to establish derivatives on 
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1. Introduction 

Let X  and Y  are two fuzzy normed vector spaces on the same field  , and 
mapping :f →X Y  be continuously on X . I use the notation N ′ , N for cor-
responding the norms on X  and Y . In this paper, I study the setting of deriv-
atives on fuzzy algebras involving functional equations and Cauchy-Jensen addi-
tive functional inequalities with 3k-variables when X  is a fuzzy Banach algebra 
with the norm N or ( ),X N . Indeed, when X  is a fuzzy normal Banach alge-
bra with N norm, I construct the derivative on a Banach fuzzy algebra that in-
volves functional equations and Cauchy-Jensen additive functional inequalities 
with the following 3k-variables:  
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The study construct the derivative on a Banach fuzzy algebra that involves 
functional equations and general Cauchy-Jensen additive functional inequalities 
originated from a question of S. M. Ulam [1], concerning the stability of group 
homomorphisms.  

Let ( ),∗G  be a group and let ( ), ,d′
G  be a metric group with metric ( ),d ⋅ ⋅ . 

Given 0ε > , does there exist a 0δ >  such that if :f ′→G G  satisfies  

( ) ( ) ( )( ), ,d f x y f x f y xδ∗ < ∀ ∈ G  

then there is a homomorphism :h ′→G G  with  

( ) ( )( ), ,d f x h x xε< ∀ ∈G  

Since Hyers’ answer to Ulam’s question [2], many ideas have arisen from ma-
thematicians who have built theories about space such as the Theory of fuzzy 
space has much progressed as developing the theory of randomness. Some ma-
thematicians have defined fuzzy norms on a vector space from various points of 
view. Following Bag and Samanta [3] and Cheng and Mordeson [4] gave an idea 
of a fuzzy norm in such a manner that the corresponding fuzzy metric is of 
Kramosil and Michalek type [5] and investigated some properties of fuzzy 
normed spaces. I use the definition of fuzzy normed spaces given in [3] [6] [7] [8] 
to investigate a fuzzy version of the Hyers-Ulam stability for the Jensen func-
tional equation in the fuzzy normed algebra setting. 

The functional equation ( ) ( ) ( ) ( )2 2f x y f x y f x f y+ + − = +  is called a qu-
adratic functional equation. The Hyers-Ulam stability of the quadratic func-
tional equation was proved by Skof [9] for mappings :f →X Y , where X  is a 
normed space and Y  is a Banach space. Cholewa [10] noticed that the theorem 
of Skof is still true if the relevant domain X  is replaced by an Abelian group. 
Czerwik [11] proved the Hyers-Ulam stability of the quadratic functional equa-
tion. 

The stability problems for several functional equations have been extensively 
investigated by a number of authors and there are many interesting results con-
cerning this problem. Such as in 2008 Choonkil Park [12] have established the 
and investigated the Hyers-Ulam-Rassias stability of homomorphisms in quasi- 
Banach algebras the following Jensen functional equation 

( ) ( )2
2

x yf f x f y+  = + 
 

                   (3) 

and next in 2009, M. Éhaghi Gordji and M. Bavand Savadkouhi [13] have estab-
lished the and investigated the approximation of generalized stability of homo-
morphisms in quasi-Banach algebras the following Jensen functional equation  
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( ) ( ).x yrf f x f y
r
+  = + 

 
                     (4) 

Next in 2022, Ly Van An [14] have established the and investigated the ap-
proximation of generalized stability of homomorphisms in quasi-Banach alge-
bras the following Jensen type functional equation 

( ) ( )1

1 1

1
k k

k kj k j
j k j

j

j

j

jx x
mf f x f x

m =

= = +
+

=

 +
  = +
 
 

∑ ∑
∑ ∑            (5) 

Next in 2023, the author [15] have established the and investigated the Exten-
sion of Homomorphisms-Isomorphisms and Derivatives on Quasi-Banach Al-
gebra Based on the General Additive Cauchy-Jensen Equation 

( ) ( ) ( )
=1 =1 1 1 1

2 = 2
2

k k k k k
j j

j j j j
j j j j j

x y
kf z f x f y k f z

k = = =
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+ + + 

 
∑ ∑ ∑ ∑ ∑       (6) 

Next in 2023, Ly Van An [16] have established the and investigated the ap-
proximation of generalized stability of homomorphisms in on fuzzy Banach al-
gebras the following Jensen type functional equation  
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j

j

j

j

j
j
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=

=

=
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 +
  = +
 
 

∑ ∑
∑ ∑          (7) 

Recently, the author continues to conduct extensive research on the derivative 
for (1) and (2) on the fuzzy Banach algebra for the following functional equation 
and inequalities.  

( ) ( ) ( )
1 1 1 1 1
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and 

( ) ( )
1 1 1 1 1

2 2
2

k k k k k
j j

j j j j
j j j j j

qx qy
f qx f qy f k qz kf qz

k= = = = =

+   
+ + ≤ +   

   
∑ ∑ ∑ ∑ ∑   (9) 

i.e., the functional equation and inequalities with 3k-variables. Under suitable 
assumptions on spaces X  and Y , I will prove that the mappings satisfying the 
functional equation and equation inequalities (8) and (9). Thus, the results in 
this paper are generalization of those in [12] [13] [14] [15] [16] [29] for func-
tional equation with 2k-variables. 

In this paper, I build a general homomorphism based on Jensen equation with 
2k-variables on fuzzy Banach algebra. This is an expansion bracket for the re-
search field of exploiting unlimited Math problems on variables to build this 
problem based on the ideas of mathematicians around the world. See [1]-[32]. 
Allow me to express my deep thanks to the mathematicians. 

The paper is organized as follows:  
In section preliminaries, I remind some basic notations in [3] [6] [7] [8] [18] 

[27] [32] such as Fuzzy normed spaces, Extended metric space theorem and so-
lutions of the Jensen function equation. 
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Section 3: Using the fixed point method, extend the derivative for the func-
tional Equation (1) on the fuzzy Banach algebra. 

Section 4: Using the fixed point method, extend the derivative for the func-
tional inequality (2) on the fuzzy Banach algebra. 

2. Preliminaries 
2.1. Fuzzy Normed Spaces 

Let X be a real vector space. A function [ ]: 0,1N X R× →  is called a fuzzy 
norm on X if for all ,x y X∈  and ,s t∈ ,  

1) (N1) ( ), 0N x t =  for 0t ≤ ; 
2) (N2) 0x =  if and only if ( ), 1N x t =  for 0t > ; 

3) (N3) ( ), , tN cx t N x
c

 
=   

 
 if 0c ≠ ; 

4) (N4) ( ) ( ) ( ){ }, min , , ,N x y s t N x s N y t+ + ≥ ; 
5) (N5) ( ),N x ⋅  is a non-decreasing function of   and ( )lim , 1t N x t→∞ = ; 
6) (N6) for 0x ≠ , ( ),N x ⋅  is continuous on  .  
The pair ( ),X N  is called a fuzzy normed vector space  
1) Let ( ),X N  be a fuzzy normed vector space. A sequence { }nx  in X is said 

to be convergent or converge if there exists an x X∈  such that  
( )lim , 1n nN x x t→∞ − =  with 0t > . In this case, x is called the limit of the se-

quence { }nx  and I denote it by limn nN x x→∞− = . 
2) Let ( ),X N  be a fuzzy normed vector space. A sequence { }nx  in X is 

called Cauchy if for each 0ε >  and each 0t >  there exists an 0n N∈  such 
that with 0n n=  and all 0p > , I have ( ), 1n p nN x x t ε+ − > − .  

It is well-known that every convergent sequence in a fuzzy normed vector 
space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is 
said to be complete and the fuzzy normed vector space is called a fuzzy Banach 
space. I say that a mapping :f X Y→  between fuzzy normed vector spaces X 
and Y is continuous at a point 0x X∈  if for each sequence { }nx  converging to 

0x  in X, then the sequence ( ){ }nf x  converges to ( )0f x . If :f X Y→  is 
continuous at each x X∈ , then :f X Y→  is said to be continuous on X. 

Let X be algebra and ( ),X N  a fuzzy normed space.  
1) The fuzzy normed space ( ),X N  is called a fuzzy normed algebra if  

( ) ( ) ( ), , ,N xy st N x s N y t≥ ⋅ , 

for all ,x y X∈  and with all real s, t positive. 
2) A complete fuzzy normed algebra is called a fuzzy Banach algebra.  
Let ( ), XX N  and ( ),Y N  be fuzzy normed algebras. Then a multiplicative 

 -linear mapping ( ) ( ): , ,XH X N Y N→  is called a fuzzy algebra homomor-
phism. 

Let ( ),X N  be a fuzzy normed Algebra. Then an  -linear mapping  
( ) ( ): , ,H X N X N→  is call derivation if  

( ) ( ) ( ):H xy H x y xH y= +  
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with all ,x y X∈ . 
EXAMPLE 
Let ( ),X ⋅  be a normed algebra. Let  

( )
0

, ,
0 0

t t
t xN x t x X

t

 > += ∈
 ≤

 

Then ( ),N x t  is a fuzzy norm on X and ( )( ), ,X N x t  is a fuzzy normed al-
gebra. 

2.2. Extended Metric Space Theorem 

Theorem 1. Let ( ),X d  be a complete generalized metric space and let  
:J X X→  be a strictly contractive mapping with Lipschitz constant 1L < . 

Then for each given element x X∈ , either  

( )1,n nd J J + = ∞  

for all nonnegative integers n or there exists a positive integer n0 such that  
1) ( )1,n nd J J + < ∞ , 0n n∀ ≥ ;  
2) The sequence { }nJ x  converges to a fixed point *y  of J;  
3) *y  is the unique fixed point of J in the set ( ){ }1| ,n nY y X d J J += ∈ < ∞ ;  

4) ( ) ( )* 1, ,
1

d y y d y Jy
l

≤
−

 y Y∀ ∈ . 

2.3. Solutions of the Equation 

The functional equation 

( ) ( ) ( )f x y f x f y+ = +  

is called the Cauchy equation. In particular, every solution of the Cauchy equa-
tion is said to be a Cauchy-additive mapping. 

The functional equation  

( ) ( ) ( )2 2
2

x yf z f x f y f z+ + = + + 
 

 

is called the Cauchy-Jensen equation. In particular, every solution of the Cauchy 
equation is said to be a Cauchy-Jensen additive mapping. 

The functional inequality  

( ) ( ) ( )2 2
2

x yf x f y f z f z+ + + ≤ + 
 

 

is called the functional inequality Jensen-Cauchy. In particular, every solution of 
the functional inequality Jensen-Cauchy is said to be a Cauchy-Jensen additive 
mapping. 

3. Using the Fixed Point Method, Extend the Derivative for  
the Functional Equation (1) on the Fuzzy Banach  
Algebra 

Now I study extended derivation by fixed point method when X  is a fuzzy Ba-

https://doi.org/10.4236/oalib.1110271


L. V. An 
 

 

DOI: 10.4236/oalib.1110271 6 Open Access Library Journal 
 

nach algebra with norm N. Under this setting, I need to show that the mapping 
must satisfy (1). These results are given in the following.  

Theorem 2. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
1

2
L

k
<  

( )

( )

1 1 1

1 1 1

, , , , , , , ,

2 , ,2 ,2 , ,2 ,2 , ,2
2

k k k

k k k

x x y y z z
L kx kx ky ky kz kz
k

ψ

ψ≤

  

  

         (10) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X .  
Let :f →X X  be a mapping satisfying 

( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz qf x qf y k qf z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

 (11) 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

        (12) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all t > 0. And all q∈ . 
Then 

( ) ( )
( )

lim 2
2

n
nn

xH x N k f
k→∞

 
 = −
 
 

                 (13) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
Such that  

( ) ( )( ) ( )
( ) ( )1

1
,

1 , , ,0, ,0k

L t
N f x H x t

L L x xψ
−

− ≥
− +  

         (14) 

for all x∈X  and all 0t > .  
Proof. Letting 1q =  and I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by  

( ),0, ,0,0, ,0,0, ,0x     in (11), I get 

( ) ( )
2 ,

2 1 , ,0,0, ,0,0, ,0
x tN kf f x t
k xϕ

   − ≥   +     

        (15) 

with all x∈X . Now I consider the set  

{ }: :h= → X X  

and introduce the generalized metric on   as follows:  

( ) ( ) ( )( )

( )

, : inf : ,

, , 0 ,
,0, ,0,0, ,0,0, ,0

d g h N g x h x t

t x t
t x

β β

ϕ

+


= ∈ −


≥ ∀ ∈ ∀ > + 



  

X
   (16) 
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where, as usual, inf φ = +∞ . That has been proven by mathematicians ( ),d  
is complete (see [20]). 

Now I consider the linear mapping :T →   such that  

( ) : 2
2
xTg x kg
k

 =  
 

 

with all x∈X . Let ,g h∈  be given such that ( ),d g h ε=  then 

( ) ( )( ) ( )
, , , 0.

,0, ,0,0, ,0,0, ,0
tN g x h x t x t

t x
ε

ϕ
− ≥ ∀ ∈ ∀ >

+   

X  

Hence 

( ) ( )( )

( )

( )

, 2 2 ,
2 2

,
2 2 2

2

, ,0,0, ,0,0, ,0
2 2

2

,0, ,0,0, ,0,0, ,0
2 2

, , 0.
, , , , , ,

x xN g x h x t N kg kh L t
k k

x x LN g x h x t
k k k

Lt
k

Lt x
k k

Lt
k

Lt L x
k k

t x t
t x x x x x

ε ε

ε

ϕ

ϕ

ϕ

    − = −    
    

    = −    
    

≥
 +  
 

≥
+

= ∀ ∈ ∀ >
+

  

  

 

X

     (17) 

Therefore ( ),d g h ε=  implies that ( ),d Tg Th L ε≤ ⋅ . This means that  

( ) ( ), ,d Tg Th Ld g h≤  

for all ,g h∈ . It follows from (15) that with all x∈ . So ( ), 1d f Tf ≤ . By 
Theorem 1, there exists a mapping :H →X Y  satisfying the following:  

1) H is a fixed point of T, i.e., 

( )1
2 2
xH H x
k k

  = 
 

                      (18) 

With all x∈X . The mapping H is a unique fixed point T in the set  

( ){ }: ,g d f g= ∈ < ∞   

This implies that H is a unique mapping satisfying (18) such that there exists a 
( )0,β ∈ ∞  satisfying 

( ) ( )( ) ( )
, , .

,0, ,0,0, ,0,0, ,0
tN f x H x t x

t x
β

ϕ
− ≥ ∀ ∈

+   

X  

2) ( ), 0ld T f H →  as l →∞ . This implies equality  

( )
( )

( )lim 2
2

l
ll

xN k f H x
k→∞

 
 − =
 
 

 

with everyone x∈ . 
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3) ( ) ( )1, ,
1

d f H d f Tf
L

≤
−

, which implies the inequality. 

4)  

( ) 1,
1

d f H
L

≤
−

. 

This implies that the inequality (15) holds  
By (12) 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1
1

1 1 1

1 1

1 1 1

2 2
2 2 2

2 2 2 ,
2 2

, , , , , , , ,
2 2 2 2 2 2

k k kp pj j j j
p p p

j j j

k kp pj j
p p

j j

k k k
p p p p p p

qx qy qz x
N k f k qf

k k k

y z
k qf k k qf t

k k

t

x y zx y zt
k k k k k k

ψ

+

+
= = =

= =

    +
    + −

       
   
   − −

        

≥
 
 +
 
 

∑ ∑ ∑

∑ ∑

  

     (19) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and all q∈ . Then 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )

( ) ( )
( )

1
1

1 1 1

1 1

1 1 1

2 2
2 2 2

2 2 2 ,
2 2

2

, , , , , , , ,
2 2

k k kp pj j j j
p p p

j j j

k kp pj j
p p

j j

p

p

k k kp p

qx qy qz x
N k f k qf

k k k

y z
k qf k k qf t

k k

t
k

t L x x y y z z
k k

ψ

+

+
= = =

= =

    +
    + −

       
   
   − −

        

≥
+

∑ ∑ ∑

∑ ∑

  

     (20) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and all q∈ . 
Since 

( )

( ) ( )
( )1 1 1

2
lim 1

, , , , , , , ,
2 2

p

pn

k k kp p

t
k

t L x x y y z z
k k

ψ
→∞

=
+   

 

For all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and q∈ . Thus 

( ) ( ) ( )
1 1 1 1 1

2 2 , 1
2

k k k k k
j j

j j j j
j j j j j

qx qy
N kH qz qH x qH y k qH z t

k= = = = =

 + 
+ − − − =     

∑ ∑ ∑ ∑ ∑

(21) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and q∈ . Thus 

( ) ( ) ( )
1 1 1 1 1

2 2 0
2

k k k k k
j j

j j j j
j j j j j

qx qy
kH qz qH x qH y k qH z

k= = = = =

+ 
+ − − − = 

 
∑ ∑ ∑ ∑ ∑  (22) 

Thus the mapping  
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:H →X X  

is additive and R -linear by (12), I have  

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

2
2

1 1 1

1 1

1 1

2 2
2 2

2 ,
2

, , , , , ,0, ,0
2 2 2 2

k k kp pj j j
jp p

j j j

k kp j
j p

j j

k k
p p p p

x y x
N k f k f y

k k

y
x k f t

k

t

x yx yt
k k k k

ψ

= = =

= =

    ⋅
    − ⋅

       
 
 − ⋅

    

≥
 
 +
 
 

∏ ∏ ∏

∏ ∏

  

         (23) 

with all 1 1, , , , ,k kx x y y ∈  X , all 0t > . Then 

( )
( )

( )
( )

( )
( )

( )

( ) ( )
( )

2
2

1 1 1

1 1

2

1 12

2 2
2 2

2 ,
2

2

, , , , , ,0, ,0
2 2

k k kp pj j j
jp p

j j j

k kp j
j p

j j

p

p

k kp p

x y x
N k f k f y

k k

y
x k f t

k

t
k

t L x x y y
k k

ψ

= = =

= =

    ⋅
    − ⋅

       
 
 − ⋅

    

≥
+

∏ ∏ ∏

∏ ∏

  

         (24) 

with all 1 1, , , , ,k kx x y y ∈  X , for all 0t > . Since 

( )

( ) ( )
( )

2

1 12

2
lim 1

, , , , , ,0, ,0
2 2

p

pp

k kp p

t
k

t L x x y y
k k

ψ
→∞

=
+   

         (25) 

for all 1 1, , , , ,k kx x y y ∈  X , all 0t > . 
Thus  

( ) ( )
1 1 1 1 1

, 1
k k k k k

j j j j j j
j j j j j

N f x y f x y x f y t
= = = = =

  
⋅ − ⋅ − ⋅ =     

∏ ∏ ∏ ∏ ∏       (26) 

for all 1 1, , , , ,k kx x y y ∈  X , all 0t > . Thus 

( ) ( )
1 1 1 1 1

0
k k k k k

j j j j j j
j j j j j

f x y f x y x f y
= = = = =

 
⋅ − ⋅ − ⋅ = 

 
∏ ∏ ∏ ∏ ∏         (27) 

So the mapping :H →X X  is a fuzzy derivation, as desired. 
 

Theorem 3. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
1L <   

( ) 1 1 1
1 1 1, , , , , , , , 2 , , , , , , , ,

2 2 2 2 2 2
k k k

k k k
x y zx y zx x y y z z k

k k k k k k
ψ ψ  ≤  

 
     

 (28) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . 
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Let :f →X X  be a mapping satisfying 

( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz qf x qf y k qf z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

 (29) 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

       (30) 

for all 1 1, , , , ,k kx x y y ∈  X , all 0t > . Then 

( )
( )

( )( )1lim 2
2

n
nn

x N f k x
k

β
→∞

= −                 (31) 

exists each x∈X  and defines a fuzzy derivation :H →X X . Such that 

( ) ( )( ) ( )
( ) ( )1

1
,

1 , , ,0, ,0k

L t
N f x H x t

L L x xψ
−

− ≥
− +  

         (32) 

for all x∈X , all 0t > .  
Proof. Let ( ),d  be the generalized metric space defined in the proof of 

Theorem 2. Consider the linear mapping :T →   such that  

( ) ( ): 2
2
xTg x g kx
k

=  

for all x∈X . I have 

( ) ( ) ( )

( )

1 12 ,
2 2 2 ,0, ,0,0, ,0,0, ,0

2 ,0, ,0,0, ,0,0, ,0

tN f x f kx t
k k t kx

t
t k x

ϕ

ϕ

 − ≥  + 

≥
+

  

  

    (33) 

with everyone x∈X . And all 0t > . So 

( ),d f Tf L≤  

The rest of the proof is similar to the proof of Theorem 2.  
 

Theorem 4. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
2L k<  

( ) 1 1 1
1 1 1, , , , , , , , 2 , , , , , , , ,

2 2 2 2 2 2
k k k

k k k
x y zx y zx x y y z z k

k k k k k k
ψ ψ  ≤  

 
     

 (34) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t > . Let :f →X X  be a mapping 
satisfying 

( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz qf x qf y k qf z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

 (35) 

https://doi.org/10.4236/oalib.1110271


L. V. An 
 

 

DOI: 10.4236/oalib.1110271 11 Open Access Library Journal 
 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

        (36) 

with all 1 1, , , , ,k kx x y y ∈  X , all 0t >  and all q∈ . Then 

( )
( )

( )( )1lim 2
2

n
nn

x N f k x
k

β
→∞

= −                (37) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
So that  

( ) ( )( ) ( )
( ) ( )1

2 2
,

2 2 , , ,0, ,0k

k kL t
N f x H x t

k kL t x xψ
−

− ≥
− +  

      (38) 

for all x∈X , all 0t > .  
Proof. Letting 1q =  and I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by  

( )2 ,0, ,0,0, ,0,0, ,0kx     in (35), I get 

( ) ( )( ) ( )
2 2 ,

2 ,0, ,0,0, ,0,0, ,0
tN kf x f kx t

t kxϕ
− ≥

+   

     (39) 

for all x∈X , all 0t > . 
Now I consider the set  

{ }: :h= → X Y  

so introduce the generalized metric on   as follows:  

( ) ( ) ( )( )

( )

, : inf : ,

, , 0 ,
2 ,0, ,0,0, ,0,0, ,0

d g h N g x h x t

t x t
t kx

β β

ϕ

+


= ∈ −


≥ ∀ ∈ ∀ > + 



  

X
   (40) 

where, as usual, inf φ = +∞ . That has been proven by mathematicians ( ),d  
is complete (see [20]). 

Now I consider the linear mapping :T →   such that  

( ) ( )1: 2
2

Tg x g kx
k

=  

with everyone x∈X . 
It follows from (41) that 

( ) ( ) ( )
1 2 ,

2 2 2 ,0, ,0,0, ,0,0, ,0
t tN f x f kx

k k t kxϕ
 − ≥  +    

    (41) 

The rest of the proof is similar to the proof of Theorem 2. 
 

Theorem 5. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
1

2
L

k
<  
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( )

( )

1 1 1

1 1 1

, , , , , , , ,

2 , ,2 ,2 , ,2 ,2 , ,2
2

k k k

k k k

x x y y z z
L kx kx ky ky kz kz
k

ψ

ψ≤

  

  

         (42) 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . 
Let :f →X X  be a mapping satisfying 

( ) ( ) ( )

( )

1 1 1 1 1

1 1 1

2 2 ,
2

, , , , , , , ,

k k k k k
j j

j j j j
j j j j j

k k k

qx qy
N kf qz f x f y kq f z t

k

t
t x x y y z zψ

= = = = =

 + 
+ − − −     

≥
+

∑ ∑ ∑ ∑ ∑

  

  (43) 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

       (44) 

for all 1 1, , , , ,k kx x y y ∈  X , all 0t > and all q∈ . Then 

( ) ( )
( )

lim 2
2

n
nn

xH x N k f
k→∞

 
 = −
 
 

                  (45) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
Such that  

( ) ( )( ) ( )
( ) ( )

2 2
,

2 2 2 ,0, ,0,0, ,0,0, ,0
t

N f x H x t
L L kxψ

−
− ≥

− +   

    (46) 

for all x∈X  and all 0t > . 
Proof. Let ( ),d  be the generalized metric space defined in the proof of 

Theorem 2. Consider the linear mapping :T →   such that  

( ) : 2
2
xTg x kg
k

 =  
 

 

with everyone x∈X . I have 

( ) ( )( ) ( )
2 2 ,

2 ,0, ,0,0, ,0,0, ,0
tN f kx kf x t

t kxϕ
− ≥

+   

       (47) 

with everyone x∈X , and all 0t > . So 

( ),
2
Ld f Tf
k

≤  

the rest of the proof is similar to the proof of Theorem 2.  
 

4. Using the Fixed Point Method, Extend the Derivative for  
the Functional Inequalities (2) on the Fuzzy Banach  
Algebra 

Now I study extended homomorphism by fixed point method. 
With X  is a fuzzy Banach algebras with quasi-norm N and that ( ), NY  be 
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a fuzzy normed vector space. Under this setting, I need to show that the map-
ping must satisfy (2). These results are given in the following.  

Lemma 1. Let ( ), N ′X  and ( ), NY  be a fuzzy normed vector space and 
:f →X Y  be a mapping such that  

( ) ( )
1 1 1 1 1

2 , 2 ,
2

k k k k k
j j

j j j j
j j j j j

x y
N f x f y f k z t N kf z t

k= = = = =

   +   
+ + ≥ +               

∑ ∑ ∑ ∑ ∑  (48) 

for all 1 1,..., , ,...,k kx x y y ∈X , all 0t > , then f is Cauchy additive. 
Then f is Cauchy additive. 
Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( )0, ,0,0, ,0,0, ,0    in 

(48), I have  

( ) ( )( ) ( ) ( )( ) ( )2 1 0 , 0 , 2 0 , 0 , 1
2 1 2

t tN k f t N f N kf t N f
k k

   + = ≥ = =   +   
 (49) 

with everyone 0t > . By 5N  and 6N , ( )0 , 1
2
tN f
k

  = 
 

. It follows 2N  that 

( )0 0f = . 

Next I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , ,0, ,0y y y y− −    
in (48). I have  

( ) ( ) ( )( ) ( ) ( ) ( )0 , , 0 ,
2

t tN kf y kf y f t N f y f y N f
k k

   − + + = − + ≥   
   

  (50) 

It follows 2N  that ( ) ( ) 0f y f y− + = . 
So  

( ) ( )f y f y− = −  

Next I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by  

,0, ,0, ,0, ,0, ,0, ,0
2
x yx y

k
− − 

 
 

  
 in (48), I have  

( ) ( ) ( )( ) ( ), 0 , 1
2
tN f x f y f x y t N f
k

 + + − − ≥ = 
 

          (51) 

for all ,x y∈X , all 0t > . It follows 2N  that  

( ) ( ) ( ) 0f x f y f x y+ + − − =  

with everyone ,x y∈X . 
Thus  

( ) ( ) ( )f x f y f x y+ = +  

with everyone ,x y∈X , as desired.  
 

Theorem 6. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 
1

2
L

k
<   

( )

( )

1 1 1

1 1 1

, , , , , , , ,

2 , ,2 ,2 , ,2 ,2 , ,2
2

k k k

k k k

x x y y z z
L kx kx ky ky kz kz
k

ψ

ψ≤

  

  

          (52) 
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for all 1 1, , , , ,k kx x y y ∈  X .  
Let :f →X X  be an odd mapping satisfying 

( ) ( )

( )

1 1 1

1 1 1 1 1

2 ,

2min 2 , ,
2 3 , , , , , , , ,

k k k

j j j
j j j

k k
j j

j
j j k k k

N qf x qf y f kq z t

qx qy kt tN kf qz
k t x x y y z zψ

= = =

= =

  
+ +     

  +  ≥ +     +    

∑ ∑ ∑

∑ ∑
  

(53) 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

     (54) 

for all 1 1, , , , ,k kx x y y ∈  X , all 0t >  and all q∈ . Then 

( ) ( )
( )

lim 2
2

n
nn

xH x N k f
k→∞

 
 = −
 
 

                (55) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
So that 

( ) ( )( ) ( )
( ) ( )

2 2
,

2 2 , , , , , , ,0, ,0
k kL t

N f x H x t
k kL L x x x x xψ

−
− ≥

− + −  

   (56) 

for all x∈X , and all 0t > . 
Proof. Letting 1q =  and I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by  

( ), , , , , , ,0, ,0x x x x x−    in (53), I get 

( ) ( )( ) ( )
2 2 ,

1 , , , , , , ,0, ,0
tN kf x f kx t

x x x x xϕ
− ≥

+ −  

      (57) 

x∈X . 

Now I consider the set  

{ }: :h= → X X  

so introduce the generalized metric on   as follows:  

( ) ( ) ( )( )

( )

, : inf : ,

, , 0 ,
, , , , , , ,0, ,0

d g h N g x h x t

t x t
t x x x x x

β β

ϕ

+


= ∈ −


≥ ∀ ∈ ∀ > + − 



  

X
  (58) 

where, as usual, inf φ = +∞ . That has been proven by mathematicians ( ),d  
is complete (see [16]). 

Now I consider the linear mapping :T →   such that  

( ) : 2
2
xTg x kg
k

 =  
 

 

with everyone x∈X . 
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It follows from (59) that 

( )

( )

2 ,
2 1 , , , , , , ,0, ,0

2 2 2 2 2

, , , , , , ,0, ,0
2

x tN f x kf t
x x x x xk
k k k k k

t
Lt x x x x x
k

ϕ

ϕ

  − ≥       + − 
 

≥
+ −

  

  

 (59) 

for all x∈  and all 0t > . So ( ),
2
Ld f Tf
k

≤ . By Theorem 1, there exists a 

mapping :H →X Y  satisfying the following:  
1) H is a fixed point of T, i.e., 

( )1
2 2
xH H x
k k

  = 
 

                      (60) 

with everyone x∈X . The mapping H is a unique fixed point T in the set  

( ){ }: ,g d f g= ∈ < ∞   

This implies that H is a unique mapping satisfying (60) such that there exists a 
( )0,β ∈ ∞  satisfying 

( ) ( )( ) ( )
, , .

, , , , , , ,0, ,0
tN f x H x t x

t x x x x x
β

ϕ
− ≥ ∀ ∈

+ −  

X  

2) ( ), 0ld T f H →  as l →∞ . This implies equality  

( )
( )

( )lim 2
2

l
ll

xN k f H x
k→∞

 
 − =
 
 

 

with everyone x∈ .  

3) ( ) ( )1, ,
1

d f H d f Tf
L

≤
−

, which implies the inequality  

4)  

( ),
2 2

Ld f H
k kL

≤
−

 

this implies that the inequality (59) holds  
By (54) 

( )
( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1
1 1 1

1
1

1
1 1

1 1 1

2 2 , 2
2 2 2

2
min 2 , ,

2 2 2

, , , , , , , ,
2 2 2 2 2 2

k k kp p pj j j
p p p

j j j

pk kp j j j
p p p

j j

k k k
p p p p p p

x y z
N k qf k qf f q k t

k k k

qx qy qz k
N k f

k k k

t

x y zx y zt
k k k k k k

ψ

−
= = =

+
+

+
= =

      
      − −

            
   +   ≥ +      

+

∑ ∑ ∑

∑ ∑

  


   

 

 (61) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t > , all q∈  and p∈ . So 
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( )
( )

( )
( ) ( )

( )
( ) ( )

( )

( ) ( )
( )

1
1 1 1

1
1

1 1

1 1 1

2 2 ,
2 2 2

2min 2 , ,
32 2

2

, , , , , , , ,
2 2

k k kp pj j j
p p p

j j j

k kp j j j
p p

j j

p

p

k k kp p

x y z
N k qf k qf f q t

k k k

qx qy qz tN k f k
k k

t
k

t L x x y y z z
k k

ψ

−
= = =

+

+
= =

      
      − −

            

   +   ≥ +      






+



∑ ∑ ∑

∑ ∑

  

   (62) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t > , all q∈  and p∈ .  
Since 

( )

( ) ( )
( )1 1 1

2
lim 1

, , , , , , , ,
2 2

p

pn

k k kp p

t
k

t L x x y y z z
k k

ψ
→∞

=
+   

 

for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and p∈ . So 

( ) ( )
1 1 1

1 1

2

22 ,
2 3

k k k

j j j
j j j

k k
j j

j
j j

N qH x qH y H kq z

qx qy tN kH qz k
k

= = =

= =

  
+ +     

 + 
≥ +     

∑ ∑ ∑

∑ ∑
            (63) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all 0t >  and all q∈ . 
Let 1q =  in (63). By Lemma 1, the mapping :H →X X  is Cauchy additive. 

Next I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , ,0, ,0x x x x x−    in 
(63), I get 

( ) ( )2 2 0kqH x H kqx− =  

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X , all t > and all q∈ . 
So the mapping :H →X X  is  -linear. 
The rest of the proof is similar to the proof of Theorem 2. 

 
Theorem 7. Let [ )3: 0,kψ → ∞X  be a function such that there exists an 

1
2

L
k

<  

( )1 1 1

1 1 1

, , , , , , , ,

2 , , , , , , , ,
2 2 2 2 2 2

k k k

k k k

x x y y z z

x y zx y zkL k
k k k k k k

ψ

ψ  ≤  
 

  

  

           (64) 

with all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . 
Let :f →X X  be an odd mapping satisfying 
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( ) ( )

( )

1 1 1

1 1 1 1 1

2 ,

2min 2 , ,
2 3 , , , , , , , ,

k k k

j j j
j j j

k k
j j

j
j j k k k

N qf x qf y f kq z t

qx qy kt tN kf qz
k t x x y y z zψ

= = =

= =

  
+ +     

  +  ≥ +     +    

∑ ∑ ∑

∑ ∑
  

 

(65) 

( ) ( )

( )

1 1 1 1 1

1 1

,

, , , , , ,0, ,0

k k k k k

j j j j j j
j j j j j

k k

N f x y f x y x f y t

t
t x x y yψ

= = = = =

  
⋅ − ⋅ − ⋅     

≥
+

∏ ∏ ∏ ∏ ∏

  

        (66) 

with all 1 1, , , , ,k kx x y y ∈  X , all t > 0 and all q∈ . Then  

( )
( )

( )( )1lim 2
2

n
nn

H x N f k x
k→∞

= −                   (67) 

exists each x∈X  and defines a fuzzy derivation :H →X X . 
So that 

( ) ( )( ) ( )
( ) ( )

2 2
,

2 2 , , , , , , ,0, ,0
k kL t

N f x H x t
k kL x x x x xψ

−
− ≥

− + −  

     (68) 

for all x X∈ , all t > 0. 
The rest of the proof is similar to the proof of Theorem 2 and Theorem 6. 

5. Conclusion 

In this paper, I build the existence of the extended derivative on fuzzy Banach 
algebra for the Cauchy-Jensen equation with 3k-variables above by applying the 
fixed point method to check that existence. 
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