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Abstract 
In this paper, I establish homomorphisms, isomorphisms, and derivatives of 
quasi-algebras based on the general additive equation Cauchy-Jensen with 3k 
variables. First, I establish the homomorphisms for Equation (1.1); second, I 
establish the isomorphisms for Equation (1.2); and finally, I develop the de-
rivative for Equation (1.3). These are the main results of this paper. 
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1. Introduction 

Let X  and Y  are two linear spaces on the same field  , and :f →X Y  be 
a linear mapping. I use the notation ⋅ X  ( ⋅ Y ) for corresponding the norms 
on X  and Y . In this paper, I investigate the stability of generalized homo-
morphisms-isomorphism and derivatives when X  is a quasi-normed algebras 
with quasi-norm ⋅ X  and that Y  is a p-Banach algebras with p-norm ⋅ Y . 

In fact, when X  is a quasi-normed algebras with quasi-norm ⋅ X  and that 
Y  is a p-Banach algebras with p-norm ⋅ Y , I solve and prove the Hyers- 
Ulam-Rassias type stability of generalized Homomorphisms-isomorphism and 
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derivatives on quasi-Banach algebra, associated to the following generalized 
Cauchy-Jensen additive functional equations  

( ) ( )
1 1 1 1 1 1

2
2 2

k k k k k k
i i i i

i i i i
i i i i i i

x y x y
k z k z x k z

k k
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= = = = = =

+ −   + + + = +   
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k k
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( ) ( ) ( )
1 1 1 1 1

2 2
2

k k k k k
i i

i i i i
i i i i i

x y
k z x y k z

k
φ φ φ φ

= = = = =

+ + = + + 
 
∑ ∑ ∑ ∑ ∑        (3) 

The study the stability of generalized homomorphisms-isomorphism and de-
rivatives in quasi-Banach algebras originated from a question of S. M. Ulam [1], 
concerning the stability of group homomorphisms. 

Let ( ),∗G  be a group and let ( ), ,d′
G  be a metric group with metric 

( ),d ⋅ ⋅ . Given 0ε > , does there exist a 0δ >  such that if :f ′→G G  satis-
fies inequality  

( ) ( ) ( )( ), , ,d f x y f x f y xδ∗ < ∀ ∈ G  

then there is a homomorphism :h ′→G G  with  

( ) ( )( ), ,d f x h x xε< ∀ ∈G  

If the answer is affirmative, I would say that the equation of homomorphism  

( ) ( ) ( ) ,H x y H x H y x∗ = ∀ ∈ G  

is stable. The concept of stability for a functional equation arises when I replace 
the functional equation by an inequality which acts as a perturbation of the equ-
ation. Thus the stability question of functional equations is that how do the solu-
tions of the inequality differ from those of the given functional equation? In 
1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Ba-
nach spaces. 

Let X and Y be Banach space. Assume that :f X Y→  satisfies 

( ) ( ) ( )f x y f x f y ε+ − − ≤                     (4) 

for all ,x y X∈  and some 0ε > . Then there exists a unique additive mapping 
:T X Y→  such that 

( ) ( )f x T x ε− ≤                        (5) 

Next 1978 Th. M. Rassias [3] provided a generalization of Hyers’ Theorem 
which allows the Cauchy difference to be unbounded. 

J. M. Rassias [4] [5] [6] built no continuity conditions are required for this 
result, but if f(tx) is continuous in the real variable t for each fixed x E∈ , then 
L is linear, and if f is continuous at a single point of E then :L E E′→  is also 
continuous. J. M. Rassias assumed the following weaker inequality 

( ) ( ) ( ) p qf x y f x f y x yθ+ − − = ⋅ ⋅                (6) 
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,x y E∀ ∈ ; involving a product of different powers of norms, where 0θ >  and 
real ,p q  such that 1r p q= + ≠ , and retained the condition of continuity 
( )f tx  in t for fixed x. Analogous results could be investigated with additive 

type equations involving a product of powers of norms. 
Next 1994 Găvruta [7] Generalized the Rassias’ result. There are also many 

mathematicians who have built many results for this topic as [1]-[24]. 
Recently, the authors studied the Hyers-Ulam-Rassias type stability for the 

following functional equations (see [8] [9] [10] [11] [12]) 

( ) ( )2
2 2

x y x yf z f z f x f z+ −   + + + = +   
   

             (7) 

( )
2 2

x y x yf z f z f y+ −   + − + =   
   

                (8) 

( ) ( ) ( )2 2
2 2

x y x yf z f z f x f y f z+ −   + + + = + +   
   

         (9) 

Next 

( )
1 1 1 1

1k k k k
k j

j k j j
j j j j

x
f x x f x f

k k
+

+
= = = =

   
+ = +   

   
∑ ∑ ∑ ∑            (10) 

and 

( )2
1 1 1 1

1 12
2 2

k k k k
k j

j k j j
j j j j

x
kf x x f x f

k kk
+

+
= = = =

   
+ = +   

   
∑ ∑ ∑ ∑         (11) 

Final 

( ) ( )1

1 1

1
k k

k kj k j
j k j

j

j

j

jx x
mf f x f x

m =

= = +
+

=

 +
  = +
 
 

∑ ∑
∑ ∑          (12) 

In this paper, I have built a general problem about homomorphisms-isomor- 
phism and derivatives on quasi-Banach algebra based on the general additive 
Cauchy-Jensen equation. To write these problems, I follow the ideas of mathe-
maticians around the world see [1]-[24]. In order to provide researchers in Ma-
thematics when building problems, there is no restriction on variables for the 
problem. This is what I consider an open dream problem or a bright horizon for 
the field of functional equations in quasi-Banach algebras. 

In this paper, I solve and proved the Hyers-Ulam-Rassias type stability for 
functional Equations (1.1), (1.2) and (1.3), i.e., the functional equations with 3k 
variables. Under suitable assumptions on spaces X  and Y , I will prove that 
the mappings satisfying the functional Equation (1.1), (1.2) and (1.3). 

Thus, the results in this paper are generalization of those in [8] [9] [10] [11] 
[12] [24] for functional equations with 3k variables. The paper is organized as 
follows: 

In section preliminarier I remind some basic notations in such as Qua-
si-normed space—Quasi-Banach algebras. Some theorems  -linear mapping 
and Solutions of the equations see ([3] [4] [5] [6]). 

https://doi.org/10.4236/oalib.1110095


L. V. An 
 

 

DOI: 10.4236/oalib.1110095 4 Open Access Library Journal 
 

Section 3: Constructing homomorphisms on quasi-Banach algebras for (1.1). 
Section 4: Constructing isomorphisms on quasi-Banach algebras for (1.2). 
Section 5: Constructing derivatives on quasi-Banach algebras for (1.3). 

2. Preliminaries 
2.1. Quasi-Normed Space—Quasi-Banach Algebras 

Let X  be a real linear space. A quasi-norm is a real-valued function on X  sa-
tisfying the following: 

1) 0x ≥  for all x∈X  and 0x =  if and only if 0x = . 
2) x xλ λ=  for all λ ∈R  and all x∈X . 
3) There is a constant 1K ≥  such that 

( ) , , .x y K x y x y+ ≤ + ∀ ∈X  

The pair ( ), ⋅X  is called a quasi-normed space if ⋅  is a quasi-norm on 
X . 

The smallest possible K is called the modulus of concavity of ⋅ . 
A quasi-Banach space is a complete quasi-normed space. 
A quasi-norm ⋅  is called a p-norm ( 0 1p< ≤ ) if 

, .p p px y x y x y+ ≤ + ∀ ∈X  

In this case, a quasi-Banach space is called a p-Banach space. 
Note: Given a p-norm, the formula ( ), : pd x y x y= −  gives us a translation 

invariant metric on X. By the Aoki-Rolewicz Theorem [13] (see also [14]), each 
quasi-norm is equivalent to some p-norm. Since it is much easier to work with 
p-norms, henceforth I restrict my attention mainly to p-norms. 

Let ( ), ⋅X  be a quasi-normed space. The quasi-normed space ( ), ⋅X  is 
called a quasi-normed algebras if X  is an algebras and there is a constant 

0K >  such that 

x y K x y⋅ ≤  

A quasi-Banach algebras is a complete quasi-normed algebras. 
If the quasi-norm ⋅  is a p-norm, quasi-Banach is called p-Banach algebras. 

2.2. Some Theorems  -Linear Mapping 

Theorem 1. Th. M. Rassias: Let :f →1 2E E  be a mapping from a normed 
vector space 1E  into a Banach space 2E  subject to the inequality 

( ) ( ) ( ) ( ) ,p pf x y f x f y x yε+ − − ≤ +            (13) 

for all ,x y∈ 1E , where ε  and p are constants with 1p <  and 0ε ≥ . then 
the limit 

( )
( )2

lim
2

n

nn

f x
T x

→∞
=                     (14) 

exists for all x∈ 1E  and that :T →1 2E E  is the unique additive mapping sa-

https://doi.org/10.4236/oalib.1110095


L. V. An 
 

 

DOI: 10.4236/oalib.1110095 5 Open Access Library Journal 
 

tisfying 

( ) ( ) 2 , .
2 2

p
pf x T x x xθ

− ≤ ∀ ∈
− 1E                 (15) 

If 0p <  then (2.1) holds for , 0x y ≠  and (2.2) for 0x ≠ . Also, if for each 
x∈ 1E  the function If f(tx) is continuous in t∈ , then T is linear. 

Theorem 2. Let E  be real normed linear space and ′E  a real complete 
normed linear space. Assume that :f ′→E E  is an approximately additive 
mapping for which there exists constants 0θ ≥  and { }1p∈ −  such that 
( )f x  satisfy inequality 

( ) ( ) ( ) 2 2 , , .
p p

f x y f x f y x y x yθ+ − − ≤ ∀ ∈            (16) 

then there exists a unique additive mapping linear :T ′→E E  satisfies  

( ) ( ) , .
2 2

p
pf x L x x xθ

− ≤ ∈
−

E                  (17) 

If, in addition :f ′→E E  is a transformation ( )t f tx→  is continuous in 
t∈  for each fixed x∈E , then T is an R -linear mapping. 

Theorem 3. Let E  be real normed linear space and ′E  a real complete 
normed linear space. Assume that :f ′→E E  is an approximately additive 
mapping for which there exists constants 0θ ≥  such that ( )f x  satisfy in-
equality 

( ) ( )1 2
=1 =1

, , , .
n n

i i n
i i

f x f x K x x xθ  − ≤ 
 
∑ ∑                 (18) 

( )1 2, , , nx x x ∈ E  and { }: 0nK +→ −E R  is a non-negative real-valued 
function such that 

( ) ( )1 2
1

1 , , ,
n

j j j
n nj

i
R x K n x n x n x

n=

= < ∞∑                 (19) 

is a non-negative function of x, and the condition 

( )1 2
1lim , , , 0m m m

nmm
K n x n x n x

n→∞
=

                 (20) 

holds then there exists a unique additive mapping :nT ′→E E  satisfies 

( ) ( ) ( ) , .n nf x T x R x x
n
θ

− ≤ ∈                   (21) 

If, in addition :f ′→E E  is a transformation ( )t f tx→  is continuous in 
t∈  for each fixed x∈E , then T  is an  -linear mapping. 

Theorem 4. Let E  be real normed linear space and ′E  a real complete 
normed linear space. Assume that :f ′→E E  is an approximately additive 
mapping for which there exists constants 0θ ≥  and ,p q∈  such that 

1p q+ ≠  and f satisfy inequality 

( ) ( ) ( ) , , .p qf x y f x f y x y x yθ+ − − ≤ ∀ ∈              (22) 

then there exists a unique additive mapping linear :T ′→E E  satisfies 
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( ) ( ) , .
2 2

p
pf x L x x xθ

− ≤ ∈
−

                   (23) 

If, in addition :f ′→E E  is a transformation ( )t f tx→  is continuous in 
t∈  for each fixed x∈E , then T is an  -linear mapping. 

2.3. Solutions of the Equation 

( ) ( ) ( )f x y f x f y+ = +                     (24) 

is called the Cauchy equation. In particular, every solution of the Cauchy equa-
tion is said to be an additive mapping. 

The functional equation 

( ) ( )1 1
2 2 2

x yf f x f y+  = + 
 

                 (25) 

is called the Jensen equation. In particular, every solution of the Jensen equation 
is said to be a Jensen additive mapping. 

The functional equation 

( ) ( ) ( )2 2
2

x yf z f x f y f z+ + = + + 
 

             (26) 

is called the Cauchy-Jensen equation. In particular, every solution of the 
Cauchy-Jensen equation is said to be a Jensen-Cauchy additive mapping. 

3. Constructing Homomorphisms in Quasi-Banach Algebras 

Now I construct a homomorphism for (1.1) Note that: (1.2) and (1.3) are also 
built exactly the same. 

Here I assume that,   is a quasi-normed with norm ⋅   and that   is a 
p-Banach algebra with norm ⋅  . Let K  be the modulus of concavity of ⋅  . 
Under this setting, I can show that the mappings satisfying (1.1) is homomor-
phisms. 

Theorem 5. Let r q>  with 2q ≥  and θ  be positive real numbers, and 
:f →X Y  be a mapping such that 

( ) ( )
1 1 1 1 1 1

1 1 1

2
2 2

k k k k k k
i i i i

i i i i
i i i i i i

k k kr r r
i i i

i i i

x y x y
kf z kf z f x k f z

k k

x y zθ

= = = = = =

= = =

+ −   + + + − −   
   

 ≤ + + 
 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

X X X

  (27) 

( ) ( )
1 1=1 1 1

n n n k kr r
i i i i i i

i ii i i
f x y f x f y x yθ

= == =

   − ≤ +   
  
∑ ∑∏ ∏ ∏ X X

Y

       (28) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique homomorphism :H →X Y  such that 

( ) ( )
( )

1

12
, .

2 2

r

pr p

kf x H x x x
θ + 

 − ≤ ∀ ∈
−

XY
X             (29) 
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Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(27), I have 

( ) ( ) ( )2 2 2 1 rkf x kf x k xθ− ≤ + XY
                (30) 

for all x X∈ . So 

( ) 12 2
2 2

r
r

xf x f x
k

θ   − ≤ +   
    X

Y

               (31) 

for all x X∈ . From Y  is p-Banach algebra so I have 
1

1
1

1

1

2 2 2 2
2 2 2 2

1 22
2 2

p pm
l m j j

l m j j
j l

p p pjm pr
pr prj

j l

x x x xf f f f

x
k

θ

−
+

+
=

−

= +

       − ≤ −       
       

 ≤ + 
 

∑

∑

Y Y

X

       (32) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(32) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :H →X Y  by 

( ) lim 2 ,
2

n
nn

xH x f
→∞

 =  
 

                     (33) 

for all x X∈ . By (28) and (27), 

( ) ( )
1 1 1 1 1 1

1 1
=1 =1 =1 =1

=1 =1

2
2 2

lim 2
2 2 2 2

2
2 2

2lim

k k k k k k
i i i i

i i i i
i i i i i i

k k k k
n i i i i i i

n n n nn i i i i

k k
i i
n n

i i
n

n

x y x ykH z kH z H x k H z
k k

x y z x y zkf kf
k k

x zf k f

= = = = = =

+ +→∞

→∞

+ −   + + + − −   
   

+ −   = + + +   
   

   − −   
   

≤

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

Y

Y

1 1 1
0

2

k k kr r r
i i inr

i i i
x y zθ

= = =

 + + = 
 
∑ ∑ ∑X X X

(34) 

for all , ,i i ix y z ∈X , for all 1i k= → . 
So 

( ) ( )
1 1 1 1 1 1

2
2 2

k k k k k k
i i i i

i i i i
i i i i i i

x y x y
kH z kH z H x k H z

k k= = = = = =

+ −   + + + = +   
   
∑ ∑ ∑ ∑ ∑ ∑  (35) 

for all , ,i i ix y z ∈X , for all 1i k= → . By lemma 5 (see 24]), the mapping 
:H →X Y  is Cauchy additive. (see the theorem of [3]) 
Then mapping :H →X Y  is  -linear. It follows from (28) that 

( ) ( )
1 1 1

2

1 1 1
2

1 1

lim 2
2 2 2 2

2lim 0
2

k k k

i i i i
i i i

k k k
nk i i i i

n n n nn i i i
nk k kr r

i inrn i i

f x y f x f y

x y x yf f f

x yθ

= = =

→∞ = = =

→∞ = =

  − 
 

     = ⋅ − ⋅    
    

 ≤ + = 
 

∏ ∏ ∏

∏ ∏ ∏

∑ ∑

Y

Y

X X

          (36) 
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,x y∀ ∈X . 
So 

( ) ( )
1 1 1

k k k

i i i i
i i i

H x y H x H y
= = =

 ⋅ = 
 
∏ ∏ ∏                  (37) 

,x y∀ ∈X . 

Now I prove the uniqueness of H. Assume that 1 :H X Y→  is a Cauchy- 
Jensen additive mapping satisfying (29). Then I have 

( ) ( )

( )

1 1

1

1

1 12
2 2

1 1 1 12
2 2 2 2

12
22
2

2 2

n
n nY

Y

n
n n n n

Y Y

n
r

nr
pr p p

H x H x H x H x

H x f x f x H x

k x
θ

   − = +   
   

        ≤ − + +                 
 + 
 ≤ ⋅

−
X

K

K

       (38) 

which tends to zero as n →∞  for all x∈X . So I can conclude that 
( ) ( )1H x H x=  for all x∈X . This proves the uniqueness of H. Thus the map-

ping 1 :H →X Y  is a unique homomorphism satisfying (29).    □ 
Theorem 6. Let r q<  with 1q ≤  and θ  be positive real numbers, and 
:f →X Y  be a mapping such that 

( ) ( )
1 1 1 1 1 1

1 1 1

2
2 2

k k k k k k
i i i i

i i i i
i i i i i i

k k kr r r
i i i

i i i

x y x y
kf z kf z f x k f z

k k

x y zθ

= = = = = =

= = =

+ −   + + + − −   
   

 ≤ + + 
 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

X X X

  (39) 

( ) ( )
1 1=1 1 1

k k k k kr r
i i i i i i

i ii i i
f x y f x f y x yθ

= == =

   − ≤ +   
  
∑ ∑∏ ∏ ∏ X X

Y

        (40) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique homomorphism :H →X Y  such that 

( ) ( )
( )

1

11
2 , .

2 2

r

pr p

kf x H x x x
θ + 

 − ≤ ∀ ∈
−

XY
X               (41) 

Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(39), I have  

( ) ( ) ( )2 2 2 1 rkf x kf x k xθ− ≤ + XY
                (42) 

for all x∈X . So 

( ) ( )1 12 1
2 2

rf x f x x
k

θ − ≤ + 
  X

Y

               (43) 

for all x X∈ . Since Y  is a p-Banach algebra, 
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( ) ( ) ( ) ( )
1

1
1

1

1

1 1 1 12 2 2 2
2 2 2 2

1 21
2 2

p pm
l m j j

l m j j
j l

p prjm prp
pj

j l

f x f x f x f x

x
k

θ

−
+

+
=

−

= +

− ≤ −

 ≤ + 
 

∑

∑

Y Y

X

      (44) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(44) that the sequence ( )1 2
2

n
n f x 

 
 

 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence ( )1 2
2

n
n f x 

 
 

 converges. So one can define the 

mapping :H →X Y  by 

( ) ( )1lim 2
2

n
nn

H x f x
→∞

=  

for all x X∈ . 
Moreover, letting 0l =  and passing the limit m →∞  in (44) I get (41). The 

rest of the proof is similar to the proof of Theorem 5.       □ 
Theorem 7. Let r k> , with 1k ≥  and θ  be positive real numbers, and 
:f →X Y  be a mapping such that  

( ) ( )
1 1 1 1 1 1

1
1 1 2

2
2 2

1

k k k k k k
i i i i

i i i i
i i i i i i

k k kr r rrk
i i i

i i i

x y x y
kf z kf z f x k f z

k k

x y z zθ

= = = = = =

= = =

+ −   + + + − −   
   

 ≤ ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y

XX X X

  (45) 

( ) ( )
=1 1 1 1 1

k k k k kr r
i i i i i i

i i i i i
f x y f x f y x yθ

= = = =

  − ≤ ⋅ ⋅ 
 
∏ ∏ ∏ ∏ ∏X X

Y

        (46) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique homomorphism :H →X Y  such that  

( ) ( )
( )

3
1

3

, .
2 2

kr

pkr p p

f x H x x x
k

θ
− ≤ ∀ ∈

−
XY

X            (47) 

Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(45), I have  

( ) ( ) 32 2 krkf x kf x xθ− ≤ XY
                   (48) 

for all x X∈ . So 

( ) 3
3

12
2 2

kr
kr

xf x f x
k

θ − ≤ 
  X

Y

                  (49) 

for all x X∈ . Since Y  is a p-Banach algebras, 

1 1 31
1 3 3

1

2 2
2 2

1 22 2
2 2 2 2

p
l m

l m

p p pjm m pkrj j
j j p pkr pkrj

j l j l

x xf f

x xf f x
k

θ− −
+

+
= = +

   −   
   

   ≤ − ≤   
   

∑ ∑

Y

X
Y

        (50) 
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for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(50) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :H →X Y  by 

( ) lim 2 ,
2

n
nn

xH x f
→∞

 =  
 

                      (51) 

for all x X∈ . By (46) and (45), 

( ) ( )
1 1 1 1 1 1

1 1
1 1 1 1

1 1

2
2 2

lim 2
2 2 2 2

2
2 2

2lim

k k k k k k
i i i i

i i i i
i i i i i i

k k k k
n i i i i i i

n n n nn i i i i

k k
i i
n n

i i

n

n

x y x y
kH z kH z H x k H z

k k

x y z x y z
kf kf

k k

x z
f k f

= = = = = =

+ +→∞ = = = =

= =

→∞

+ −   + + + − −   
   

+ −   = + + +   
   

   − −   
   

≤

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

Y

Y

13
1 1 2

1 0
2

k k kr r rrk
i i inkr

i i i
x y z zθ

= = =

 ⋅ ⋅ ⋅ + = 
 

∏ ∏ ∏XX X X

 (52) 

for all , ,i i ix y z ∈X , for all 1i k= → .  
So 

( ) ( )
1 1 1 1 1 1

2
2 2

k k k k k k
i i i i

i i i i
i i i i i i

x y x y
kH z kH z H x k H z

k k= = = = = =

+ −   + + + = +   
   
∑ ∑ ∑ ∑ ∑ ∑  (53) 

for all 1 2 3, , , kx x x X∈ . By lemma 5 (see [24]), the mapping :H →X Y  is 
Cauchy additive. By proving as proof of the theorem of [3] the mapping 

:H →X Y  is  -linear. ,x y∀ ∈X . 
It follows from (46) that 

( ) ( )
=1 1 1

2

1 1 1

2

2
1 1

lim 2
2 2 2 2

2lim 0
2

k k k

i i i i
i i i

k k k
nk i i i i

n n n nn i i i

nk k kr r
i inrn i i

f x y f x f y

x y x y
f f f

x yθ

= =

→∞ = = =

→∞ = =

  − 
 

     = ⋅ − ⋅     
    

≤ ⋅ =

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

Y

Y

X X

         (54) 

,x y∀ ∈X . 
So 

( ) ( )
1 1 1

k k k

i i i i
i i i

H x y H x H y
= = =

 ⋅ = 
 
∏ ∏ ∏                 (55) 

,x y∀ ∈X . 
The rest of the proof is similar to the proof of Theorem 5      □ 

Theorem 8. Let 1r
q

< , with 3q ≥  and θ  be positive real numbers, and 

:f →X Y  be a mapping such that 
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( ) ( )
1 1 1 1 1 1

1
1 1 2

2
2 2

1

k k k k k k
i i i i

i i i i
i i i i i i

k k kr r rrk
i i i

i i i

x y x y
kf z kf z f x k f z

k k

x y z zθ

= = = = = =

= = =

+ −   + + + − −   
   

 ≤ ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y

XX X X

 (56) 

( ) ( )
=1 1 1 1 1

k k k k kr r
i i i i i i

i i i i i
f x y f x f y x yθ

= = = =

  − ≤ ⋅ ⋅ 
 
∏ ∏ ∏ ∏ ∏X X

Y

       (57) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique homomorphism :H →X Y  such that 

( ) ( )
( )

3
1

3

, .
2 2

kr

p pkr p

f x H x x x
k

θ
− ≤ ∀ ∈

−
XY

X            (58) 

Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(56), I have 

( ) ( ) 32 2 krkf x kf x xθ− ≤ XY
                  (59) 

for all x X∈ . So 

( ) ( ) 31 12
2 2

krf x f x x
k
θ− ≤ X

Y

 

for all x X∈ . Since Y  is a p-Banach algebras, 

( ) ( )

( ) ( )
( )

31 1 31
1

1

1 12 2
2 2

1 1 22 2
2 2 22

p
l m

l m

p pkrjm m pkrj j
j j p pj

j l j l

f x f x

f x f x x
k
θ− −

+
+

= = +

−

≤ − ≤∑ ∑

Y

X
Y

       (60) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(60) that the sequence ( )1 2
2

n
n f x 

 
 

 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence ( )1 2
2

n
n f x 

 
 

 converges. So one can define the 

mapping :H →X Y  by 

( ) ( )1lim 2
2

n
nn

H x f x
→∞

=  

for all x X∈ . Moreover, letting 0l =  and passing the limm→∞  in (60) I have 
(56), 

It follows from (57) that 

( ) ( )

( ) ( )
1 1 1

2
1 1 1

2
1 1

1lim 2 2 2 2
2

lim 0
2

k k k

i i i i
i i i

k k k
n n n n

i i i inkn i i i

k kr r
i inkrn i i

f x y f x f y

f x y f x f y

x yθ

= = =

→∞ = = =

→∞ = =

  − 
 

 = ⋅ − ⋅ 
 

≤ ⋅ =

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

Y

Y

X X
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,x y∀ ∈X . So 

( ) ( )
1 1 1

k k k

i i i i
i i i

H x y H x H y
= = =

 ⋅ = 
 
∏ ∏ ∏  

,x y∀ ∈X . 
The rest of the proof is similar to the proof of Theorem 5.        □ 

4. Constructing Isomorphisms Based on Quasi-Banach  
Algebras 

Now I construct isomorphisms for (1.2). Note that: (1.1) and (1.3) are also built 
exactly the same. 

Here I assume that   is a quasi-Banach with norm ⋅   and unit e and that 
  is a p-Banach algebra with norm ⋅   and unit e′ . Let K  be the modulus 
of concavity of ⋅  . Under this setting, I can show that the mappings satisfying 
(1.2) is isomorphisms. 

Theorem 9. Let r q>  with 1q ≥  and θ  be positive real numbers, and 
:f →X Y  be a mapping such that 

( )
1 1 1 1 1

1 1 1

2 2

k k k k k
i i i i

i i i
i i i i i

k k kr r r
i i i

i i i

x y x y
kf z kf z f x

k k

x y zθ

= = = = =

= = =

+ −   + − + −   
   

 ≤ + + 
 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

X X X

       (61) 

( ) ( )
1 1 1

k k k

i i i i
i i i

f x y f x f y
= = =

  = 
 
∏ ∏ ∏                   (62) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X  and 

lim 2
2

n
nn

ef e
→∞

  ′= 
 

                       (63) 

then the mapping :f →X Y  is an isomorphism. 
Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 

(61), I have 

( ) ( ) ( )2 2 2 1 rkf x kf x k xθ− ≤ + XY
                (64) 

for all x X∈ . So 

( ) 12 2
2 2

r
r

xf x f x
k

θ   − ≤ +   
    X

Y

                (65) 

for all x X∈ . Since Y  is a p-Banach algebra, 

1 1
1

1
1

2 2
2 2

1 22 2 2
2 2 2 2

p
l m

l m

p p p pjm m prj j
j j pr prj

j l j l

x xf f

x xf f x
k

θ− −
+

+
= = +

   −   
   

     ≤ − ≤ +     
     

∑ ∑

Y

X
Y

     (66) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 
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(66) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :H →X Y  by 

( ) lim 2 ,
2

n
nn

xH x f
→∞

 =  
 

                     (67) 

for all x X∈ . Moreover, letting 0l =  and passing the limit m →∞  in (66), I 
get 

( ) ( )
( )

1

12
, .

2 2

r

pr p p

kf x H x x x
θ + 

 − ≤ ∀ ∈
−

XY
X             (68) 

It follows from (62) that 

( )
1 1 1 1 1

1 1
1 1 1 1 1

1 1 1

2 2

lim 2
2 2 2 2 2

2lim
2

k k k k k
i i i i

i i i
i i i i i

k k k k k
n i i i i i i i

n n n n nn i i i i i

n k k kr r
i inrn i i i

x y x ykH z kH z H x
k k

x y z x y z xkf kf f
k k

x y zθ

= = = = =

+ +→∞ = = = = =

→∞ = = =

+ −   + − + −   
   

+ −     = + + + −          

≤ + +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

Y

X X 0r
i

  = 
 X

 (69) 

for all , ,i i ix y z ∈X , for all 1i k= → . 
So 

( )2 2
1 1 1 1 12 2

k k k k k
i k i i k i

k i k i i
i i i i i

x x x x
kH x kH x H x

k k
+ +

+ +
= = = = =

+ −   + − + =   
   
∑ ∑ ∑ ∑ ∑    (70) 

for all , ,i i ix y z ∈X , for all 1i k= → . By lemma 5 (see [24]), the mapping 
:H →X Y  is Cauchy additive. See the theorem of [3]. 
The mapping :H →X Y  is  -linear. Since 

( ) ( )
1 1 1

k k k

i i i i
i i i

f x y f x f y
= = =

  = 
 
∏ ∏ ∏                  (71) 

for all , ,i i ix y z ∈X , for all 1i k= → . 

2

1 1 1

1 1

1 1

lim 2
2 2

lim 2 2
2 2

k k k
nk i i

i i n nni i i

k k
nk nki i

n nn i i

k k

i i
i i

x yH x y f

x yf f

H x H y

→∞= = =

→∞ = =

= =

   = ⋅   
   

   = ⋅   
   

   = ⋅   
   

∏ ∏ ∏

∏ ∏

∏ ∏

            (72) 

for all , ,i i ix y z ∈X , for all 1i k= → . So the mapping :H →X Y  is homo-
morphism. 

It follows from (62) that 
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( ) ( )

( ) ( ) ( )

lim 2 lim 2
2 2

lim 2 ,
2

n n
n nn n

n
nn

ex eH x H ex f f x

ef f x e f x f x x

→∞ →∞

→∞

   = = = ⋅   
   

  ′= ⋅ = ⋅ = ∀ ∈ 
 

X
       (73) 

x∀ ∈X . So the mapping :f →X Y  is an isomorphism.      □ 
Theorem 10. Let r q<  with 1q ≤  and θ  be positive real numbers, and 
:f →X Y  be a mapping such that 

( )
1 1 1 1 1

1 1 1

2 2

k k k k k
i i i i

i i i
i i i i i

k k kr r r
i i i

i i i

x y x y
kf z kf z f x

k k

x y zθ

= = = = =

= = =

+ −   + − + −   
   

 ≤ + + 
 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

X X X

     (74) 

( ) ( )
1 1 1

k k k

i i i i
i i i

f x y f x f y
= = =

  = 
 
∏ ∏ ∏                  (75) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X  and 

lim 2
2

n
nn

ef e
→∞

  ′= 
 

                       (76) 

then the mapping :f →X Y  is an isomorphism. 
The rest of the proof is similar to the proof of Theorem 9. 

Theorem 11. Let 1r
q

>  with 3q ≥  and θ  be positive real numbers, and 

:f →X Y  be a mapping such that 

( )
1 1 1 1 1

1
1 1 2

2 2

1

k k k k k
i i i i

i i i
i i i i i

k k kr r rrk
i i i

i i i

x y x y
kf z kf z f x

k k

x y z zθ

= = = = =

= = =

+ −   + − + −   
   

 ≤ ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y

XX X X

       (77) 

( ) ( )
1 1 1

k k k

i i i i
i i i

f x y f x f y
= = =

  = 
 
∏ ∏ ∏                    (78) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X  and 

lim 2
2

n
nn

ef e
→∞

  ′= 
 

                        (79) 

then the mapping :f →X Y  is an isomorphism. 
Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 

(77), I have 

( ) ( ) 32 2 krkf x kf x xθ− ≤ XY
                    (80) 

for all x X∈ . So 

( ) 3
3

12
2 2

kr
rk

xf x f x
k

θ − ≤ 
  X

Y

                  (81) 

https://doi.org/10.4236/oalib.1110095


L. V. An 
 

 

DOI: 10.4236/oalib.1110095 15 Open Access Library Journal 
 

for all x X∈ . Hence 

1 1 31
1 3

1

2 2
2 2

1 22 2
2 2 2 2

p
l m

l m

p p pjm m pkrj j
j j p krp pkrj

j l j l

x xf f

x xf f x
k

θ− −
+

+
= = +

   −   
   

   ≤ − ≤   
   

∑ ∑

Y

X
Y

       (82) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(82) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

Y  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :H →X Y  by 

( ) lim 2 ,
2

n
nn

xH x f
→∞

 =  
 

                     (83) 

for all x X∈ . 
Moreover, letting 0l =  and passing the limit m →∞  in (82), I get  

( ) ( )
( )

3
1

3

, .
2 2

kr

pkr p p

f x H x x x
k

θ
− ≤ ∀ ∈

−
XY

X             (84) 

The rest of the proof is similar to the proof of Theorems 7 and 9.    □ 

Theorem 12. Let 1r
q

>  with 3q ≥  and θ  be positive real numbers, and 

:f →X Y  be a mapping such that 

( )
1 1 1 1 1

1
1 1 2

2 2

1

k k k k k
i i i i

i i i
i i i i i

k k kr r rrk
i i i

i i i

x y x y
kf z kf z f x

k k

x y z zθ

= = = = =

= = =

+ −   + − + −   
   

 ≤ ⋅ ⋅ ⋅ ⋅ + 
 

∑ ∑ ∑ ∑ ∑

∏ ∏ ∏

Y

XX X X

       (85) 

( ) ( )
1 1 1

k k k

i i i i
i i i

f x y f x f y
= = =

  = 
 
∏ ∏ ∏                   (86) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X  and 

lim 2
2

n
nn

ef e
→∞

  ′= 
 

                        (87) 

then the mapping :f →X Y  is an isomorphism.  
The rest of the proof is similar to the proof of Theorems 8 and 9. 

5. Constructing Derivatives on Quasi-Banach Algebras 

Now I construct derivatives for (1.3). Note that: (1.1) and (1.2) are also built ex-
actly the same. 

Here I assume that,   is a p-Banach algebras with norm ⋅   Let K  be 
the modulus of concavity of ⋅  . Under this setting, I can show that the map-
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pings satisfying (1.3) is generalized derivation. 
A generalized derivations :β →X X  is linear and fulfills the generalized 

Leibniz rue 

1 1 1 1 1 1 1 1

k k k k k k k k

i i i i i i i i i i i i
i i i i i i i i

x y z x y z x y z x y zβ β β β
= = = = = = = =

       = − +       
       
∏ ∏ ∏ ∏ ∏ ∏ ∏ ∏  (88) 

for all 1 2 3, , , kx x x ∈ X . 
Theorem 13. Let r q>  with 3q ≥  and θ  be positive real numbers, and 
:f →X X  be a mapping such that  

( ) ( ) ( )
1 1 1 1 1

1 1 1

2 2
2

k k k k k
i i

i i i i
i i i i i

k k kr r r
i i i

i i i

x y
kf z f x f y k f z

k

x y zθ

= = = = =

= = =

+ + − − − 
 

 ≤ + + 
 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

Y

X X X

      (89) 

1 1 1 1 1 1 1 1

1 1 1

k k k k k k k k

i i i i i i i i i i i i
i i i i i i i i

k k kr r r
i i i

i i i

x y z x y z x y z x y z

x y z

β β β β

θ

= = = = = = = =

= = =

       − + −       
       

 ≤ + + 
 

∏ ∏ ∏ ∏ ∏ ∏ ∏ ∏

∑ ∑ ∑

X

X X X

(90) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique generalized derivation :β →X X  such 
that  

( ) ( )
( )

1

11
2 , .

2 2

r

pr p p

kf x x x x
θ

β

 + 
 − ≤ ∀ ∈

−
XX

X              (91) 

Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(89), I have  

( ) ( ) ( )2 2 4 2 1 rkf x kf x k xθ− ≤ + XX
               (92) 

for all x X∈ . So  

( ) 12 1
2 2 2

r
r

xf x f x
k

θ   − ≤ + ⋅   
    X

X

 

for all x X∈ . Since X  is a p-Banach algebra, 

1 1
1

1
1

2 2
2 2

1 22 2 1
22 2 2 2

p
l m

l m

p p p pjm m prj j
j j pr prj

j l j l

x xf f

x xf f x
k

θ− −
+

+
= = +

   −   
   

     ≤ − ≤ + ⋅     
     

∑ ∑

Y

X
Y

     (93) 

for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(93) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

X  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :β →X X  by  
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( ) lim 2
2

n
nn

xx fβ
→∞

 =  
 

 

for all x∈X . Moreover, letting 0l =  and passing the limit m →∞  in (93), I 
get (91). It follows from (89) that 

( ) ( ) ( )
1 1 1 1 1

1
1 1 1 1 1

1 1 1

2 2
2

lim 2 2 2
2 2 2 2 2

2lim
2

k k k k k
i i

i i i i
i i i i i

k k k k k
n i i i i i i

n n n n nn i i i i i

n k k kr r r
i i inrn i i i

x y
k z x y k z

k

x y z x y z
kf f f k f

k

x y z

β β β β

θ

= = = = =

+→∞ = = = = =

→∞ = = =

+ + − − − 
 

+       = + − − −       
      

≤ + +


∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

X

X

X X X 0 = 


 

for all , ,i i ix y z ∈X , for all 1i k= → .  
So 

( ) ( ) ( )
1 1 1 1 1

2 2 0
2

k k k k k
i i

i i i i
i i i i i

x y
k z x y k z

k
β β β β

= = = = =

+ + − − − = 
 
∑ ∑ ∑ ∑ ∑  

for all , ,i i ix y z ∈X , for all 1i k= → . By lemma 5 (see [24]), the mapping 
:β →X X  is Cauchy additive. By the theorem of [3] the mapping :β →X X  

is  -linear. 
It follows from (90) that 
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(94) 

for all , ,i i ix y z ∈X , for all 1i k= → . So  
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for all , ,i i ix y z ∈X , for all 1i k= → . 
Now I prove the uniqueness of β . Assume that 1 :β →X X  is a 

Cauchy-Jensen additive mapping satisfying (91). Then I have  

( ) ( )

( )

1 1

1

1

1 12
2 2

1 1 1 12
2 2 2 2

11
222
2

2 2

n
n n

n
n n n n

n
r

nr
pr p p

x x x x

x f x f x x

k x

β β β β

β β

θ

   − = +   
   

        ≤ − + +                 
 + 
 ≤ ⋅

−

X
X

X X

X

K

K

 

https://doi.org/10.4236/oalib.1110095


L. V. An 
 

 

DOI: 10.4236/oalib.1110095 18 Open Access Library Journal 
 

which tends to zero as n →∞  for all x∈X . So I can conclude that 
( ) ( )1x xβ β=  for all x∈X . This proves the uniqueness of β . Thus the map-

ping 1 :β →X X  is a unique generalized derivation satisfying (91).    □ 
Theorem 14. Let r q<  with 1q ≤  and θ  be positive real numbers, and 
:f →X X  be a mapping such that  
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 (97) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique generalized derivation :β →X X  such 
that 
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−
XX

X              (98) 

The rest of the proof is similar to the proof of Theorem 13. 
Theorem 15. Let r q>  with 1q >  and θ  be positive real numbers, and 
:f →X X  be a mapping such that 
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(100) 

for all , ,i i ix y z ∈X , for all 1i k= → . If ( )f tx  is continuous in t∈  each 
fixed x∈X , then there exists a unique generalized derivation :β →X X  such 
that 

( ) ( )
( )

1
3

12
, .

2 2

kr
kr

pr p p

kf x x x x
θ

β

 + 
 − ≤ ∀ ∈

−
XX

X            (101) 

Proof. I replace ( )1 1 1, , , , , , , ,k k kx x y y z z    by ( ), , , , , , , ,0x x x x x    in 
(99), I have 

( ) ( ) 32 2 4 krkf x kf x xθ− ≤ XX
                (102) 
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for all x X∈ . So 
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xf x f x
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for all x X∈ . Since X  is a p-Banach algebra,  
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for all nonnegative integers m and l with m l>  and for all x∈X . It follows 

(103) that the sequence 2
2

n
n

xf  
  

  
 is a Cauchy sequence for all x∈X . Since 

X  is complete, the sequence 2
2

n
n

xf  
  

  
 converges. So one can define the 

mapping :β →X X  by 

( ) lim 2
2

n
nn

xx fβ
→∞

 =  
 

 

for all x∈X . Moreover, letting 0l =  and passing the limit m →∞  in (103), 
I get (101). It follows from (99) that 
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for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . 
So 
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for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . By lemma 5 (see [24]), the mapping 
:β →X X  is Cauchy additive. By the theorem of [3] the mapping :β →X X  

is  -linear. 
It follows from (100) that 
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(106) 
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for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . So  
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for all 1 1 1, , , , , , , ,k k kx x y y z z ∈   X . 
Now I prove the uniqueness of β . Assume that 1 :β →X X  is a Cauchy-Jensen 

additive mapping satisfying (101). Then I have  
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     (108) 

which tends to zero as n →∞  for all x∈X . So I can conclude that 
( ) ( )1x xβ β=  for all x∈X . This proves the uniqueness of β . Thus the map-

ping 1 :β →X X  is a unique generalized derivation satisfying (101).   □ 

6. Conclusion 

In this paper, I construct extensions of homomorphisms, isomorphisms, and de-
rivatives based on Banach algebra. The fundamental contribution here is the de-
velopment of a general Cauchy-Jensen equation, which serves as the cornerstone 
for establishing mathematical links across various research areas in mathematics, 
without any restrictions on generality. 
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