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Abstract 
A numerical calculation of the temperature and magnetic field dependence of 
the specific heat capacity, the magnetization, and the chemical potential is 
carried out. Of particular interest are the properties of the energy of a mag-
netic field in a two-dimensional electron gas exposed to a magnetic field. 
Thus, in this paper, we illustrate the effect of temperature on the oscillation 
dHvA of specific heat capacity and magnetization. As well a mathematical 
model has been developed for calculating the temperature dependence of the 
oscillations of the chemical potential and the density of states under the in-
fluence of a magnetic field. Using the proposed model, the results were ex-
plained at different broadening factors Γ. The calculated results show that 
specific heat capacity and magnetization increase as the magnetic field in-
creases. Additionally, these increases carry out that the magnetic field is large 
enough to neglect the mixing of Landau levels caused by the sharp peak of 
Landeau levels. Moreover, the 2D dHvA effect is characterized by a sawtooth 
strap at a very low temperature. These findings revealed that all advantages of 
GaAs allowed them to use in the manufacture of devices such as microwaves, 
laser diodes, and solar cells. 
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1. Introduction 

A thermodynamic property’s oscillatory change as a function of magnetic field 
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effect (B) intensity is known as the de Haas-van Alphen (dHvA). The quantiza-
tion of electron orbits in a constant B intensity is the primary contributor to the 
dHvA effect. Generally, the electrons have a cyclotron frequency as they circle  

the magnetic field C
qB
m

=ω . L. D. Landau first proposed this effect in 1930 [1].  

Haas and van Alphen measured it for the first time in the same year [2]. The 
original theory of the dHvA oscillations of Lifshitz-Kosevich in 1955 was initially 
demonstrated by 3D metals with magnetization with respect to the magnetic 
field (B) and temperature for an arbitrary electronic spectrum [3]. The del-
ta-shaped density of states (DOS) of an ideal 2DEG, under a perpendicular B, 
maybe the cause of the magnetization oscillation [4]. 

On the side of theoretic examinations, previous reports have demonstrated 
the Landau levels (LLs) broadening, in the extreme quantum limits and are cal-
culated by self-consistently taking into consideration of scattering of electrons 
on an impurity potential [5] [6]. Moreover, another work, involving perturbative 
action of the disorder and interaction of Columb, acquired a DOS with sharp 
edges in the limit wherever LLs mixing is not considered [7]. Reports on the 
DOS derived from tests, however, reveal broadened LLs. This is true whether the 
DOS is obtained from measurements of magnetization [8] [9] [10], heat capacity 
[5] [11], and or capacitance [12] [13]. Furthermore, depending on the strength 
of the applied magnetic field, LLs overlaps may appear, indicating the presence 
of electronic states among the ideal DOS peaks. This derivation has no localiza-
tion effects and includes characteristics relating to the impurity design, specifi-
cally, its density and distance from the two-dimensional electron systems (2DES) 
plane. These overlaps have been analytically proven with the existence of a weak 
disorder [14]. 

On the side of theoretic examinations, previous reports have demonstrated 
the Landau levels (LLs) broadening, in the extreme quantum limits and are cal-
culated by self-consistently taking into consideration of scattering of electrons 
on an impurity potential [5] [6]. Moreover, another work, involving perturbative 
action of the disorder and interaction of Columb, acquired a DOS with sharp 
edges in the limit wherever LLs mixing is not considered [7]. Reports on the 
DOS derived from tests, however, reveal broadened LLs. This is true whether the 
DOS is obtained from measurements of magnetization [8] [9] [10], heat capacity 
[5] [11], and or capacitance [12] [13]. Furthermore, depending on the strength 
of the applied magnetic field, LLs overlaps may appear, indicating the presence 
of electronic states among the ideal DOS peaks. This derivation has no localiza-
tion effects and includes characteristics relating to the impurity design, specifi-
cally, its density and distance from the two-dimensional electron systems (2DES) 
plane. These overlaps have been analytically proven with the existence of a weak 
disorder [14]. 

In a two-dimensional electron gas, it is essential to investigate the effect of the 
magnetic field and temperature on the thermodynamic properties. Information 
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about the electron density can be obtained from 2D thermodynamic properties. 
In addition, chemical potential, specific heat capacity, and magnetization may be 
acquired by focusing the electron density as a constant. 

Herein, we investigate the magnetic field and temperature effect on the ther-
modynamic features of LLs in GaAs 2D electron gas. The effect of oscillation 
dHvA in 2D electron gas is studied in this work. This effect is supported by nu-
merical simulations of chemical potential and magnetization. The 2D dHvA ef-
fect is characterized. A numerical evaluation and discussion of the influence of 
temperature and a magnetic field are discussed. These advantages of GaAs allow 
them to be used in the manufacture of devices such as microwaves, laser diodes, 
and solar cells. 

2. Theoretical Model and Formulation 

The impurity Hamiltonian under the influence of an applied magnetic field at 
room temperature, the computing process, and the magnetic characteristics are 
all shown in this section. 

2.1. The Energy 

The energy without a magnetic field, 
2 2

*2
kE

m
=
 , is specified by solving the  

time-dependent Schrödinger equation in one dimension for the free particle: 

( ) ( )22

* 2

, ,
2

x t x t
i

tm x
∂ Ψ ∂Ψ

− =
∂∂



                   (1) 

where, *m  is the electron’s effective mass. 
Then, we are interested in the calculation of the energy of a charged particle in 

a magnetic field. This can be achieved by solving the Schrodinger wave equation 
[15] [16]. The Hamiltonian of the Landau system is given by: 

( )2ˆ ˆ1
2

A
m

H p q= −


                       (2) 

where, p̂  is the momentum operator and A


 is the vector potential related to 
the B introduced in the z-direction. By choosing a gauge such as, ˆz yA B x=



, the 
wave function takes the following form [15] [17]: 

( ) ( )i ie y zk y k zx x+=ψ φ                       (3) 

where, ( )xφ  is a solution to the harmonic oscillator equation. Taking a count 
for, the time-Independent Schrödinger equation [18]: 

( )( ) ( ) ( )
2 222

* *

1 ˆ
2 2

z
x y z

kP k qB x x E x
m m

 
+ − + = 

 



 φ φ            (4) 

where the term 
2 2

2
zk

m


 is the kinetic energy in the Z-direction. The total energy  

is defined as the sum of particle energy in the x-y plane and the kinetic energy in 
the Z-direction: 
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2 2

*2n
kE E

m
= +

                          (5) 

where the Hamiltonian for the harmonic oscillator takes this form [15]: 

( )
2 22 2

ˆ

2 2
x

C y C
P mH x k l
m

= + −ω                     (6) 

where cl  is the magnetic length, and C
qB
m

=ω  is the electron cyclotron  

frequency. 
And the nth LLs is obtained as [19]: 

1
2n CE n = + 

 
ω                         (7) 

Thereafter, it is straightforward to calculate the thermodynamic features of 
LLs in GaAs, a 2D electron gas, and study the effects of a magnetic field and 
temperature on these properties. 

2.2. The Density of State 

The DOS of the two-dimensional electron gas (2DEG) is given as a sequence of 
delta functions [20]: ( ) ( )0 n nD E D E E= −∑ δ . Herein, we take the case when 
the broadening factor is kept at a constant value, and we introduce the Gaus-
sianform [21]: 

( ) ( )2

2

1, exp
22

n

n

E EeBD B E
 −
 = −
 π ΓπΓ  

∑


             (8) 

where e is the electron charge,   is Planck’s constant/2π, Γ is the broadening 
parameter, and nE  is the energy of the LLs, which was shown in Equation (7) 
[20]. 

2.3. Chemical Potential 

Chemical potential is the change in energy of a thermodynamic system when a 
new particle is added while the entropy and volume remain constant [22]. To 
determine the chemical potential, we employ the electron concentration(N), 
which is given by: 

( ) ( )
0

, , , dN f E T D B E E
+∞

= ∫ µ                 (9) 

where ( ),B T=µ µ  is the chemical potential, ( ),D B E  is the Gaussian DOS 
for two-dimensional electron systems, which is given in Equation (12), and 
( ), ,f E Tµ  is the Fermi-Dirac distribution function [23], which is given in this 

relation: 

( ) 1, ,
1 exp

B

f E T
E
k T

=
 −

+  
 

µ
µ

                (10) 

In addition, chemical potential can be calculated using a root-finding ap-
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proach by using the electron concentration (N) as a constant. As an experimen-
tal result, the electron concentration is set at 3.6 × 1011 cm−2 to simulate condi-
tions similar to those in experiments [21] [22]. So, the chemical potential µ os-
cillates with respect to B and is periodic concerning the filling factor. Where the 
LLs filling factor ν is the number of electrons per LLs at a given magnetic field  

[21] [24] degeneracy, which is mathematically given as: hNv
eB

= . 

2.4. Magnetization 

The magnetization of the system can be calculated from the free energy F at 
constant electron concentration N using the following relationship [21]: 

( )
constant

,
N

FM B T
B =

∂
= −

∂
                       (11) 

where: 

( )
0

, ln 1 exp dB
B

EF N k T D B E E
k T

+∞   −
= − +     

∫
µµ              (12) 

Once the chemical potential and the DOS are known, it is possible to predict 
how these magneto-thermodynamic properties will behave. Finally, the magne-
tization becomes: 

( ) ( )

( )

( )

2 2

2 2

0 0

2

2

20

2

2

0

2

3 *

exp exp
2 2

d d
1 exp 1 exp

2
exp exp

2
d

1 exp

exp
2

1

2

n n
n n

n
n

n
n

E E E E

E E
E E

ekT kT kTM
E E E

kT
E

E
kT

E E

e kTB
m

µ µ

µ

µ

∞ ∞

∞

∞

   − −
   − −
   Γ Γ   

− −   + +   
   = −

 π π Γ − −  −   Γ   
 −  +     

 −
 −
 Γ 

+
π πΓ

∑ ∑
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∑
∫

∑
∫


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( )

( )

2

2

2

2

20

2

20

2

1 exp
2 2

d
exp 1 exp

exp exp
2

d
1 exp

exp ln 1 exp d
22

n
nn

n
n

n
n

E E
n E E

E
E E

kT kT
E E E

kT
E

E
kT

E EekT E E
kT

e kTB

µ µ

µ

µ

µ

∞

∞

 −   + − −   Γ   
− −   + +   

   
 − −  −   Γ   
 −  +     
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∑
∫

∑
∫

 

(13) 

where μ is the chemical potential, *m  is the electron’s effective mass, T is the 
Temperatuture, K is the wave vector, e is the electron charge,   is Planck’s 
constant/2π, Γ is the broadening parameter, and nE  is the energy of the LLs, 

2.5. Specific Heat Capacity 

The specific heat capacity of two-dimensional electron systems is the quantity of 
heat energy required to increase the temperature of a determined amount of mat-
ter [25]. Its expression for the constant volume of an electron gas is provided by: 

( ),v
UC B T
T

∂
=
∂

                         (14) 

where U is internal energy, which in this situation is given in the form [21] [23]: 

( ) ( )( )
0

, , , dU D B E f E T E E
∞

= −∫ µ µ                (15) 

where ( ), , 1 1 exp
B

Ef E T
k T

µµ
 −

= +  
 

 is the Fermi-Dirac distribution function,  

( ),B T=µ µ  is the chemical potential, Bk  is the Boltzmann’s constant, and 
( ),D B E  is the DOS. Finally, the specific heat capacity becomes: 

( )

( ) ( ) ( ) ( )

( )

2 2

2 2

2 20 0

2 2
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2 2

d d
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∞ ∞
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   − −− −      − − − −      Γ Γ      
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∑ ∑
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∑

  

(16) 

In this study, no spin-splitting is considered. The effective mass employed 
here corresponds to 0.0667 me, wherever me is the mass of the electron. 

3. Results and Discussion 

Here, in this part, we demonstrate the results of a study of the thermodynamic 
features of LLs in GaAs, a2D electron gas. Figure 1 shows the variation curves in 
two graphs for energy E versus wave vector k. In the left graph, the varying k 
values range from 0 to 1010, while in the right graph, we took k values ranging 
from −2 × 109 to 2 × 109. We found that, in all cases, the energy of an electron in 
GaAs increases with wave vector k due to symmetry and has a quadratic rela-
tionship with the wave vector [26] [27]. 

In Figure 2, the energy E has been plotted against B for different values of n, 
which vary from 1 to 10. We notice that the spaces between the LLs increase 
with the magnetic field B. We also noted that for a fixed value of B, the energy  
 

 
Figure 1. The energy E versus wave vector k curve. 
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Figure 2. Energy diagram of the Landau levels for a two-dimensional electron gas in the 
presence of a magnetic field B. 
 
levels of the harmonic oscillator increase as n increases [28] [29] [30].  

Figure 3 displays the DOS as a function of energy for two different values of 
the broadening parameter: Γ = 0.2 meV and Γ = 0. 6 meV, using Equation (8). 
We notice that the DOS is obviously affected by the imperfection of the samples 
considered [27] [30]. 

Figure 4 shows a plot of the DOS of 2DEG in GaAs as a function of electron 
energy E, calculated for a magnetic field B varying between 0.2T and 10T and for 
three different broadenings. The sharp peaks of the LLs begin to smooth out as 
the magnetic field increases [27] [31]. We can also assume that the magnetic 
field is large enough to neglect the mixing of LLs due to disorder. 

The chemical potential oscillates with respect to B in the absence of LLs broa-
dening, with sharp peaks appearing at even filling factors ν. Where, the filling 
factor ν is the number of electrons per LLs degeneracy which is provided by  

hNv
eB

= . This indicates that to add one more electron, one must move to the level  

above since the last inhabited LLs are already completely filled for even ν. On the 
other hand, an odd ν, refers to a level that was last occupied and filled to half its 
degeneracy. In Figure 5, we present the chemical potential µ with respect to B 
that is periodic concerning the filling factor, at a fixed temperature T = 0.5 K for 
a broadening factor Γ = 0.3 meV. We notice that the chemical potential displays 
sharp peaks for each even filling factor v without LLs broadening, at very low 
temperatures [21] [24]. However, as the temperature rises and an LLs broaden-
ing is introduced, the sharpness of the oscillations softens and decreases [32]  
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Figure 3. Density of state for a broadening Γ = 0.2 meV (a) and Γ = 0.6 meV (b). 
 

 
Figure 4. Density of state calculated for a field B varying between 
0.2T and 10T and for broadening Γ = 0.2 meV, Γ = 0.6 meV and Γ = 
0.8 meV. 

 

 
Figure 5. Chemical potential as a function of magnetic field at 
temperature T = 0.5 K and for a broadening factor Γ = 0.3 meV. 
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[33]. 
Now we are interested in the effect of the Bon specific heat capacity. We dis-

play in Figure 6 the variation of specific heat capacity with a Bat two different 
values of the temperature. The study of DOS exhibits a periodic oscillation cre-
dited to the development of the disorder. This behavior of oscillatory is shown 
also in Figure 6 of the specific heat capacity [25]. 

Figure 7 displays the relationship between the specific heat capacity and tem-
perature for three dissimilar values of the B. We evidence that whatever the B, 
there is a critical temperature that is at T = 3.5 K, and at this critical tempera-
ture, the specific heat capacity achieves its maximum, and we can say at this  
 

 
Figure 6. Oscillation of specific heat capacity Cv as a function of the 
magnetic field B at constant broadening factor Γ for different tempera-
ture. 

 

 
Figure 7. Specific heat capacity as a function of temperature for a GaAs 
two-dimensional electron gas. 
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Figure 8. Magnetization as a function of magnetic field at broadening factor Γ = 1 meV 
for temperature T = 0.3 K and T = 5 K. 
 
point that the system has stored the most energy. Outside of that critical tem-
perature, the specific heat capacity decreases with the B because, as the temper-
ature increases, the specific heat capacity becomes less sensitive to field changes 
and the particles are more stable. 

After studying, the chemical potential, we determine the exact expression for 
the thermodynamical potential to investigate the magnetization of the system. 
Then we demonstrate the results of Equation (13) in Figure 8. We display the 
magnetization versus B for two different values of the temperature: T = 0.3 K 
and T = 5 K, at a fixed broadening factor Γ = 1 meV. It is clear that magnetiza-
tion oscillates with respect to B strength and inclines to be zero at low field 
strengths, closely following the oscillation of the chemical potential. At low 
temperatures, the magnetization shows a dHvA oscillation that resembles a 
sawtooth [27] [28] [29]. Our results supported the numerical finding in Refer-
ence [25] [33]. 

4. Conclusion 

In conclusion, we have solved the Hamiltonian of an electron in a two-dimen- 
sional electron’s gas, under the effect of an external magnetic field and tempera-
ture. In 2D electron systems, the effect of temperature and LLs broadening is 
taken into account involving a Gaussian-shaped DOS. The broadening values 
that were taken into consideration took on a variety of shapes, including various 
constant factors, a square-root dependence on the B, and an oscillating function 
about the filling factor ν. Whatever the form, the acquired B performance of the 
chemical potential, specific heat capacity, and magnetization reveal the same 
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tendency. The broadening only affects the oscillations width of the B for indi-
vidual interlevel and internal-level contribution. It is found that the 2D electron 
systems obtain their ideal electron gas features at a specified temperature. Under 
this defining temperature, the LLs broadening has no further effect on how the 
thermodynamic properties behave. 
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