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Abstract 

Groundwater is one of the most important water sources relied upon espe-
cially in arid and semi-arid areas where surface water is limited. The sustai-
nability of groundwater resources has been under threat due to land use and 
land cover changes. This study aims to determine the effects of land use and 
land cover changes on integrated surface and groundwater resources within 
the Lagha-Bor catchment for the period 1990 to 2020. Landsat images of 
1990, 2000, 2010 and 2020 were used along with integrated SWAT + gwflow 
model to predict the effects of the land use and land cover changes. Land use 
and land cover change analysis deduced that increased development of hu-
man and livestock watering points and settlements led to increase in 
bare-ground land cover from 35% to 45.8% while sparse shrubs decreased 
from 60.8% to 49%. Analysis of the catchment water balance revealed that the 
decrease of sparse shrubs and increase in bare-ground between year 2010 and 
2020, led to a 33% decrease in groundwater recharge from 2860 mm to 1950 
mm following an 8.5% reduction in sparse shrubs and 8.9 increase in bare- 
ground cover. In the period 2010 to 2020, reduction of 0.53% in groundwater 
volume was observed following a reduction of 7.2% in sparse shrubs and 7.5% 
increase in bare ground cover. Surface flow was least at 1655 mm in 2010 
when the catchment recorded the highest area under sparse shrubs and the 
lowest area under bare-ground cover. The highest levels of percolation (3110 
mm), lateral flows (480 mm), and groundwater return flows (1280 mm) were 
realized during the same period. This clearly showed that changes in land use 
and land cover had an effect on the water balance components in the catch-
ment. 
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1. Introduction 

Land use and land cover changes can contribute significantly to land surface and 
hydrological alterations. In arid and semi-arid areas, with no reliable surface 
water systems, groundwater remains the single most important source of this 
scare resource. However, human activities continue to influence changes 
through utilization of land and related resources in an attempt to meet their 
growing needs. While some of the changes can have positive effects, others could 
lead to irreversible and far-reaching negative effects, such as drying and non-use 
of boreholes, high salinity of borehole water, degradation of soil and vegetation 
as well as extinction of palatable vegetation and emergence of foreign and inva-
sive vegetation types. As a result, a plan for timely and accurate collection of 
land uses and land cover information is necessary to inform water resource 
managers regarding historical and potential changes in hydrologic fluxes and 
volumes, and strengthen the positive effects while preventing or reducing the ef-
fects of negative effects (Albhaisi et al., 2013) [1]. 

Among the most recent methods developed to facilitate accurate and timely 
collection of land use and land cover change information has been the applica-
tion of remote sensing in the form of time series landsat imageries (Kumar and 
Mutanga, 2018) [2]. The change detection and land use monitoring process has 
been further been simplified and made more efficient through development of 
google earth engine which is a GIS-web based platform that facilitate archiving 
of remote sensing data, retrieval, analysis, visualisation and exporting of final 
products (Sidgu et al., 2018 [3]; Rahmi et al., 2022 [4]). The advantage of cloud 
computing has not only reduced computation time but also limitations asso-
ciated with computer machine requirements (Rahmi et al., 2022) [4]. The timely 
access to accurate land use and land cover change information has further re-
duced the time taken to carry out other activities such as predicting the influ-
ences of land use changes on catchment water resources (Albhaisi et al., 2013) 
[1].  

In ASAL areas, land use and land cover change highly attributed to overgraz-
ing around livestock watering points and growth in settlement which affect ve-
getation cover and bare-land among other land covers (Egeru et al., 2015 [5]; 
Jawuoro et al., 2017 [6]). Many efforts have been made towards studies on effects 
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of land use and land cover changes on catchment hydrology (Lei et al., 2022 [7]; 
Ayivi and Jha, 2018 [8] and Shawul et al., 2019 [9]). The changes have often been 
observed to alter the interactions between water balance components including 
surface flows, infiltration, and percolation among other hydrological compo-
nents. The incremental and overall effect of the land use changes on catchment 
hydrology cannot be underestimated. According to Lei et al., (2022) [7], land use 
changes were observed to have a high influence on the dynamics of surface and 
ground water quantity within Stör catchment in of Germany. The changes in 
areas under pasture, settlements and agriculture negatively affected the quantity 
of surface and groundwater in the catchment.  

Lagha-bor catchment which falls in Wajir County in Northern part of Kenya 
has been experiencing spatial and temporal land use and land cover changes 
with potential influence on hydrological variations within the catchment. Con-
sidering that pastoralism is the main livelihood activity in the catchment, quan-
tification of the effects of land use changes on the integrated surface and 
groundwater resources was necessary to avert irreversible changes. The study 
sought to determine the land use and land cover change dynamics in the catch-
ment and their corresponding effects on water quantity. This was achieved with 
application of GEE and integrated SWAT + and gwflow model with a main aim 
of providing bases for policy direction on the best management interventions. 

2. Materials and Methods 
2.1. Location, Extent and Description of the Study Area 

The catchments slopes in a northwest-south east direction with elevation rang-
ing from 1381 m – 397 meters above sea level with the predominant slope of 
0.5% - 2% covering over 90% of the catchment. Lagha-bor is the main ephemeral 
stream draining the entire catchment from Moyale through Griftu to Diff cov-
ering an area of approximately 22,730 Km2. The catchment area accounts for 
40% of Wajir County land mass. The area falls within an ASAL environment 
where the main livelihood activity is nomadic pastoralism where dominant land 
covers include sparsely distributed shrubs and bare ground. An average annual 
rainfall of 350 mm is experienced. The upstream area receives the highest rain-
fall at 500 mm while the lowest parts of the catchment receive as low as 250 mm 
annually. The maximum and minimum temperatures are 36˚C and 21˚C respec-
tively with an average annual temperature of 28˚C. Figure 1 shows the location 
of the study area. 

2.2. Methodology 
2.2.1. Land Use and Land Cover Change Analysis 
The study was carried out for the period 1986-2018. It had been established that 
from 1986, most of the water points initially developed and managed by gov-
ernment were handed over to the community for operation and use. In the pe-
riod 1986-1990, the only water projects operated by the government were within  
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Figure 1. Map of study area. Source: Author—generated from SRTM DEM and ESRI datasets on international boun-
daries, Counties boundaries, roads, rivers and towns. 
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Wajir town. The shift in management of water points, led to the change in vege-
tation management with areas that were considered either wet or dry grazing put 
under free grazing. The land use and land cover changes could hence bet traced 
to the changes in water management and arising settlements. 

Land use land cover change (LULCC) detection and analysis was carried out 
in Google Earth Engine (GEE) platform. The GEE platform provides for both 
open access datasets through retrieval from the archive, cloud computing, analy-
sis and visualisation of results (Kumar and Mutanga, 2018) [2]. The platform 
operates with the help of javascript code programming.  

Appropriate javascript codes were developed to facilitate import of the project 
area shapefile; retrieval of landsat images along with cloud cover filtering and 
clipping to the project area; development of classifiers, undertaking supervised 
classification and carrying out image differencing for land use and land cover 
change analysis (Kumar and Mutanga, 2018 [2]; Rahmi et al., 2022 [4]). Training 
data and classifiers for the four land use and land cover types namely dense 
shrubs, sparse shrubs, grassland, and bare-ground/built-up were developed us-
ing high resolution google earth embedded in the GEE. In the classification, 
random forest (RF) classifiers were used to extract land cover types for each 
landsat image (Rahmi et al., 2022) [4].  

The four land use and land cover types corresponded to the descriptions pro-
vided in Table 1. Validation and accuracy assessment was also undertaken in 
GEE to ensure high level of classification. In the accuracy assessment, the study 
adopted a minimum of 85% for producer, user and overall accuracy and 0.80 
kappa values to achieve the most reliable outcomes (Hütt et al., 2016 [10]; Mo-
hajane et al., 2017 [11]). 

2.2.2. Predicting the Effects of Land Use and Land Cover Change on  
Catchment Water Balance Components 

The integrated SWAT + gwflow model was utilized to simulate hydrologic 
processes in the study catchment. The combination of SWAT + and gwflow 
modflow module helped improve the overall simulation by supporting and bet-
ter accounting for both surface, sub-surface and deep percolation processes.  
 
Table 1. Description of the land use and land cover types for the study. 

 Land cover Description 

1 Bare-ground 
Limited to no vegetation cover. This also includes sparsely 
located settlements, <15% shrub cover. 

2 Grassland 
Characterised by grass coverage or grass interspersed scanty 
shrubs. 

3 Sparse shrubs 
Areas predominantly covered by shrubs and trees of medium 
density, vegetation cover > 15 < 80 percent. 

4 Dense shrubs 
Characterised by high density shrubs and trees, vegetation 
cover near 100%. 
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SWAT is considered as one of the few widely and globally applied program with 
over 20 years of continued development. In the recent past, it was modified and 
restructured into SWAT + and made available as QSWAT + plugin in QGIS. To 
overcome limitation and better present the spatial interactions between the var-
ious catchment hydrologic processes, the SWAT has seen modifications and re-
structuring to the current SWAT + version. The restructured SWAT + version 
also offers better user interface (Abbaspour et al., 2017 [12] and Bailey et al., 
2020 [13]).  

While simulating the catchment hydrologic process, SWAT + makes use of 
digital elevation model (DEM), soil, land use and climatic datasets. The process 
involves delineation of sub-catchments and creation of hydrological response 
units that form basic units for simulating changes and management interven-
tions within the catchment. Similar to the original SWAT, the SWAT + simu-
lates for both land and soil hydrologic fluxes such as evapotranspiration, surface 
flow, percolation, lateral flow and aquifer/groundwater processes among others 
(Abbaspour et al., 2017) [12]. Its limitation towards deep percolation necessi-
tated integration of gwflow in SWAT + (Bailey et al., 2020) [13]. Figure 2 shows 
simulation components and interactions between the various catchment hydro-
logic processes in a SWAT + model. The components are generated as outputs 
during simulation in a SWAT model. 

To improve the representation and simulation of groundwater storage and 
flow in catchment systems, Bailey et al., (2020) [13] developed the gwflow mod-
ule for SWAT+. The module is imbedded within the SWAT + code as a subrou-
tine, and links with other hydrologic objects (HRUs, channels, reservoirs) within 
the catchment to simulate groundwater interactions such as recharge, ground-
water-stream exchange, groundwater-reservoir exchange, tile drainage, and sa-
turation excess flows. The gwflow module uses grid of cells (250 m by 250 m was 
used in this study) to represent individual aquifer control volumes. For each 
control volume, the groundwater storage are updated during each daily time step  
 

 

Figure 2. SWAT + simulation processes. 
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based on the balance of groundwater inflows (e.g., recharge, stream seepage) and 
outflows for example groundwater discharge to streams, tile drainage, ground-
water pumping (Bailey et al., 2020) [13]. 

2.3. Integrated Model (SWAT+ and Gwflow)  
2.3.1. SWAT + Model Set-Up 
A SWAT + model was developed using QSWAT + plugin in QGIS. The interface 
guides the users in developing the SWAT + model from loading the required 
input datasets, catchment delineation, creation of HRUs along writing input files 
and running the SWAT + model in SWAT + Editor 60.04 (Abbaspour et al., 
2017 [12]; Bailey et al., 2020 [13]). Figure 3 shows the SWATPlusEditor inter-
face in the process of model development. The input spatial datasets including 
DEM, Land use and Soil were projected into the same co-ordinate system and 
the look-up tables for land cover and soil maps prepared (Abbaspour et al., 2017 
[12]; Abbaspour et al., 2015a [14]).  

Four different models were set-up based on different land-use/cover maps of 
1990, 2000, 2010 and 2020. On the DEM, a default drainage threshold of 620 
Km2 was used to discritize the catchment in to 23 sub-basins and a 5% threshold  
 

 

Figure 3. Model definition and simulation in SWAT Plus Editor. 
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applied for on the land-use, soil and slope to generate the HRUs. This resulted in 
1160, 1137, 1137 and 1100 HRUs for the 1990, 2000, 2010 and 2020 SWAT + 
models respectively. 

The HRUs are normally filtered based on landuse, soil and slope by applying a 
threshold for land soil and slope factors. Previous studies have deduced that 
while thresholds of 5%, 10%, 15% and 20% are applied in order to aggregate 
small HRUs and increase of computation time, such increase in threshold often 
lead to over-prediction of daily surface flows by 0.45%, 1.25%, 2.78% 3.83% and 
4.81% for 5%, 10%, 15%, 20% and 25% thresholds respectively (Jiang, et al., 
2021) [15]. This contributes to reduction of R2 and NSE coefficients hence re-
ducing model accuracy and increasing uncertainty (Jiang, et al., 2021) [15]. 
While the effect of threshold is considered less on monthly flow measurements 
as compared to daily flows, higher effects are observed on water quality and se-
diments (Jiang, et al., 2021) [15].  

To maintain a balance between reduction in computation time and model ac-
curacy for water quality and quantity outputs, the current study chose to adopt a 
10% threshold for the land, soil and slope. This threshold was considered optim-
al owing to the ASAL nature of the catchment where rainfall is highly sporadic. 
The application of this threshold led to reduction of HRUs through aggregation 
of small HRUs from 3800 to 1100 which greatly help on improving the compu-
tation time. For each of the four models corresponding to the land use maps of 
1990, 2000, 2010 and 2020, the simulation time was set from 1986 to 2015 with a 
warm-up period of 3 years. The warm-up period was used to initiate model sta-
bility and hence no results are provided for the period.  

2.3.2. Gwflow Model Set-Up 
The gwflow model for the study was prepared using the procedure and data 
types outlined by Bailey et al., (2020) [13]. A 250 m grid cell spacing used re-
sulted to 990,945 Cells and 74 permeability zones. The aquifer saturated hydrau-
lic conductivity (K) for most of the zones were 0.005, 1.007 and 19.2 m/day while 
the aquifer porosity ranged 0.23 - 0.29. The specific yield was considered at 60% 
of the aquifer porosity, which gave an estimated value of 0.18. Figure 4 and Fig-
ure 5 represent part of the datasets used in the development of the gwflow mod-
ule. 

All the necessary data for the running of gwflow model was prepared and en-
tered in the three main files: gwflow.input, gwflow.hrucell, gwflow.cellhru. As a 
result, a gwflow module was prepared for each of the corresponding SWAT + 
model and run with a warm up period of 3 years for which the outputs were not 
printed and a time step of 0.25 days used to ensure stability of the groundwater 
balance equation (Bailey et al., 2020) [13]. The simulated groundwater heads 
were compared to the measured values. The results showed that most of the bo-
reholes with low yields had been sited or drilled on areas with low groundwater 
volumes. 
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(b) 

Figure 4. HRU_grid cells and River_grid cells intersection. 
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(b) 

Figure 5. Hydraulic conductivity and Bedrock data. 
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2.4. Calibration, Sensitivity and Uncertainty Analysis 
2.4.1. Model Calibration and Validation 
Model calibration is a routine practice in modelling works and involves adjust-
ment of model parameters to a level where the simulated results best matches the 
observed data. For large catchments, the range for most parameters are not well 
known owing to spatial variability, measurement errors and complexity of the 
hydrological process (Moges, et al., 2022) [16]. It is for these reasons that SWAT 
+ models were calibrated before the inclusion of the groundwater flow module 
(gw) for overall simulation. This was carried out to ensure that the hydrological 
fluxes simulated well mimicked the observed data.  

The traditional practice in calibrating many hydrological models including 
SWAT model has been the use of measured stream discharge either from a sin-
gle or multiple hydrological stations within the catchment. Where measured da-
ta such stream flow is either unavailable or unreliable, the application of remote 
sensing derived data has increasingly gained prominence for use in calibration of 
hydrological models. Remote sensed data especially actual evapotranspiration 
(AET) and soil moisture has been relied on in the recent past for calibration and 
validation of SWAT models (Tobin and Bennett, 2017 [17]; Odusanya et al., 
2019 [18]).  

For the current study, once the SWAT models were built, the simulation re-
sults were compared with AET data from different remote sensed actual evapo-
transpiration products which included Global Land Evaporation Amsterdam 
Model (GLEAM), Moderate Resolution Imaging Spectrometer (MODIS16) and 
Global Land Data Assimilation System (GLDAS). Among the three datasets con-
sidered, Actual Evapotranspiration (AET) from the GLEAM data provided the 
best comparison between observed and simulated data and was hence selected 
and used for simulation. In advantage, the AET GLEAM data has previous been 
used and proved reliable in calibration and validation of SWAT models (Odu-
sanya, et al., 2019 [18]; Tobin and Bennett, 2017 [17]).  

Calibration for the QSWAT + model was undertaken using Sequential Para-
meter Estimation (SPE) in SWATPlus-CUP using GLEAM satellite derived Ac-
tual Evapotranspiration (AET) in line with the guidelines described within the 
documentation for the SWATPlus-CUP software (Abbaspour et al., 2017 [12]; 
Chunn et al., 2019 [19]). A ten year data period was used for calibration and va-
lidation where two-thirds of the data, 2001-2007 was used for calibration and the 
remaining one-third, 2008-2010 was used for validation (Abbaspour, et al., 
2015b) [20]. SWATPlus-Cup model performs automatic calibration where pa-
rameter changes happen internally as the model runs. The SPE program com-
pares the simulated values to the observed values using objective functions such 
as NSE, KGE, R2 and bR2 statistics. The model was considered sufficiently cali-
brated when R2 ≤ 1 and 0.5 ≤ bR2 ≤ 0.7 (Arnold, 1998 [21]; Moriasi et al., 2007 
[22]). Validation was undertaken after calibration period. 

The gwflow module model was calibrated using measured groundwater level 
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data from 50 boreholes available from the catchment. The project setup and ini-
tial runs were carried out under steady-state conditions, to establish an initial 
condition before running transient simulations. After the initial run, variable 
recharge data from corresponding SWAT model was added to the model 
(Chunn et al., 2019) [19]. The recharge data was subdivided by SWAT HRUs 
and added to the top layer of the MODFLOW model in the corresponding loca-
tions (Chunn et al., 2019 [19]; Guzman, et al., 2015 [23]). 

2.4.2. Sensitivity and Uncertainty Analysis 
In order to determine the effects of land use change on groundwater quality and 
quantity, a determination was made on the sensitivity of the parameters to be ca-
librated. This was achieved by running each model using the initial range of 10 
parameters provided in Table 2 for 300 simulations. The results of the parame-
ters sensitive to GLEAM AET data are provided in Table 2. The most sensitive 
parameters were considered as having a p-value lower that 5% and a high abso-
lute value of t-stat (Bennour et al., 2022) [24]. The results showed that parame-
ters most sensitive to AET were moist soil bulk density (bd), soil depth (z), Soil 
evaporation compensation factor (esco), Available water capacity of soil layer 
(awc) and Moisture condition II—SCS curve number (CN2) as shown in Table 
2. The most sensitive parameters were adjusted to significantly improve the 
models ability to simulate monthly catchment evapotranspiration (Musyoka, et 
al., 2021 [25], Odusanya, et al., 2019 [18] and Moges, et al., 2022 [16]). Table 2 
provides further details on the parameter ranges for the parameters selected for 
calibration. 

In the SWATPlus model, the CN2 governs the generation of surface runoff 
from HRUs based on the relationship between land use, soil hydrologic group 
and precipitation (Donmez, et al., 2020 [26], Moges, et al., 2022 [16]). Higher 
values of CN2 signifies reduction in infiltration and hence increased runoff 
while lower values translated to reduction in surface runoff due to increase in 
percolation (Moges, et al., 2022) [16]. The results of the calibration showed that 
an increase of 15% - 25% in CN2 was necessary for all models. This was attri-
buted to the reduction sparse scrubs and increase in bare ground which conse-
quently contribute to increase in surface runoff, less percolation and recharge.  

Soil Depth (z) was the second most sensitive parameter for the models. Soil 
depth determines the level of soil moisture achieved through infiltration and 
groundwater evaporation. Deeper soils hold more soil moisture while shallow 
soils offer least soil moisture storage. Soils in the ASAL areas are characterised 
by shallow depths. The calibration results showed tendency to reduce the soil 
depth by 40% - 90%. The Harmonised World Soil Database (HWSD) shows that 
the soil depth of near 1.0 m which indicates that the catchment soils are consi-
derably shallow (Wieder, et al., 2014) [27]. The reduction in vegetation is most 
likely leaving the soil vulnerable to increased erosion thereby contributing to 
reduction in soil depth, reduction in infiltration and storage with increase in 
surface runoff. 
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Table 2. Parameter sensitivities at calibration stage-2020 model. 

 Parameter 
Mode of 

change and 
Parameter code 

Parameter value range 
Parameter 

sensitivity to AET 
Rank 

Minimum 
value 

Maximum 
value 

t-stat p-value 

1 Moist bulk density of the soil layer r_bd −0.50 0.50 10.2777 1.0 × 10−11 1 

2 Soil depth r_z −1.0 1.0 −9.4917 2.0 × 10−9 2 

3 Soil evaporation compensation factor v_ESCO 0.10 1.0 −3.34417 0.00281 3 

4 Available water capacity of soil layer r_awc −0.30 0.30 −3.00806 0.00627 4 

5 Moisture condition II—SCS curve number r_CN2 −0.50 0.50 2.26821 0.033018 5 

6 Saturated hydraulic conductivity r_k −0.50 0.50 1.515195 0.143346 6 

7 
Threshold depth of water in the 

shallow aquifer for “revap” to occur 
v_revap_min 100 500 0.46445 0.646692 7 

8 Groundwater “revap” coefficient v_revap_co 0.05 1.0 −0.44607 0.659717 8 

9 
Threshold depth of water in the shallow 
aquifer required for return flow to occur 

Flow_min 500 5,000 −0.20111 0.84238 9 

10 Surface runoff lag coefficient v_surlag 0.050 0.30 −0.01378 0.98913 10 

r = relative percent change, v = replacement/absolute change. 
 

The Soil bulk density (bd) defines the relative amount of pore space or poros-
ity in the soil layer (Odusanya, et al., 2019 [18] and Moges, et al., 2022 [16]). The 
increase in bulk density decreases infiltration rate of the soil. The high sensitivity 
of this parameter means that it highly affects the hydrological processes in the 
catchment. The calibration results for this parameter showed an increase of the 
bulk density across the catchment by 27% - 33%. The increase in bulk density 
called for decrease in porosity which consequently led to decrease in lateral and 
vertical movement of water in the soil layers (Moges et al., 2022) [16]. According 
to the Harmonised World Soil Database (HWSD), the major soils in the area in-
clude Luvisols, Arenosols and Solonetz (Wieder et al., 2014) [27]. These soils are 
associated with high clay levels which has higher porosity and lower bulk density 
of 1.23 - 1.49 g/cm3 (Wieder et al., 2014) [27]. The need to increase the bulk 
density may have been necessitated by reduction in vegetation or increase in 
bare ground within the Luvisols and Solonetz soil zones. 

The available water capacity (AWC) in the soil denoted the capacity of the soil 
to hold water. Higher AWC meant that the soil has higher ability to hold water 
hence leading to less surface runoff and percolation. The calibration results 
showed the need to decrease the awc by 20% - 25% thereby leading to reduced 
ability of the soil in the catchment to hold water. This also contributed to re-
duced percolation and ground water recharge in addition to increase in runoff 
from the catchment. The shallow soil depths and higher bulk density may have 
contributed to reduction in soil moisture. Similar findings were deduced in re-
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lated analysis (Moges et al., 2022) [16]. 
ESCO was also identified as the third most sensitive parameter for the study 

models and controls the soil depth needed to meet evaporation demands of the 
model. A change in this parameter therefore affects the water balance in the cat-
chment. High ESCO values means a smaller depth meeting the evaporation de-
mand leading to increase in surface runoff while low ESCO values allows the 
model to extract more water from the lower layers in order to meet water deficit 
in the upper soil layers (Malagò et al., 2015 [28] and Moges et al., 2022 [16]). 
Results of the calibration process estimated an ESCO range of 0.85 - 0.92 which 
was within the recommended range of 0.75 - 1.0. The medium to high ESCO 
values for the catchment means lower evapotranspiration demand from lower 
soil layers a factor supported by sparse scrubs in the semi-arid environment.  

2.4.3. Assessment of SWAT Model Accuracy  
The monthly GLEAM evapotranspiration data was used to calibrate the models. 
The accuracy of the model was determined by comparing between the simulated 
and observed results using three approaches namely graphical, statistical and 
analysis of model water balance (Musyoka et al., 2021) [25]. From a statistical 
perspective, the model accuracy and uncertainty were evaluated using p-factors 
and r-factor respectively (Abbaspour et al., 2017) [12]. The p-factor defines the 
number of observed data points bracketed by the 95PPU while r-factor is de-
fined by a ratio of average width of the 95PPU and standard deviation of the ob-
served/measured data (Odusanya et al., 2019) [18]. Figure 6 shows the p-value 
and r-factor for one of the four models. Analysis of the p-factor and r-factor 
values for all the calibrated models deduced that p-factor values ranged between 
55% - 70% which meant that close to 70% of the observed data was within the 
95PPU while the values for R-factor ranged 1.1 - 1.5 showing a good level of the 
model’s ability to predict uncertainty.  

The use of individual objective function gives calibration results that are con-
ditioned to the respective objective function (Abbaspour et al., 2017) [12]. From 
the post processing of multi-objective function, the weights for the individual  
 

 

Figure 6. Variation of p-factor and r-factor in some target HRUs of the 1990 SWAT 
model. 
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objective functions are provided in Table 3. An assessment of the individual ob-
jective function observed that the model performance was more than satisfactory 
under monthly assessment with coefficient values of R2 ≥ 0.4, NSE ≥ 0.45, PBIAS 
± 20% and KGE ≥ 0.40 (Moriasi et al., 2015 [29] and Odusanya et al., 2019 [18]). 

In order to incorporate and enhance the advantage of each objective function, 
a multi-objective function is recommended. For this study, a multi-objective 
function was used by combining four statistical coefficients namely coefficient of 
determination (R2), Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS) and 
Kling-Gupta Efficiency (KGE) (Abbaspour et al., 2015b [20]; Moriasi et al., 2015 
[29]) as follows:  

Multi-objective function = w1R2 + w2NSE + w3KGE − w4PBIAS 

where w1, w2, w3, and w4 corresponds to the weights of R2, NSE, KGE and 
PBIAS provided after post-processing of calibration results for multi-objective 
function. W1 is taken as equal to 1 while the weight for the rest individual func-
tion were achieved by dividing the weight of R2 by that of the specific objective 
function. An overall multi-objective goal of 1.08086, 1.02002, 1.05315 and 1.0004 
were achieved for 1990, 2000, 2010 and 2020 models.  

As shown in Figure 7(a) and Figure 7(b), the visual analysis of the resulting 
graphs for the four models showed that there was good agreement between the 
model simulations and observed HRU evapotranspiration data. The visual as-
sessment observed that the simulation results well matched the monthly GLEAM 
evapotranspiration observation data. However, not all peaks in the observed data 
well match the modelled simulation. This could be attributed some of the land 
management such as sparse and transitional settlements which are characteristic 
to the nomadic pastoralism nature of the communities.  

1) Simulation and analysis on effects of land use land cover change on ground-
water quantity in the catchment 

2) Upon setting up the SWAT + gwflow model for simulation, the effects of 
land use land cover change on groundwater recharge, depth and volume was as-
sessed by varying land use land cover imageries. Borehole pumping data was 
further incorporated in order to assess the effects of increased abstractions. The 
simulated groundwater depth was checked against the current water depth in the 
boreholes. 

3) Effects of land use change were assessed by analysing the changes in ground-
water quantity under changing land use and land cover. The model outputs in  
 
Table 3. Weights for the individual objective functions. 

# Model R2 NSE KGE PBIAS 

1 1990 0.61818 0.4994 0.70188 2.9626 

2 2000 0.5981 0.5188 0.6791 1.1665 

3 2010 0.6482 0.5421 0.6991 0.4156 

4 2020 0.6533 0.5521 0.72112 −0.9772 
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Figure 7. Simulation and observed flows for the calibration and validation phase—Year 2010 model for HRUs 323 and 588. 
 
terms of catchment water balance including surface flows, groundwater re-
charge, percolation, groundwater transfer to the soils profile among others were 
assessed from trend and spatial image differencing.  

2.4.4. Assessment of Gwflow Model Accuracy  
All the four SWAT models namely 1990, 2000, 2010 and 2020 were calibrated for 
the period 2001 to 2007 and validated for the period 2008 to 2010. The results 
from SWAT + model formed an input into the gwflow modflow module 
(groundwater model). This meant that four groundwater models were developed 
corresponding to the respective SWAT + models due to difference in HRUs.  

The results from (gwflow module) run were only considered successful and 
meaningful after assessing the results from water depth and/or groundwater vo-
lume outputs. This resulting curve was assessed to ascertain that a stable point 
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had been attained from which the observed results were both consistent and 
constant (Bailey et al., 2020) [13]. For, example, Figure 8 shows that the model 
results had attained a stable state from year 2001 when water depth at the shal-
low aquifer was 7 m and corresponding groundwater volume was estimated 
12.36 meters annually. All the models were observed to have attained trend sim-
ilar.  

The accuracy of the SWATPlus-gwflow model was assessed by determining 
the error in the catchment and groundwater balance. For the catchment balance, 
the error was determined by computing the difference between the total water 
input (precipitation and groundwater transfer) and the total water output (sur-
face runoff, lateral flow, percolation, evapotranspiration, and saturation excess 
flow). As shown in Table 4, the results of the model accuracies from a catch-
ment water balance perspective revealed that the model error ranged between 
0.2%, 0.8%, 0.9% and 1.4% with corresponding accuracies of 99.8%, 99.2%, 
99.1% and 98.4% respectively for years 1990, 2000, 2010 and 2020. The high level 
of model accuracy confirmed that the simulated results were considerably relia-
ble (Bailey et al., 2020) [13].  

For the groundwater balance, the model accuracy was assessed by comparing 
the results of the difference between groundwater after and before and the sum 
fluxes including recharge, groundwater evapotranspiration, groundwater flow to 
surface runoff, surface runoff percolation to groundwater, saturation excess flow 
(satex) and groundwater flow to soil profile. The results of the model errors were 
as given in Table 5. Analysis of the model errors showed that the error for the 
groundwater flow module (gwflow) ranged 0.3% - 3.2%. From Table 5, the 
model errors of 1.8%, 3.2%, 0.3% and 1.4% with corresponding accuracies of 
98.2%, 96.8%, 99.7% and 98.6% restively for years 1990, 2000, 2010 and 2020. 
This high accuracies confirmed that the model performed well and exhibited 
good level of simulation accuracy (Bailey et al., 2020 [13]; Yimer et al., 2022 
[30]). 
 

 

Figure 8. Groundwater volume and water depth variations—1986-2015 (2020 model). 
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Table 4. Model accuracies for the catchment water balance. 

 
1990 2000 2010 2020 

IN (mm) 12847.6 11452.8 15468.8 12304.0 

OUT (mm) 12766.2 11366.0 15381.2 12221.3 

CHANGE (IN-OUT) (mm) 81.4 86.8 87.6 82.6 

Model Change (mm) 80.8 86.1 86.8 81.5 

Error 0.6 0.7 0.8 1.2 

Error (%) 0.8 0.8 0.9 1.4 

Accuracy (%) 99.2 99.2 99.1 98.6 

 
Table 5. Model accuracies from a groundwater balance perspective. 

 
1990 2000 2010 2020 

Vol. Difference 
(After less Before)-mm 

−750 −710 −790 −720 

Sum of fluxes (mm) −737 −687 −788 −710 

Error (mm) −13 −23 −2 −10 

Error (%) 1.8 3.2 0.3 1.4 

Accuracy (%) 98.2 96.8 99.7 98.6 

3. Results and Discussion 
3.1. Land Use and Land Cover Change 

Figure 9 shows the temporal variation for the predominant land use and land 
cover types mainly sparse shrub and bare ground in the catchment. The analysis 
observed that bare-ground cover increased from 35% to 46% in the period 
2000-2020. The analysis of the temporal variation showed that area under bare 
ground cover recorded gradual increase from 1985 to 2020 while area under 
sparse shrubs depicted a decreasing trend over the years. According to Figure 9, 
the catchment has recorded an overall decline in area under sparse shrubs by 
approximately 2680 Km2 which is equivalent to 11.8% in favour of bare ground 
cover which increased by 2470 km2 corresponding to 10.8%. 

While Figures 10(a)-(d) shows the spatial variations in the four land use/cover 
classes namely dense shrubs, sparse shrubs, grassland and bare-ground for years 
1990, 2000, 2010 and 2020 respectively. The most conspicuous classes were 
sparse shrubs and bare-ground covers. Visual observations of the spatial varia-
tions show that much of the changes were in the central part of the catchment 
especially between Buna and Abaqdere. The most notably and visible change was 
observed between the imageries of 2010 and 2020 when the increase in bare 
ground was highest. 
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Figure 9. Temporal variation in land cover (bare ground and sparse shrubs). 
 

 

Figure 10. Land cover types for the period 1990-2020. 
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3.2. Spatial-Temporal Variation of Surface and Groundwater  
Fluxes  

The results of main components in the catchment and groundwater balance files 
were extracted and analysed to determine the trends. These included surface 
flows, percolation, lateral flows, evapotranspiration, groundwater transfer from 
shallow aquifer or water table to the soil profiles (gwtranq), saturation excess 
flow (satex) and groundwater recharge. Figure 11 shows the variations of these 
fluxes for the period 2001-2013 during which the model was in a stable state. 
The influence of land use land cover change on surface and groundwater fluxes 
was assessed by relating the changes in fluxes shown in Figure 11 to the changes 
land use and land cover as shown in Figure 12. 

Figure 11 shows that precipitation and evapotranspiration (ET) accounted for 
the highest proportion of the fluxes. For the 13 years period (2001-2013), the 
analysis of the fluxes showed that precipitation remained constant at 9600 mm. 
This was occasioned by the fact that for each of the four models (1990, 2000, 
2010 and 2020), the weather conditions were held constant while the land use 
and land cover was varied. As per Figure 11, evapotranspiration was observed to 
have declined from 7748 mm to 6654 mm between year 1990 and 2000 after 
which it increasing to 8860 mm in 2010 before reducing to 7400 mm in 2020.  

The analysis revealed that evapotranspiration decreased with decrease in area 
under sparse shrubs and only increased if the sparse shrubs were found to in-
crease. The changes in bare-land/ground cover were also found as having an in-
fluence on the level of evapotranspiration. Increase in area under bare-ground 
cover led to a reduction in evapotranspiration where increase in bare ground/land 
contributed to decline in evapotranspiration and vice versa. 

Similar trend was observed while examining change in groundwater transfer 
to the soil profile. The transfer of groundwater to the soil profile was highest at 
5679 mm in year 2010 which corresponded to the same period when the area  
 

 

Figure 11. Variation in surface and groundwater fluxes—2001-2013. 
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(d) 

Figure 12. Spatial variation of groundwater recharge—1990, 2000, 2010 and 2020. 
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under sparse shrubs cover was highest. Groundwater transfer to the soil profile 
was lowest at 1850 mm in year 2000 during which the catchment recorded the 
lowest area under sparse shrubs. This deduced that the presence of vegetation 
greatly influenced the transfers of groundwater from the shallow water tables to 
the soil profile. Within Lagha Bor catchment, reduction of vegetation cover in-
creases the area under bare-ground leading to reduction in groundwater transfer 
from the shallow aquifer/water table to the soil profile to meet the evapotranspi-
ration needs.  

Land use and land cover changes were also found to influence the amount of 
surface flows. The least surface flow (1655 mm) was observed in year 2010 when 
the catchment was observed to have record the highest area under sparse shrubs 
and lowest area under bare-ground cover. It is during the same period that the 
highest levels of percolation (3110 mm), lateral flows (480 mm) and saturation 
excess flow (1280 mm) were high. This confirmed that the amount of vegetation 
cover played a great role in influencing these fluxes.  

Land use and land cover change in lagha bor catchment was also found to 
have influence on groundwater recharge. The total recharge results provided in 
Figure 13 corresponds to the deep groundwater recharge results obtained from 
simulation using the 2010 gwflow modflow model. The results showed that the 
highest groundwater recharge was reported by the 2010 gwflow model which 
utilized the outputs from the 2010 SWAT + model that had been set-up using 
the 2010 land use land cover map.  

Groundwater recharge was estimated at 2030 mm, 1900 mm, 2860 mm and 
1950 mm in 1990, 2000, 2010 and 2020 respectively. This showed that highest 
recharge was observed in 2010 when area under sparse shrubs was highest and 
area under bare-ground cover was lowest. This confirmed that indeed land use 
and land cover changes affected recharge in the catchment. Similar findings were 
reported by Shamsuddaha et al., (2011) [31] and Siddik et al., (2022) [32] who 
observed that land use and land cover change was one of the main anthropogen-
ic activities affecting groundwater recharge in northwestern Bangladesh. 
 

 

Figure 13. Variations of groundwater with land use and land cover changes. 
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Figure 12 shows the spatial variations in groundwater recharge between 1990 
and 2020. It is clear that over 80% of the catchment experience groundwater re-
charge of between 1 - 50 mm, with the rest area reporting recharge values of be-
tween 51 - 200 mm. this was characteristic of ASAL where rainfall is low, 
coupled with sparse shrubs and high bare-ground cover. According to MacDo-
nald et al., (2021) [33] annual groundwater recharge in most semi-arid areas in 
Africa range between 60 - 200 mm hence confirming that the groundwater re-
charge results obtained were within acceptable range. In other areas, studies by 
Shamsuddaha et al., 2011 [31] and Siddik et al., 2022 [32] reported that ground-
water recharge varied spatially between 200 mm to 512 mm in Banglashes. As-
sessment further observed that the spatial variations in groundwater recharge 
varied greatly depth to the bedrock layer. Areas with shallow depth recorded low 
levels of recharge while area with higher depths recorded more recharge. 

Analysis of changes in groundwater volume for the period 2001-2013 showed 
that groundwater volume increased with increase in area under sparse shrubs 
while at the same time reduced with increase in bare-ground cover. Figure 13 
shows that groundwater volume was estimated at 58,670 m3 in 1990 when area 
under sparse shrubs was 12,690 Km2 but was found to have reduced to 58,335 m3 
in year 2000 when the area under sparse shrubs reduced to 11,745 Km2. A reduc-
tion of sparse shrubs by 945 Km2 led to reduction in groundwater volume by 335 
m3. 

In 2010, the groundwater volume increased to 58,750 m3 when the area under 
sparse shrubs increased to 13,065 Km2 before reducing to 58,555 m3 in 2020 in 
line with reduction of area under sparse shrubs to 11,130 Km2. These changes 
are explained in Figure 14. This meant that incorporation of measures that lead 
to improved percolation would consequently improve recharge and groundwa-
ter volume. Similar trend was observed when evaluating influence of land use 
and land cover change on groundwater recharge and percolation.  

Spatial changes in recharge between 1990 and 2020 were obtained by image 
differencing. An optimized hot spot analysis was carried out on the resulting 
images to determine areas with significant changes as reflected in Figure 14(a) 
and Figure 14(b). The assessment showed that there was notable decline in sig-
nificant recharge hot spots at 99% confidence levels to fewer recharge hot spots 
at 95% confidence levels.  

Further visual inspection of Figure 14(a) and Figure 14(b) showed more sig-
nificant hot spot areas at 95% confidence level as a result of increase in areas ex-
hibiting significant decrease in recharge especially between Wajir town, Eldas 
and Ogralle. The diminish of significant recharge hot spot areas and the increase 
of significant recharge cold spot area could only be associated with changes in 
land use and land covers.  

Figure 15 shows the spatial variation of groundwater volume in the catch-
ment. Overly of the borehole location data on groundwater volume maps re-
vealed that over 80% of the drilled were sited on areas with low groundwater  
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(b) 

Figure 14. Changes in groundwater recharge between years 1990-2020. 
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Figure 15. Spatial variations of groundwater in the catchment for the period 1990-2020. 
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Figure 16. Pumping effect on groundwater heads. 
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volume. This hence informed the reason why most of the drilled boreholes rec-
orded low yields especially for the areas around Dambas, Sarman to Buna. Low 
groundwater volume was also influenced by the depth to the bedrock which 
consequently affects the size of the saturation depth in addition to specific yield. 
Low groundwater volumes were observed in areas with shallow depths to the 
bedrock.  

The saturation depth is computed as difference between the groundwater 
head and depth to the bedrock. Results further show existence of small pockets 
of varying low to medium groundwater volume potentials. Similar finding were 
reported through investigations by Water Resources management Authority in 
that the groundwater system in the catchment comprises of small isolated 
groundwater pockets. The system is controlled by localised weathered basement 
systems surrounded by non-weathered basement hence allowing for no inter- 
aquifer movement (WRA, 2020 [34]; Kuria, 2013 [35]). According to Olago, 
(2019) [36], presence of local variations in the character of the aquifers within 
Wajir which highly contributed to variance in borehole depths, water levels, 
yield/groundwater volume and water quality. The challenge of low groundwater 
volumes is compounded by the fact that the largest part of the catchment expe-
rience recharge rates of between 5 - 10 mm as shown in Figure 16.  

Lagha-bor has been experiencing increased and continuous abstractions 
through pumping. With exception of some few areas around Dambas where the 
saturation depth and groundwater volume are relatively low (less than 50,000 
m3), most of the areas within the catchment would have groundwater potential 
volumes ranging between 900,000 m3 to 1.36 million cubic meters of water (see 
Figure 16). Less impact is likely to be felt even with increased pumping. This is 
due to the nature of the aquifers in Wajir. With more isolated small aquifers, 
pumping is only likely to affect the individual small aquifers other than the im-
pacts of the same over the entire catchment. While investigating the impacts of 
intensive groundwater abstraction on regional aquifer system, Shamsuddaha et 
al., 2011 [31] arrived at similar findings in that while the groundwater levels va-
ried temporally and spatially in the north-eastern region of Bangladesh, inten-
sive abstractions along with land use and land cover changes largely influenced 
the groundwater depths. 

4. Conclusions 

This study provided useful information on how the land use and land cover 
changes are influencing groundwater quantity and quality in lagha bor catch-
ment. It hence forms important scientific baseline information towards planning 
for management of water and vegetation cover as well as informing future de-
velopments within the catchment. The assessment established that evapotrans-
piration, percolation, recharge and groundwater transfer from the soil profile to 
the root zone reduced with decrease in vegetation cover or with increase in bare- 
ground cover. The least surface flow (1655 mm) was observed in year 2010 when 
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the catchment was observed to have recorded the highest area under sparse 
shrubs and the lowest area under bare-ground cover. It is during the same pe-
riod that the highest levels of percolation (3110 mm), lateral flows (480 mm) and 
saturation excess flow (1280 mm) were realised.  

This confirmed that the percent of vegetation cover played a great role in in-
fluencing these fluxes. For example, the transfer of groundwater to the soil pro-
file was highest at 5679 mm in year 2010 which corresponded to the same period 
when the area under sparse shrubs cover was highest. Groundwater transfer to 
the soil profile was lowest at 1850 mm in year 2000 during which the catchment 
recorded the lowest area under sparse shrubs. This deduced that the presence of 
vegetation greatly influenced the transfers of groundwater from the shallow wa-
ter tables to the soil profile. An assessment of changes in groundwater volume 
between 1990 and 2020 revealed that variations in land use and cover contri-
buted to changes in groundwater volume. The groundwater volume was found 
to increase with increase in area covered with sparse shrubs while it consequent-
ly decreased with increase in bare-ground cover.  
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